Generating Long Root Subgroup Geometries of Classical Groups Over Finite Prime Fields

Bruce. N. Cooperstein*

Abstract

The generating rank is determined for the (long) root subgroup geometries of $S L(n, \mathbb{F}), \Omega^{+}(2 n, \mathbb{F}), \Omega(2 n+1, \mathbb{F})$, and $\Omega_{2 n}^{-}(\mathbb{F})$ where \mathbb{F} is a finite prime field. In each instance the generating rank is equal to the universal embedding dimension. We also include a survey of other Lie incidence geometries for which the generating rank is known.

1 Introduction

We assume the reader is familiar with the basic definitions related to a linear incidence system or point-line geometry, $\Gamma=(P, L)$. As a standard reference see [4]. In particular, the concepts of a subspace in Γ, and the subspace $\langle X\rangle_{\Gamma}$ generated by a subset X of P. We define the generating rank, $\operatorname{gr}(\Gamma)$, of a point-line geometry Γ to be $\min \left\{|X| \subset P \mid\langle X\rangle_{\Gamma}=P\right\}$, that is, the minimal cardinality of a generating set of Γ.

We further assume familarity with the concept of a projective embedding e : $P \rightarrow$ $\mathbb{P} \mathbb{G}(V)$ of a point-line geometry $\Gamma=(P, L)$ as well as the notion of a relatively universal embedding. We say that Γ is embeddable if some projective embedding of Γ exists. When this is the case we shall define the embedding rank, $e r(\Gamma)$, of Γ to

[^0]the maximal dimension of a vector space V for which there exists an embedding into $\mathbb{P} \mathbb{G}(V)$. An immediate consequence of these definions is the following:

Lemma 1.1. Let $\Gamma=(P, L)$ be an embeddable point-line geometry and let $e: P \rightarrow$ $\mathbb{P} \mathbb{G}(V)$ be an embedding.
(i) $\operatorname{dim}(V) \leq g r(\Gamma)$. Consequently, $\operatorname{er}(\Gamma) \leq g r(\Gamma)$.
(ii) If $\operatorname{dim}(V)=\operatorname{gr}(\Gamma)$ then e is relatively universal.

When the generating and embedding ranks are equal we say that the geometry Γ has a basis (see [11]). In this paper we shall investigate several classes of embeddable point-line geometries, specifically the (long) root subgroup geometries of the classical groups - $S L(n \mathbb{F}), \Omega^{ \pm}(2 n, \mathbb{F})$, and $\Omega(2 n+1, \mathbb{F})$ - when the field \mathbb{F} is finite of prime order, and determine their generating ranks. Specifically, we prove

Theorem 1.2. Let \mathbb{F} be a finite field of prime order.
(i) For $n \geq 3$ the generating rank of the root subgroup geometry of $S L(n, \mathbb{F})$ is $n^{2}-1$.
(ii) Let $G=\Omega(k, \mathbb{F})$ be a orthogonal group of isometries for a non-singular orthogonal space of dimension k and Witt index $n \geq 3$ (so $k \in\{2 n, 2 n+1,2 n+2\}$. Then the generating rank of the long root subgroup geometry of G is $\binom{n}{2}$.

In all cases the generating and embedding ranks are equal. As we shall see it is quite clear that these geometries have embeddings with the respective dimensions $n^{2}-1,\binom{k}{n}$ and consequently, our result provides a simple proof that these embeddings are relatively universal and that these are the universal embedding dimensions.

It does not appear to be the case, however, that the embedding dimension and the generating rank are always equal for embeddable geometries: at least for odd characteristic as it is likely that the usual $G_{2}(p)$ generalized hexagon, p an odd prime, is a counterexample. However, on the basis of the evidence collected thus far for the prime $p=2$ we do make the following

Conjecture 1.3. If $\Gamma=(P, L)$ is a finite embeddable \mathbb{F}_{2} geometry then the embedding rank of Γ is equal to the generating rank of $\Gamma: \operatorname{gr}(\Gamma)=\operatorname{er}(\Gamma)$.

The outline of this paper is as follows: In section two we record some lemmas on the generation of projective spaces and orthogonal polar spaces which will be used in the subsequent sections. In section three we very briefly review the definition of the long root subgroup geometry of a Chevalley group and identify the long root subgroups in the special linear and orthogonal groups. In section four we investigate the generation of the root subgroup geometry of the group $S L(n, \mathbb{F}), \mathbb{F}$ a finite prime field. In section five we determine the generating rank of the long root subgroup geometry of $\Omega^{+}(2 n, \mathbb{F})$. The following section deals with the generation of the root
subgroup geometry of $\Omega(2 n+1, \mathbb{F})$. Section seven deals with the case of $\Omega^{-}(2 n, \mathbb{F})$. Finally, in section eight we survey all further instances known to us in which the generating rank of a Lie incidence geometry has been determined.

2 Generating Projective Space and Classical Polar Spaces

Here we record some basic lemmas on the generation of an $n-1$ dimensional projective space and the polar space of singular points and totally singular lines in orthogonal space. The first lemma is obvious:

Lemma 2.1. Let V be an n-dimensional vector space over an arbitrary field. Let P consist of the one dimensional spaces and L the two dimensional spaces, the latter identified with the elements of P which it contains. Then $\operatorname{er}(P, L)=n$.

We next take up the generation of non-degenerate orthogonal spaces and for completeness include a general definition and recall some basic concepts. Thus, an orthogonal space consists of a pair (V, Q) where V is a vector space over a field \mathbb{F} and $Q: V \rightarrow \mathbb{F}$ is a quadratic form, that is, it satisfies
(1) $Q(\alpha v)=\alpha^{2} Q(v)$ for all $\alpha \in \mathbb{F}, v \in V$; and
(2) The map $():, V \times V \rightarrow \mathbb{F}$ defined by $(v, w)=Q(v+w)-Q(v)-Q(w)$ is a symmetric bilinear form.

We say two vectors are perpendicular or orthogonal and write $v \perp w$ if $(v, w)=0$. We say that Q is non-degenerate if $($,$) is non-degenerate, that is, if for every v \in$ $V, v \neq 0$ there is a $w \in V$ such that $(v, w) \neq 0$. We say that Q is non-singular if either it is non-degenerate or if $\operatorname{dim} V=2 k+1$ and there is a unique one dimensional space $\langle v\rangle$ with $v \perp V$ and $Q(v) \neq 0$. This case can only occur if the characteristic of \mathbb{F} is two.

For a subspace U we set $U^{\perp}=\{v \in V \mid v \perp u, \forall u \in U\}$. A subspace U of V is (totally) singular if $Q(u)=0$ for all $u \in U$. Assume that $n \geq 3$. It is well known that the dimension of a totally singular subspace cannot exceed $\left[\frac{\operatorname{dimV}}{2}\right]$ and all maximal singular subspaces have the same dimension, called the Witt index of the form. We will be concerned here with three types of non-singular orthogonal spaces and since our ground field is finite we may assume it takes one of the following forms:
(1) (V, Q) is non-degenerate, $\operatorname{dim} V=2 n$ is even, the Witt index is n. In this case we can find a basis $x_{i}, y_{i}, 1 \leq i \leq n$ of singular vectors such that $x_{i} \perp x_{j}, x_{i} \perp$ $y_{j}, y_{i} \perp y_{j}, i \neq j,\left(x_{i}, y_{i}\right)=1$. This is called a hyperbolic space and such a basis is referred to as a hyperbolic basis.
(2) (V, Q) is non-singular, $\operatorname{dim} V=2 n+1$ is odd, the Witt index is n. In this case we can find a basis of singular vectors $x_{i}, y_{i}, 1 \leq i \leq n-1, z_{j}, 1 \leq j \leq 3$ such that $x_{i} \perp x_{j}, y_{j}, z_{k} ; y_{i} \perp y_{j}, z_{k}$ for $i \neq j, k=1,2,3,\left(x_{i}, y_{i}\right)=1,1 \leq i \leq n-1$, and $\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{3}\right)=\left(z_{2}, z_{3}\right)=1$.
(3) (V, Q) is non-degenerate, $\operatorname{dim} V=2 n+2$ even, the Witt index is n. There is then a basis of singular vectors $x_{i}, y_{i}, 1 \leq i \leq n-1, z_{j}, 1 \leq j \leq 4$ such that $x_{i} \perp x_{j}, y_{j}, z_{k} ; y_{i} \perp y_{j}, z_{k}$ for $i \neq j, k=1,2,3,4 ;\left(x_{i}, y_{i}\right)=1,1 \leq i \leq n-1$, $\left(z_{i}, z_{j}\right)=1$ for $1 \leq i<j \leq 4$ and $(i, j) \neq(3,4)$, and $\left(z_{3}, z_{4}\right)=d \neq 0$.

The orthogonal polar space has as its points the collection P of singular one dimensional subspaces and as lines the set L of totally singular two dimensional subspaces. In the next three lemmas we show the bases given above, in the respective cases, span a set of singular points which generate the respective geometries. The first result is well known and can be found in [11] but we include a proof for completeness.

Lemma 2.2. Assume (V, Q) is as in (1) with $n \geq 2$. Then $\left\{\left\langle x_{i}\right\rangle,\left\langle y_{i}\right\rangle \mid 1 \leq i \leq n\right\}$ generates (P, L).

Proof: Let Z be the set of points spanned by the basis in (1) and let S be the subspace of the polar geometry (P, L) generated by these points. Set $X=\left\langle x_{i}\right| 1 \leq$ $i \leq n\rangle, Y=\left\langle y_{i} \mid 1 \leq i \leq n\right\rangle$. Then $V=X \oplus Y . X, Y$ are maximal totally singular subspaces. By (2.1) every point of X and every point of Y is in S. Now let $\langle u\rangle$ be an arbitrary singular point. Then there are unique $x \in X, y \in Y$ such that $u=x+y$. Now $0=Q(u)=(x, y)$ so that $x \perp y$. Then $\langle u\rangle$ lies on the line $\langle x, y\rangle \subset S$.

Lemma 2.3. Assume that (V, Q) is as in (2) with $n \geq 2$. Then $\left\{\left\langle x_{i}\right\rangle,\left\langle y_{i}\right\rangle \mid 1 \leq i \leq\right.$ $n-1\} \cup\left\{\left\langle z_{j}\right\rangle \mid j=1,2,3\right\}$ generates (P, L).

Proof: Let $Z\left\{\left\langle x_{i}\right\rangle,\left\langle y_{i}\right\rangle \mid 1 \leq i \leq n-1\right\} \cup\left\{\left\langle z_{j}\right\rangle \mid j=1,2,3\right\}$ and S be the subspace of P spanned by Z. Let $X=\left\langle x_{i} \mid 1 \leq i \leq n-1\right\rangle, Y=\left\langle y_{i} \mid 1 \leq i \leq n-1\right\rangle$. For $\{i, j, k\}=\{1,2,3\}$ set $U_{i}=X \oplus Y \oplus\left\langle z_{j}, z_{k}\right\rangle$. The orthogonal spaces $\left(U_{i}, Q \mid U_{i}\right)$ are of type (1). By 2.3 every singular point in $U_{i}, i=1,2,3$ is in S. Now suppose $\langle u\rangle$ is an arbitrary singular point. Without loss of generality we may assume u does not belong to $U_{i}, i=1,2,3$. Now $\operatorname{dim} u^{\perp}$ is four and, consequently, u^{\perp} is not contained in $X \oplus Y+\langle u\rangle$. Since $u^{\perp} /\langle u\rangle$ is non-singular there must be a singular point in $\langle w\rangle$ in u^{\perp} such that $\langle u, w\rangle \cap[(X \oplus Y)+\langle u\rangle]=\langle u\rangle$. Now the line $\langle u, w\rangle$ intersects each of $U_{i}, i=1,2,3$ in a point. These points cannot all be identical since $U_{1} \cap U_{2} \cap U_{3}=X \oplus Y$. Suppose $U_{i} \cap\langle u, w\rangle=\left\langle v_{i}\right\rangle, U_{j} \cap\langle u, w\rangle=\left\langle v_{j}\right\rangle$ are distinct for a some pair $i \neq j \in\{1,2,3\}$. Then $\left\langle v_{i}\right\rangle,\left\langle v_{j}\right\rangle \in S$ and consequently $\langle u\rangle \in\langle u, w\rangle=\left\langle v_{i}, v_{j}\right\rangle \subset S$.

Remark: Over a finite field the point-line geometry of any two non-singular orthogonal spaces of odd dimension are isomorphic.

Lemma 2.4. Assume (V, Q) is as in (3). Let $Z=\left\{\left\langle x_{i}\right\rangle,\left\langle y_{i}\right\rangle \mid 1 \leq i \leq n-1\right\} \cup$ $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and let S be the subspace of P generated by Z. Then $S=P$.

Proof: Set $X=\left\langle x_{i} \mid 1 \leq i \leq n-1\right\rangle, Y=\left\langle y_{i} \mid 1 \leq i \leq n-1\right\rangle$. For $j \in\{1,2,3,4\}$ set $U_{j}=X \oplus Y \oplus\left\langle z_{k} \mid 1 \leq k \leq 4, k \neq j\right\rangle$. Then each U_{j} is non-degenerate. By (2.3)
and the above remark every singular point contained of $U_{j}, j=1,2,3,4$ is contained in S. Also, $\cap_{j=1}^{4} U_{j}=X \oplus Y$. Now let $\langle u\rangle$ be an arbitrary singular point. Without loss of generality $\langle u\rangle$ does not belong to any of the U_{j}. As argued in (2.3) there must be a singular vector w such that $\langle u, w\rangle \cap[X \oplus Y+\langle u\rangle]=\langle u\rangle$. Then $\langle u, w\rangle$ cannot meet all U_{j} in the same point and by an argument similar to that in (2.3) we get $\langle u\rangle \in S$.

3 The Long Root Subgroup Geometry of Classical Groups

The following is essentially (12.1) in [1] and is also proved explicitly for the exceptional groups in [9]. As an additional reference see [14].

Theorem 3.1. Let G be any finite Chevalley group of rank at least two, other than ${ }^{2} F_{4}(q)$. Let X and Y be centers of distinct long roots subgroups, of order q. Then one of the following holds:
(i) $\langle X, Y\rangle$ is elementary Abelian and is the union of $q+1$ long roots subgroups which pairwise intersect trivially;
(ii) $\langle X, Y\rangle$ is elementary Abelian and $X \cup Y$ are the only long root elements contained in $\langle X, Y\rangle$;
(iii) $\langle X, Y\rangle$ is isomorphic to a Sylow subgroup of order q^{3} in $S L(3, q), Z=$ $Z(\langle X, Y\rangle)$ is a conjugate long root subgroup (hence conjugate to X and Y), and each of $X Z, Y Z$ are a union of $q+1$ long roots subgroups as in (i);
(iv) $\langle X, Y\rangle \cong S L(2, q)\left(\right.$ or $P S L(2, q)$ in $\left.P \Omega^{+}(4, q)\right)$.

Before proceeding we introduce some notation. If V is a vector space, $v \in V$ and $\tau: V \rightarrow V$ an endomorphism, then $[\tau, v]=\tau(v)-v=\left(\tau-I_{V}\right)(v)$. Also, by $[\tau, V]$ we shall mean the subspace of V spanned by all $[\tau, v], v \in V$.

The linear groups, $S L(n, \mathbb{F})$ and the orthogonal groups, $\Omega^{ \pm}(2 n, \mathbb{F}), \Omega(2 n+1, \mathbb{F})$ are Chevalley groups. We now describe the long root subgroups in $S L(n, \mathbb{F}) \cong$ $S L(V), V$ an n - dimensional vector space over \mathbb{F}. Thus, let $\langle v\rangle$ be a one-dimensional subspace of V and H a hyperplane containing $\langle v\rangle$. The group $\chi(\langle v\rangle, H)=\{\tau: V \rightarrow$ $V \mid[\tau, V] \subset\langle v\rangle,[\tau, H]=0\}$ is a full root subgroup. The elements of $\chi(\langle v\rangle, H)$ are called transvections with axis H and center $\langle v\rangle$. Two such subgroups, $\chi\left(\left\langle v_{i}\right\rangle, H_{i}\right), i=$ 1,2 bear the relation (i) of (3.1) if either $\left\langle v_{1}\right\rangle=\left\langle v_{2}\right\rangle$ or $H_{1}=H_{2}$. In the first instance the root subgroups partitioning the subgroup they generate, $\left\langle\chi\left(\left\langle v_{1}\right\rangle, H_{1}\right), \chi\left(\left\langle v_{1}\right\rangle, H_{2}\right)\right\rangle$, are $\left\{\chi\left(\left\langle v_{1}\right\rangle, H\right) \mid H \supset H_{1} \cap H_{2}\right\}$. In the second instance the partition is by the subgroups $\left\{\chi\left(\langle v\rangle, H_{1}\right) \mid\langle v\rangle \subset\left\langle v_{1}, v_{2}\right\rangle\right\}$.

We next describe the long root subgroup geometry of an orthogonal group $\Omega(V)$ where (V, Q) is a non-singular orthogonal space of Witt index at least three. $\Omega(V)$ will be the subgroup of $O(V)=\{\tau: V \rightarrow V \mid Q(\tau(v))=Q(V), \forall v \in V\}$ generated by the root elements. Let $U=\langle v, w\rangle$ be a totally singular projective line of V. The group $\chi(U)=\left\{\tau: V \rightarrow V \mid[\tau, V] \subset U,\left[\tau, U^{\perp}\right]=0\right\}$ is a long root subgroup. These are the root subgroups. Two distinct such subgroups, $\chi\left(U_{i}\right), i=1,2$, are related as
in (i) of 3.1 if $U_{1} \cap U_{2} \neq 0$ and $U_{2} \subset U_{1}^{\perp}$. In this case if $X=U_{1} \cap U_{2}, Y=\left\langle U_{1}, U_{2}\right\rangle$ then the subgroup $\left\langle\chi\left(U_{1}\right), \chi\left(U_{2}\right)\right\rangle$ is partitioned by $\{\chi(U) \mid X \subset U \subset Y\}$ and these are the lines of the root subgroup geometry.

4 Generating the Root Subgroup Geometry of $S L(n, \mathbb{F})$

In light of the description given in section two of the root subgroup geometry of $S L(V), V$ an n-dimensional vector space over a field \mathbb{F}, we can make the following identification:

Let Π_{k} denote the subspaces of V of dimension k and set $\mathcal{P}=\{(\langle v\rangle, H) \in$ $\left.\Pi_{1} \times \Pi_{n-1} \mid v \in H\right\}$. The lines are then in one-to-one correspondence with

$$
\left\{(U, H) \in \Pi_{2} \times \Pi_{n-1} \mid U \subset H\right\} \cup\left\{(\langle v\rangle, M) \in \Pi_{1} \times \Pi_{n-2} \mid v \in M\right\}
$$

The line corresponding to the first type, $(U, H) \in \Pi_{2} \times \Pi_{n-1}$ is the set $\{(\langle v\rangle, H) \mid v \in$ $U\}$ and to the second type, $(\langle v\rangle, M)$, the set $\{(\langle v\rangle, H) \mid H \subset M\}$. Thus two points $\left(\left\langle v_{i}\right\rangle, H_{i}\right) \in \mathcal{P}, i=1,2$ are collinear if and only if either $\left\langle v_{1}\right\rangle=\left\langle v_{2}\right\rangle$ in which case the line on this is the set corresponding to $\left(\left\langle v_{1}\right\rangle, H_{1} \cap H_{2}\right)$ or if $H_{1}=H_{2}$ and then the line corresponds to $\left(\left\langle p_{1}, p_{2}\right\rangle, H_{1}\right)$. We let \mathcal{L} be the set of all such lines and denote by Γ the pair $(\mathcal{P}, \mathcal{L})$. For convenience of notation we set $\Pi=\Pi_{1}$ and $\mathcal{H}=\Pi_{n-1}$.

It follows from [16] and [17] that for finite fields \mathbb{F} the embedding rank of the root subgroup geometry of $S L(n, \mathbb{F})$ is $n^{2}-1$ and consequently the generating rank of this geometry is at least $n^{2}-1$ by (1.1).

The principal result of this section is part (i) of our main theorem:
Theorem 4.1. Let \mathbb{F} be a prime field. Then the root subgroup geometry of $S L(n, \mathbb{F})$ $=S L(V)$ has generating rank $n^{2}-1$.

For a point $x \in \Pi$ we let $(x)=\{(x, H) \mid H \in \mathcal{H}, x \subset H\}$ and similarly for $H \in \mathcal{H}$ we set $(H)=\{(x, H) \mid x \in \Pi, x \subset H\}$. Then the geometry induced on any (x) or (H) is a projective space of rank $n-2$ and therefore by (2.1) can be generated by $n-1$ points. Suppose now that $v_{1}, v_{2}, \ldots, v_{n}$ is a basis for V. Then each of the subspaces $\left(\left\langle v_{i}\right\rangle\right), 1 \leq i \leq n$ is a projective space of rank $n-2$ and can be generated by $n-1$ points. Likewise the subspace $\left(\left\langle v_{1}+v_{2}+\cdots+v_{n}\right\rangle\right)$ can be generated by $n-1$ points. Taking generating set of each of these we obtain $(n+1)(n-1)=n^{2}-1$ points. This will be the set which we shall show generates our geometry. That this set generates $\Gamma=(\mathcal{P}, \mathcal{L})$ when our underlying field is a prime field \mathbb{F} will be a consequence of the next several lemmas. For convenience set $p_{i}=\left\langle v_{i}\right\rangle, 1 \leq i \leq n, p_{n+1}=\left\langle v_{1}+\cdots+v_{n}\right\rangle$.

Lemma 4.2. The subspace S of \mathcal{P} generated by $\left(p_{i}\right), 1 \leq i \leq n+1$ contains $\left(\left\langle v_{i}+v_{j}\right\rangle\right)$ for every pair $i \neq j$.

Proof: Without loss of generality we may assume that $i=1, j=2$. Set $\Omega=$ $\{1,2, \ldots, n\}$. First note that if $\Phi \in \Omega^{\{n-1\}}$ and $H_{\Phi}=\left\langle v_{i} \mid i \in \Phi\right\rangle$ then $\left(H_{\Phi}\right) \subset S$ since $\left(p_{i}, H_{\Phi}\right) \in S$ for each $i \in \Phi$ and these points generate $\left(H_{\Phi}\right)$ by (2.1). It then follows that S contains $\left(\left\langle v_{1}+v_{2}\right\rangle,\left\langle v_{1}, v_{2}\right\rangle \oplus M_{\Delta}\right)$ where $\Delta \in[\Omega \backslash\{1,2\}]^{\{n-3\}}$ and $M_{\Delta}=\left\langle v_{k} \mid k \in \Delta\right\rangle$. These $n-2$ points span a hyperplane T in $\left(\left\langle v_{1}+v_{2}\right\rangle\right)$. Now let $H=\left\langle v_{1}+v_{2}, v_{3}, \ldots, v_{n}\right\rangle$. X contains the points $\left(p_{i}, H\right), 3 \leq i \leq n$, which generate a hyperplane in (H). However, $\left(p_{n+1}\right)$ contains $\left(\left\langle v_{1}+v_{2}+\cdots+v_{n}\right\rangle, H\right)$. Therefore, $S \supset(H)$. But $\left(\left\langle v_{1}+v_{2}\right\rangle, H\right) \in(H)$. Now this point together with T generate ($\left\langle v_{1}+v_{2}\right\rangle$) completing the lemma.

Now, set $X_{0}=\left\{\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle, \ldots,\left\langle v_{n}\right\rangle,\left\langle v_{1}+v_{2}+\cdots+v_{n}\right\rangle\right\}$. Assume that X_{k} has been defined for $k \in \mathbb{N}$. Then X_{k+1} will consist of all those points $\langle u\rangle \in \mathbb{P} \mathbb{G}(V)$ for which there exists a basis $u_{1}, u_{2}, \ldots, u_{n}$ such that $u=u_{1}+u_{2}$ and such that $\left\langle u_{1}\right\rangle,\left\langle u_{2}\right\rangle, \ldots,\left\langle u_{n}\right\rangle,\left\langle u_{1}+u_{2}+\cdots+u_{n}\right\rangle \in X_{k}$. Let $X=\cup_{k \in \mathbb{N}} X_{k}$. 4.1 will be a direct consequence of
Lemma 4.3. $X=\left\{\left\langle\sum_{i=1}^{n} z_{i} v_{i}\right\rangle \mid\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{Z}^{n}\right\}$.

Proof: For the remainder of this section let $Z=\left\{\left\langle\sum_{i=1}^{n} z_{i} v_{i}\right\rangle \mid\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in\right.$ $\left.\mathbb{Z}^{n}\right\}$. We begin by showing that $X \supset Z$. We prove this part of the lemma in a sequence of six steps.
(1) Let u_{1}, \ldots, u_{n} be a basis for V such that $\left\langle u_{i}\right\rangle \in X$ for each $i, 1 \leq i \leq n$ and $\left\langle u_{1}+\ldots u_{n}\right\rangle \in X$. Then, for any subset $I \subset\{1,2, \ldots, n\},\left\langle\sum_{i \in I} u_{i}\right\rangle \in X$.

Let $k(I)=\min \{|I|, n-|I|\}$. We do induction on k. In the initial case, $k=0$, by hypothesis $\left\langle u_{1}+u_{2}+\ldots u_{n}\right\rangle \in X$. Assume then $k(I)=k$ and that the result is true for all subsets J of $\{1,2, \ldots, n\}$ with $k(J)<k$. Suppose first that $|I|=k$. Without loss of generality we may assume that $I=\{1,2, \ldots, k\}$ and we can assume that $k>2$ since $\left\langle u_{1}+u_{2}\right\rangle \in X$. By hypothesis $\left\langle u_{1}+\ldots u_{k-1}\right\rangle,\left\langle u_{k-1}+\ldots u_{n}\right\rangle \in X$. Set $w_{1}=u_{1}+\ldots u_{k-1}, w_{2}=u_{k}$. For $3 \leq i \leq n-k+2$ set $w_{i}=u_{k+i-2}$. For $n-k+3 \leq i \leq n$ set $w_{i}=-u_{i+k-n-2}$. Then w_{1}, \ldots, w_{n} is a basis for V and $\left\langle w_{i}\right\rangle \in X, 1 \leq i \leq n$. Moreover, $w_{1}+\ldots w_{n}=u_{k-1}+\ldots u_{n}$ and consequently $\left\langle w_{1}+\ldots w_{n}\right\rangle \in X$. Therefore, $\left\langle u_{1}+\ldots u_{k}\right\rangle=\left\langle w_{1}+w_{2}\right\rangle \in X$.

On the other hand, assume that $k=n-|I|$. Without loss of generality we may assume that $I=\{1,2, \ldots, n-k\}$. By the inductive hypothesis $\left\langle u_{1}+\ldots u_{n-k}+\right.$ $\left.u_{n-k+1}\right\rangle \in X$ and
$\left.\operatorname{lng} u_{1}+\ldots u_{k-1}\right\rangle \in X$. Now set $w_{1}=u_{1}+\ldots u_{n-k}+u_{n-k+1}, w_{2}=-u_{n-k+1}$. For $3 \leq$ $i \leq n-k+1$ set $w_{i}=-u_{n-k+3-i}$ and for $n-k+2 \leq i \leq n$ set $w_{i}=u_{2 n+2-k-i}$. Then w_{1}, \ldots, w_{n} is a basis for $V,\left\langle w_{i}\right\rangle \in X$ and $\left\langle w_{1}+w_{2}+\ldots w_{n}\right\rangle=\left\langle u_{n-k+2}+\ldots u_{n}\right\rangle \in X$. Then $\left\langle u_{1}+\ldots u_{n-k}\right\rangle=\left\langle w_{1}+w_{2}\right\rangle \in X$.
(2) If u_{1}, \ldots, u_{n} is a basis for V and $\left\langle u_{1}+\ldots u_{n}\right\rangle,\left\langle u_{i}\right\rangle \in X, 1 \leq i \leq n$ then $\left\langle u_{i}-u_{j}\right\rangle$ for $i \neq j$.

Without loss of generality it suffices to prove that $\left\langle u_{1}-u_{2}\right\rangle \in X$. Now $w_{1}=$ $u_{1}+u_{3}, w_{2}=-\left(u_{2}+u_{3}\right), w_{3}=u_{2}, w_{4}=u_{4}, \ldots, w_{n}=u_{n}$ is a basis for V. The sum
of these vectors is $u_{1}+u_{3}+u_{4}+\cdots+u_{n}$ and by (1) $\left\langle u_{1}+u_{3}+u_{4}+\cdots+u_{n}\right\rangle \in X$. Therefore $\left\langle w_{1}+w_{2}\right\rangle=\left\langle u_{1}+u_{3}+\left(-u_{2}-u_{3}\right)\right\rangle=\left\langle u_{1}-u_{2}\right\rangle \in X$.

For $z \in \mathbb{Z}^{n}$ set $m(z)=\max \left\{\left|z_{i}\right|: 1 \leq i \leq n\right\} ; l(z)=\left|\left\{i \mid z_{i} \neq 0,1 \leq i \leq n\right\}\right| ;$ and $w(z)=\sum_{i=1}^{n}\left|z_{i}\right|$. We now proceed to prove the lemma by induction on $w(z)$.
(3) Assume $m(z)=1$. We know the result is true if $l(z)=2$ by (2). Therefore we may assume that $l(z)>2$. Set $p(z)=\left|\left\{i \mid z_{i}>0\right\}\right|, n(z)=\left|\left\{i \mid z_{i}<0\right\}\right|$. By (1) we may assume that $p(z) n(z) \neq 0$. Without loss of generality we may assume that $n(z) \geq p(z)$ so $n(z)>1$.

Suppose $p(z)=1, n(z)=2$. Without loss of generality we can take $z=(1,-1,-1,0,0, \ldots, 0)$. Now set $u_{1}=v_{1}-v_{2} ; u_{i}=-v_{i+1}, 2 \leq i \leq n-1, u_{n}=-v_{1}$. Then u_{1}, \ldots, u_{n} are independent, $\left\langle u_{i}\right\rangle \in X$. Additionally, $\left\langle u_{1}+u_{2}+\cdots+u_{n}\right\rangle=$ $\left\langle-\left(v_{2}+v_{3}+\cdots+v_{n}\right)\right\rangle \in X$ by (1). Then $\left\langle v_{1}-v_{2}-v_{3}\right\rangle=\left\langle u_{1}+u_{2}\right\rangle \in X$.

Suppose now that $p(z)=n(z)=2$. Without loss of generality we can take $z=(1,1,-1,-1,0, \ldots, 0)$. Now set $u_{1}=v_{1}+v_{2}-v_{3} ; u_{i}=-v_{i+2}, 2 \leq n-2 ; u_{n-1}=$ $-\left(v_{1}+v_{2}\right), u_{n}=-\left(v_{3}+v_{4}+\cdots+v_{n}\right)$. Then u_{1}, \ldots, u_{n} is independent and $\left\langle u_{i}\right\rangle \in X$. Now $\sum_{i=1}^{n} u_{i}=-2\left(v_{3}+v_{4}+\cdots+v_{n}\right)$ and consequently $\left\langle\sum_{i=1}^{n} u_{i}\right\rangle \in X$. Thus $\left\langle v_{1}+v_{2}-v_{3}-v_{4}\right\rangle=\left\langle u_{1}+u_{2}\right\rangle \in X$.

We may assume $n(z)>2$. Set $p(z)=s, n(z)=t$. Without loss of generality $z=(1,1, \ldots, 1,-1,-1, \ldots,-1,0, \ldots, 0)$. Note that $z_{s+t-2}=-1$. Now set $u_{1}=$ $v_{1}+\ldots v_{s}-v_{s+1}-\cdots-v_{s+t-1} ; u_{i}=-v_{s+t+i-2}, 2 \leq i \leq n+2-s-t ; u_{n+2-s-t+j}=$ $-v_{j}, 1 \leq j \leq s+t-3$, and $u_{n}=-\left(v_{s+t-2}+v_{s+t-1}+\ldots v_{n}\right)$. Then u_{1}, \ldots, u_{n} are independent and $\left\langle u_{i}\right\rangle \in X . \sum_{i=1}^{n} u_{i}=-2\left(v_{s+t-2}+v_{s+t-1}+\cdots+v_{n}\right)$ and hence by (1) $\left\langle\sum_{i=1}^{n} u_{i}\right\rangle \in X$. Then $\left\langle v_{1}+v_{2}+\cdots+v_{s}-v_{s+1}-v_{s+2}-\cdots-v_{t}\right\rangle=\left\langle u_{1}+u_{2}\right\rangle \in X$.
(4) May now assume that $m=m(z)>1$. By reordering if necessary we may assume that $\left|z_{1}\right| \geq\left|z_{2}\right| \geq \ldots\left|z_{n}\right|$ and also if $\left|z_{i}\right|=\left|z_{i+1}\right|$ then $z_{i} \geq z_{i+1}$. We may also assume that $z_{1}>0$ so that $z_{1}=m$.

Assume first that $\left|z_{2}\right|=m$. In this case set $u_{1}=\sum_{i=1}^{n} z_{i} v_{i}-\left(z_{1} v_{1}+z_{2} v_{2}\right)$. Note that $w\left(0,0, z_{3}, z_{4}, \ldots, z_{n}\right)<w(z)$ so that by induction $\left\langle u_{1}\right\rangle \in X$. Next set $u_{2}=z_{1} v_{1}+z_{2} v_{2}=m\left(v_{1} \pm v_{2}\right)$ so that, by $(2),\left\langle u_{2}\right\rangle \in X$. Now for $3 \leq i \leq n$ let $u_{i}=-z_{i} v_{i}$ if $z_{i} \neq 0$ and $m v_{i}$ if $z_{i}=0$. Then u_{1}, \ldots, u_{n} is independent and for each $i,\left\langle u_{i}\right\rangle \in X$. Also $\sum_{i=1}^{n} u_{i}=m\left(v_{1} \pm v_{2}+\sum_{j>2, z_{j}=0} v_{j}\right)$ and by (3) $\left\langle\sum_{i=1}^{n} u_{i}\right\rangle \in X$. Then $\left\langle\sum_{i=1}^{n} z_{i} v_{i}\right\rangle=\left\langle u_{1}+u_{2}\right\rangle \in X$.
(5) We may now assume that $\left|z_{2}\right|<m$. Suppose that $l(z)=2$. We first treat the case that $m=z_{1}=2$. Take $u_{1}=v_{1}+z_{2} v_{2}, u_{2}=-v_{1}, u_{i}=z_{2} v_{i}, i>2$. Then the u_{i} are independent, $\left\langle u_{i}\right\rangle \in X$, and $\left\langle\sum_{i=1}^{n} u_{i}\right\rangle=\left\langle \pm\left(v_{2}+v_{3}+\cdots+v_{n}\right)\right\rangle \in X$ by (1). Then by (3) $\left\langle z_{1} v_{1}+z_{2} v_{2}\right\rangle=\left\langle 2 v_{1}+z_{2} v_{2}\right\rangle=\left\langle u_{1}-u_{2}\right\rangle \in X$ by (3).

So now assume that $z_{1}>2$. Set $u_{1}=\left(z_{1}-1\right) v_{1}, u_{2}=-v_{1}-z_{2} v_{2}, u_{3}=z_{2} v_{2}+$ $\left(z_{1}-2\right) v_{3}$, and for $i>3$ set $u_{i}=\left(z_{1}-2\right) v_{i}$, We remark that $w\left(\left(-1,-z_{2}, 0, \ldots, 0\right)\right)$,
$w\left(\left(0, z_{2}, z_{1}-2,0, \ldots, 0\right)\right)<w\left(\left(z_{1}, z_{2}, 0, \ldots, 0\right)\right)$ and so by our inductive hypothesis $\left\langle u_{2}\right\rangle,\left\langle u_{3}\right\rangle \in X$. Since $u_{1}, u_{i}, i>3$ are multiples of v_{j} all $\left\langle u_{i}\right\rangle \in X$. Furthermore, since $z_{1}>2, u_{1}, \ldots, u_{n}$ are independent. Note that $\sum_{i=1}^{n} u_{i}=\left(z_{1}-2\right)\left(v_{1}+v_{3}+v_{4}+\cdots+v_{n}\right)$ so that $\left\langle\sum_{i=1}^{n} u_{i}\right\rangle \in X$ by (1). By (3) $\left\langle z_{1} v_{2}+z_{2} v_{2}\right\rangle=\left\langle u_{1}-u_{2}\right\rangle \in X$.
(6) We now complete the inclusion $X \supset Z$ by doing induction on $l(z)$. The case $l(z)=1$ is satisfied by hypothesis and $l(z)=2$ in the previous step. Assume that $t \in \mathbb{N}, t>2$ and that for all $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{Z}^{n}$ if $l(z)<t$ then $\left\langle\sum_{i=1}^{n} z_{i} v_{i}\right\rangle \in X$. Now assume $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{Z}^{n}$ satisfies $l(z)=t$. We know that $m=m(z)>1$. For $1 \leq i \leq t$ let $a_{i}=z_{t} \frac{z_{i}}{\left|z_{i}\right|}$. Set $u_{1}=\sum_{i=1}^{t} z_{i} v_{i}-\sum_{i=1}^{t} a_{i} v_{i}$ and $u_{2}=\sum_{i=1}^{t} a_{i} v_{i}$. Further, for $3 \leq i \leq t$ set $u_{i}=-\left(z_{i}-a_{i}\right) v_{i-1}$ if $z_{i}-a_{i} \neq 0$, alternatively, $u_{i}=\left(z_{1}-a_{1}\right) v_{i-1}$ if $z_{i}-a_{i}=0$. For $t+1 \leq i \leq n$ set $u_{i}=\left(z_{1}-a_{1}\right) v_{i}$. Then $\left\langle u_{1}\right\rangle \in X$ since $l\left(\left(z_{1}-a_{1}, \ldots, z_{t-1}-a_{t-1}, 0, \ldots, 0\right)\right)<l(z)$. Also, $\left\langle u_{2}\right\rangle \in X$ since $w\left(\left(a_{1}, a_{2}, \ldots, a_{t}, 0, \ldots, 0\right)\right)<w(z)$. Clearly for $i \geq 3,\left\langle u_{i}\right\rangle \in X$. Furthermore, $\left\langle\sum_{i=1}^{n} u_{i}\right\rangle \in X$ by (4) since it is a multiple of a vector $\sum_{i=1}^{n} e_{i} v_{i}$ with $e_{i} \in\{0,-1,1\}$. Consequently, $\left\langle\sum_{i=1}^{t} z_{i} v_{i}\right\rangle=\left\langle u_{1}+u_{2}\right\rangle \in X$. This completes the proof that $X \supset Z$.
(7) Finally, we prove that $X \subset Z$. Of course, if \mathbb{F} is a prime field (including the rational numbers) then this is obvious and in that case we have already proved (4.1). However since it is of interest to see what subspace of \mathcal{P} is generated by $\cup_{i=1}^{n+1}\left(p_{i}\right)$ we deal with the general case of an arbitrary field. In that case, let \mathbb{F}_{0} be its prime subfield. Suppose to the contrary that X is not contained in Z. Let $m \in \mathbb{N}$ be minimal such that there exists a point $\langle u\rangle \in X_{m},\langle u\rangle \notin Z$. Clearly $m>0$. Then there is a basis u_{1}, \ldots, u_{n} for V such that $\left\langle u_{i}\right\rangle \in X_{m-1}, 1 \leq i \leq n$, $\left\langle u_{1}+u_{2}+\cdots+u_{n}\right\rangle \in X_{m-1}$, and $\langle u\rangle=\left\langle u_{1}+u_{2}\right\rangle$. Since $m-1<m$ there are vectors $x_{i} \in Z$ and scalars $a_{i} \in \mathbb{F}, 1 \leq i \leq n+1$ such that $u_{i}=a_{i} x_{i}, 1 \leq i \leq n$, $a_{n+1} x_{n+1}=u_{1}+u_{2}+\cdots+u_{n}$. Set $x=x_{n+1}, a=a_{n+1}$.

Since the $x_{j} \in Z$ they are each a \mathbb{F}_{0} linear combinations of v_{1}, \ldots, v_{n} say

$$
x_{j}=\sum_{i=1}^{n} c_{i j} v_{i}
$$

where $c_{i j} \in \mathbb{F}_{0}, 1 \leq j \leq n$. Likewise x is a \mathbb{F}_{0} linear combination of v_{1}, \ldots, v_{n} :

$$
x=\sum_{i=1}^{n} d_{i} v_{i} .
$$

Now set $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}, C=\left(c_{i j}\right)$ and $d=\left(d_{1}, \ldots, d_{n}\right)^{T}$. We then have the matrix equation $C \alpha=a d$. However, since C is non-singular with entries in \mathbb{F}_{0} and d has entries in \mathbb{F}_{0} there is a unique solution $\beta \in \mathbb{F}^{n}$ such that $C \beta=d$. It therefore follows that if $\beta=\left(b_{1}, \ldots, b_{n}\right)^{T}$ then $a_{i}=a b_{i}$. However, in this case, $u=u_{1}+u_{2}=a_{1} x_{1}+a_{2} x_{2}=a b_{1} x_{1}+a b_{2} x_{2}$. Suppose now that \mathbb{F}_{0} is a finite field. Then there are integers $b_{i}^{\prime}, i=1,2$ so that $b_{i}^{\prime} \cdot 1_{\mathbb{F}}=b_{i}$ In this case $\left\langle u_{1}+u_{2}\right\rangle=$ $\left\langle a b_{1} x_{1}+a b_{2} x_{2}\right\rangle=\left\langle b_{1} x_{1}+b_{2} x_{2}\right\rangle=\left\langle b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}\right\rangle \in Z$. When \mathbb{F}_{0} is the rationals there are integers $b_{i}^{\prime}, i=1,2$ and f such that $b_{i}=\frac{b_{i}^{\prime}}{f}, i=1,2$. Then $\left\langle v_{1}+u_{2}\right\rangle=$ $\left\langle a b_{1} x_{1}+a b_{2} x_{2}\right\rangle=\left\langle\frac{a}{f}\left(b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}\right)\right\rangle=\left\langle b_{1}^{\prime} x_{1}+b_{2}^{\prime} x_{2}\right\rangle \in Z$, again a contradiction. This completes the proof.

5 The orthogonal geometry $\Omega^{+}(2 n, \mathbb{F})$

In this section we consider the root subgroup geometry of an orthogonal space of type (1) that is non-degenerate of even dimension $2 n$ and Witt index n. As in the previous section we will work with an equivalent geometry which allows us to express the points and lines in terms of the underlying orthogonal space rather than subgroups in the orthogonal group. The identification established here will apply in the following two sections as well.

We continue with the notation of sections two and three so that (V, Q) is an orthogonal space of one of the types (1) - (3) over a field \mathbb{F} and has Witt index at least three. Let Π_{k} denote the set of totally singular subspaces of V of dimension k. Set $\mathcal{P}=\Pi_{2}$, the totally singular projective lines. These are the points of this equivalent geometry. Two distinct such "points" l, m will be "collinear" in this geometry when $l \cap m \neq 0$ an $m \subset l^{\perp}$. The "line" on this pair is then the set $\left\{l^{\prime} \in \mathcal{P} \mid l \cap m \subset l^{\prime} \subset\langle l, m\rangle\right\}$. We let \mathcal{L} denote the set of lines and Γ the pair $(\mathcal{P}, \mathcal{L})$.

We now specialize, for the remainder of this section, to the case that (V, Q) is of type (1) and dimension of V is $2 n \geq 6$. It is well known that the module $\wedge^{2}(V)$ for the group $\Omega^{+}(2 n, \mathbb{F})=\{\sigma: V \rightarrow V \mid Q(\sigma(v))=Q(V), \forall v \in V\}$ is of dimension $2 n^{2}-n$ and affords an embedding for this geometry (when the characteristic of \mathbb{F} is not two this module is irreducible and isomorphic to the adjoint module of $\left.\Omega^{+}(2 n, \mathbb{F})\right)$. By (1.1) it is clearly the case that the generating rank of $\Omega^{+}(2 n, \mathbb{F})$ is at least $2 n^{2}-n$.

The main objective of this section is the proof of the following which deals with one of the cases of our main theorem

Theorem 5.1. For a prime field \mathbb{F} the generating rank of $\Omega^{+}(2 n, \mathbb{F})$ is $2 n^{2}-n$.

Proof: For a singular point x let $(x)=\{l \in \mathcal{P} \mid x \subset l\}$. This is a subspace of $\Gamma=(\mathcal{P}, \mathcal{L})$ and is isomorphic to the polar space of singular points and singular lines in an orthogonal space $\Omega^{+}(2 n-2, \mathbb{F})$. By 2.3 this can be generated by $2 n-2$ points, consisting of a set of lines $l_{i}, m_{i}, i=1,2, \ldots, n-1$ such that the points $l_{i} / x, m_{i} / x$ is a hyperbolic basis for x^{\perp} / x.

Consider now the following set, Z, of singular lines from V :

$$
\begin{gathered}
\left\langle x_{i}, x_{j}\right\rangle,\left\langle y_{i}, y_{j}\right\rangle,\left\langle x_{i}, y_{j}\right\rangle, i \neq j ; \\
\left\langle x_{1}+x_{2}+\cdots+x_{n}, y_{1}-y_{i}\right\rangle, i=2, \ldots, n ;\left\langle x_{1}-y_{2}, y_{1}+x_{2}\right\rangle .
\end{gathered}
$$

The number of such lines is $2 \times\binom{ n}{2}+n(n-1)+(n-1)+1=2 n(n-1)+n-1+1=$ $2 n^{2}-n$. We will show these lines generate Γ when \mathbb{F} is a prime field. We proceed by induction. Let S denote the subspace of \mathcal{P} spanned by Z.

Assume first that $n=3$. Let U be a vector space over \mathbb{F} of dimension four with basis $u_{1}, u_{2}, u_{3}, u_{4}$. In the space $\wedge^{2}(U)$ let $u_{i j}=u_{i} \wedge u_{j}, i<j$. This is a six dimensional space. The map $\tilde{Q}: \wedge^{2}(U) \rightarrow \mathbb{F}$ given by

$$
\tilde{Q}\left(\sum_{i<j} \alpha_{i j} u_{i j}\right)=\alpha_{12} \alpha_{34}-\alpha_{13} \alpha_{24}+\alpha_{14} \alpha_{23}
$$

is a hyperbolic quadratic form on $U_{2}=\wedge^{2}(U)$. Thus, U_{2} and V are isomorphic orthogonal spaces and can be identified. Under this identification there is an isomorphism between the geometry of the previous section whose points consisted of pairs (u, H) where u is a projective point in U and H is a hyperplane containing u and the geometry of singular lines of $U_{2}=\wedge^{2}(U)$. It is given by the map which takes (x, H) to $x \wedge H$.

Next note that the basis $u_{14}, u_{23} ; u_{24},-u_{13} ; u_{34}, u_{12}$ is a hyperbolic. Therefore we may make the identification $x_{i}=u_{i 4}, i=1,2,3 ; y_{1}=u_{23}, y_{2}=-u_{13}, y_{3}=u_{12}$. Let $I=\{1,2,3,4\}$ and for $J \subset I^{\{3\}}$ set $U_{J}=\left\{u_{j} \mid j \in J\right\}$. Also denote by u the vector $u_{1}+u_{2}+u_{3}+u_{4}$. From the preceeding section we know that the root subgroup geometry of $S L(4, \mathbb{F})$ is generated by $\left\{\left(\left\langle u_{i}\right\rangle, U_{J}\right) \mid i \in J \in I^{\{3\}}\right\}$ together with any three points which generate $(\langle u\rangle)$, in particular, the points $\left(\langle u\rangle,\left\langle u_{1}+u_{2}, u_{3}, u_{4}\right\rangle\right)$, $\left(\langle u\rangle,\left\langle u_{1}, u_{2}+u_{3}, u_{4}\right\rangle\right)$, and $\left(\langle u\rangle,\left\langle u_{1}, u_{2}, u_{3}+u_{4}\right\rangle\right)$. Under the identification of the $u_{i j}$ with the x_{i}, y_{j} the first twelve lines are just the $\left\langle x_{i}, x_{j}\right\rangle,\left\langle y_{i}, y_{j}\right\rangle,\left\langle x_{i}, y_{j}\right\rangle$. For example, $\left(\left\langle u_{1}\right\rangle,\left\langle u_{1}, u_{2}, u_{3}\right\rangle\right)$ is identified with $\left\langle u_{12}, u_{13}\right\rangle=\left\langle y_{2}, y_{3}\right\rangle$. On the other hand we have the following identification of the other three points:

$$
\begin{aligned}
& \left(\langle u\rangle,\left\langle u_{1}+u_{2}, u_{3}, u_{4}\right\rangle\right) \rightarrow\left\langle y_{1}-y_{2}+x_{3}, x_{1}+x_{2}+x_{3}\right\rangle ; \\
& \left(\langle u\rangle,\left\langle u_{1}, u_{2}+u_{3}, u_{4}\right\rangle\right) \rightarrow\left\langle x_{1}-y_{2}+y_{3}, x_{1}+x_{2}+x_{3}\right\rangle ; \\
& \left(\langle u\rangle,\left\langle u_{1}, u_{2}, u_{3}+u_{4}\right\rangle\right) \rightarrow\left\langle x_{1}-y_{2}+y_{3}, y_{1}+x_{2}-y_{3}\right\rangle .
\end{aligned}
$$

Thus, in order to prove that Z is a generating set in this case we need to show that the above three points are in S.

Set $x=x_{1}+x_{2}+x_{3}$. First note that for a given i that the four lines $\left\langle x_{i}, x_{j}\right\rangle,\left\langle x_{i}, y_{j}\right\rangle$, $j \neq i$ generate $\left(\left\langle x_{i}\right\rangle\right)$ by an application of (2.2). Consequently, for each $i,\left\langle x, x_{i}\right\rangle \in S$. By assumption $\left\langle x, y_{1}-y_{2}\right\rangle,\left\langle x, y_{1}-y_{3}\right\rangle \in Z$ and whence in S. As we have just seen, also $\left\langle x, x_{2}\right\rangle,\left\langle x, x_{3}\right\rangle \in S$. But these four points span $(\langle x\rangle)$ by again appealing to (2.2) and therefore $(\langle x\rangle) \subset S$. Therefore $\left\langle y_{1}-y_{2}+x_{3}, x_{1}+x_{2}+x_{3}\right\rangle,\left\langle x_{1}-y_{2}+y_{3}, x_{1}+x_{2}+\right.$ $\left.x_{3}\right\rangle \in S$. Now by assumption $\left\langle x_{1}-y_{2}, y_{1}+x_{2}\right\rangle \in Z$. Since $\left(\left\langle x_{3}\right\rangle\right) \subset S$, in particular $\left\langle x_{3}, x_{1}-y_{2}\right\rangle,\left\langle x_{3}, y_{1}+x_{2}+x_{3}\right\rangle \in S$. Then $\left\langle x_{1}-y_{2}, y_{1}+x_{2}\right\rangle$ and $\left\langle x_{3}, x_{1}-y_{2}\right\rangle$ are collinear points in S and so S contains every point on the line spanned by these two points, and hence contains $\left\langle x_{1}-y_{2}, y_{1}+x_{2}+x_{3}\right\rangle$. Now S contains $\left\langle x_{1}-y_{2}, y_{1}+x_{2}+x_{3}\right\rangle$ and $\left\langle x_{3}, y_{1}+x_{2}+x_{3}\right\rangle$ which are two collinear points and from this it follows that S contains $\left\langle x_{1}-y_{2}+y_{3}, y_{1}+x_{2}-y_{3}\right\rangle$. This establishes the result in the case $n=3$.

Now assume $n>3$ and for every $k, 3 \leq k<n$ the result has been established. Again let S denote the subspace spanned by Z. Set $x=x_{1}+x_{2}+\cdots+x_{n}$. Now by the argument used above $(\langle x\rangle) \subset Y$. Consequently, for every $i \neq j,\left\langle x, y_{i}-y_{j}\right\rangle \in Y$. Set $y=y_{i}-y_{j}$. The set of points $\left\{\langle y, z\rangle \mid z \in\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \cap y^{\perp}\right\}$ is a subspace of Γ and a projective space of rank $n-2$ and therefore is generated by any $n-1$ points not contained in a hyperplane. Since the points $\left\langle x_{k}, y\right\rangle, k \neq i, j$ are in S as is $\langle x, y\rangle$, these points generate this projective space and therefore $\left\langle x_{i}+x_{j}, y_{i}-y_{j}\right\rangle \in S$. Now the set of lines $\left\langle x_{k}, y\right\rangle,\left\langle y_{k}, y\right\rangle, k \neq i, j ;\left\langle x_{i}+x_{j}, y\right\rangle,\left\langle y_{i}, y_{j}\right\rangle$ is a hyperbolic basis for $(\langle y\rangle)$ contained in S and therefore $(\langle y\rangle) \subset S$.

Suppose $J \subset\{1,2, \ldots, n\}$. Set $x_{J}=\sum_{j \in J} x_{j}$. By what we have shown, $\left\langle x_{J}, y_{i}-\right.$ $\left.y_{k}\right\rangle \in Y$ for any pair $\{i, k\} \subset J$. In particular, $\left\langle x_{1}+x_{2}+x_{3}, y_{1}-y_{i}\right\rangle \in S, i=2,3$. Since $\left\langle x_{1}-y_{2}, y_{1}+x_{2}\right\rangle \in S$ it follows from the previous case that every singular line contained in $\left\langle x_{i}, y_{i} \mid i=1,2,3\right\rangle$ is an element of S. In particular, $\left\langle x_{2}-y_{3}, y_{2}+\right.$ $\left.x_{3}\right\rangle,\left\langle x_{1}-y_{3}, y_{1}+x_{3}\right\rangle \in S$. Suppose $J \subset I,|J|=n-1$ and let $X_{j}=\left\langle x_{j} \mid j \in J\right\rangle, Y_{J}=$ $\left\langle y_{j} \mid j \in J\right\rangle, V_{J}=X_{J} \oplus Y_{J}$. Aslo let $X=\left\langle x_{j} \mid 1 \leq j \leq n\right\rangle, Y=\left\langle y_{j} \mid 1 \leq j \leq n\right\rangle$. By induction every singular line contained in V_{J} is an element of S. It is therefore the case that for any $i \neq j, \alpha \in \mathbb{F},\left(\left\langle x_{i}+\alpha x_{j}\right\rangle\right),\left(\left\langle y_{i}+\alpha y_{j}\right\rangle\right) \subset S$.

We now claim for any $x \in X,(\langle x\rangle) \subset S$ and similarly for a $y \in Y$. Suppose $x=\sum_{i=1}^{n} \alpha_{i} x_{i}$. By relabeling the indices if necessary we can assume that $\alpha_{1}=1$ and that $\alpha_{i} \neq 0,1 \leq i \leq t, \alpha_{i}=0, i>t$. By what has already been shown, the lines $\left\langle x, x_{i}\right\rangle \in S$ for $2 \leq i \leq n$. Also the lines $\left\langle x, y_{i}\right\rangle \in S$ for $i>t$. Additionally, by what we have thus far shown, the lines $\left\langle x, \alpha_{i} y_{1}-y_{i}\right\rangle \in S, 2 \leq i \leq t$. These form a hyperbolic basis for $(\langle x\rangle)$, hence $(\langle x\rangle) \subset S$. Similarly, for $y \in Y,(\langle y\rangle) \subset S$.

We now proceed to the general case. Let $z=x+y, x \in X, y \in Y$. Suppose for some $J \subset\{1,2, \ldots, n\},|J|=n-1$ that $z \in V_{J}$. Then by induction every line on z in V_{J} is contained in S. On the other hand, if $i \notin J$ then $\left\langle z, x_{i}\right\rangle,\left\langle z, y_{i}\right\rangle$ are singular lines and contained in S and together with the lines on z in V_{J} these generate $(\langle z\rangle)$. We now prove that there must be a $J \subset\{1,2, \ldots, n\},|J|=n-1$ such that $x^{\perp} \cap V_{J} \neq$ $z^{\perp} \cap V_{J} \neq y^{\perp} \cap V_{J}$. Suppose to contrary. Let $J_{i}=\{1,2, \ldots, n\} \backslash\{i\}, i=1,2$. We may suppose $x^{\perp} \cap V_{J_{1}}=z^{\perp} \cap V_{J_{1}}$. Since $X_{J_{1}} \subset x^{\perp}$ it follows that $y \in\left\langle y_{1}\right\rangle$ and therefore, since $y \neq 0$, we may assume that $y=y_{1}$. It then follows that $x^{\perp} \cap V_{J_{2}} \neq z^{\perp} \cap V_{J_{2}}$ and therefore $z^{\perp} \cap V_{J_{2}}=y^{\perp} \cap V_{J_{2}}$ and hence $x=\alpha x_{2}$ for some $\alpha \in \mathbb{F}$. But we have already seen that in this case $(\langle z\rangle) \subset S$.

So, let J be a proper subset of $\{1,2 \ldots, n\}$ such that $x^{\perp} \cap V_{J} \neq z^{\perp} \cap V_{J} \neq y^{\perp} \cap V_{J}$ and choose a vector $u \in z^{\perp} \cap V_{J} \backslash\langle x, y\rangle^{\perp}$. Now let $X_{y}=X \cap y^{\perp}$ a hyperplane in X. Choose a basis $a_{1}, a_{2}, \ldots, a_{n-1}=x$. Also, $Y \cap x^{\perp}$ is a hyperplane. For each $i<n-1$ let $A_{i}=\left\langle a_{k} \mid 1 \leq k \leq n-1, k \neq i\right\rangle$. Then $Y \cap A_{i}^{\perp}$ is a two dimensional space containing y. Let $b_{i} \in Y \cap A_{i}^{\perp}$ such that $\left(a_{i}, b_{i}\right)=1$. Now the $2 n-3$ lines $\left\langle z, a_{i}\right\rangle,\left\langle z, b_{i}\right\rangle, 1 \leq i \leq n-2$, and $\langle x, y\rangle$, all of which contain z, span a geometric hyperplane in $(\langle z\rangle)$ namely consisting of those points which are collinear with the point $\langle x, y\rangle$. Now the point $\langle z, u\rangle$ is not contained in this subspace of $(\langle z\rangle)$. Since $u \in V_{J},(\langle u\rangle) \subset S$. Thus, $(\langle z\rangle) \subset S$ which completes the result.

6 Generating The Root Subgroup Geometry of $\Omega(2 n+1, \mathbb{F})$

We continue with the notation of sections two, three and five and let (V, Q) be a non-singular orthogonal space of type $\Omega(2 n+1, \mathbb{F})$ where \mathbb{F} is a finite prime field. We set $x_{n}=z_{1}, y_{n}=z_{2}, z=z_{3}$.

It is well known that the space $\wedge^{2}(V)$ for the group $\Omega(2 n+1, \mathbb{F})$ of dimension $2 n^{2}+n$ affords an embedding of this geometry (when characteristic of \mathbb{F} is not two it is irreducible and isomorphic to the adjoint module) so that the generating rank of the long root subgroup geometry of $\Omega(2 n+1, \mathbb{F})$ is at least $2 n^{2}+n$.

It is the purpose of his section to prove the following part of our main theorem:

Theorem 6.1. Let \mathbb{F} be a prime field. Then the generating rank of the long root subgroup geometry of $\Omega(2 n+1, \mathbb{F}), n \geq 3$, is $2 n^{2}+n$.

Proof: Let Z consist of the following singular lines of Z :

$$
\begin{gathered}
\left\langle x_{i}, x_{j}\right\rangle,\left\langle y_{i}, y_{j}\right\rangle,\left\langle x_{i}, y_{j}\right\rangle, i \neq j ; \\
\left\langle x_{1}+x_{2}+\cdots+x_{n}, y_{1}-y_{i}\right\rangle, 2 \leq i \leq n ;\left\langle x_{1}-y_{2}, y_{1}+x_{2}\right\rangle ; \\
\left\langle x_{i}, z\right\rangle,\left\langle y_{i}, z\right\rangle, 1 \leq i<n ;\left\langle x_{1}+x_{2}+\cdots+x_{n}, y_{1}-z\right\rangle ;\left\langle y_{1}+y_{2}+\cdots+y_{n}, x_{1}-z\right\rangle .
\end{gathered}
$$

Let $X=\left\langle x_{i} \mid 1 \leq i \leq n-1\right\rangle, Y=\left\langle y_{i} \mid 1 \leq i \leq n-1\right\rangle$ and $V_{n-1}=X \oplus Y$. Further, let $V_{n}=V_{n-1} \oplus\left\langle x_{n}, y_{n}\right\rangle, V_{x}=V_{n-1} \oplus\left\langle x_{n}, z\right\rangle, V_{y}=V_{n-1} \oplus\left\langle y_{n}, z\right\rangle$.

Let S be the subspace of Γ generated by Z. We show that Z contains every singular line of V. First note that by (5.1) if $u \in V_{n}$, is a singular vector then $\left\{l \in(\langle u\rangle) \mid l \subset V_{n}\right\}$ is contained in S. Also note that for any singular vector u that the subspace $(\langle u\rangle)$ is isomorphic to a polar space of type $\Omega(2 n-1, \mathbb{F})$. Moreover, for $u \in V_{n}$ the subspace $\left\{l \in(\langle u\rangle) \mid l \subset V_{n}\right\}$ is a geometric hyperplane and a maximal subspace of $(\langle u\rangle)$.

We now claim for each of the vectors $x_{i}, y_{i}, 1 \leq i \leq n-1$ that $\left(\left\langle x_{i}\right\rangle\right),\left(\left\langle y_{i}\right\rangle\right) \subset S$. By what we have just stated, it suffices to prove that for each such vector there is a line on this vector in Z but not contained in V_{n}. Since $\left\langle x_{i}, z\right\rangle \in Z,\left\langle y_{i}, z\right\rangle \in$ $Z, 1 \leq i \leq n-1$ this is satisfied and the claim is established. Also note that since $x_{1}+x_{2}+\cdots+x_{n}, y_{1}+y_{2}+\cdots+y_{n} \in V_{n}$ and $\left\langle x_{1}+x_{2}+\cdots+x_{n}, y_{1}-\right.$ $z\rangle \in Z,\left\langle y_{1}+y_{2}+\cdots+y_{n}, x_{1}-z\right\rangle \in Z$ it also follows by the same argument that $\left(\left\langle x_{1}+x_{2}+\cdots+x_{n}\right\rangle\right),\left(\left\langle y_{1}+y_{2}+\cdots+y_{n}\right\rangle\right) \subset S$.

We next prove that if $u_{1}, u_{2} \in V_{n}, u_{1} \perp u_{2}$ and $\left(\left\langle u_{1}\right\rangle\right),\left(\left\langle u_{2}\right\rangle\right) \subset S$ then for every vector $u \in\left\langle u_{1}, u_{2}\right\rangle, u \neq 0$ that $(\langle u\rangle) \subset S$. This follows since there are singular vectors in $\left\langle u_{1}, u_{2}\right\rangle^{\perp}$ which are not contained in V_{n}. Suppose w is such a vector. Then the
lines $\left\langle u_{i}, w\right\rangle \in S, i=1,2$. It then follows that $\langle u, w\rangle \in S$ and consequently there are singular lines on u which are elements of S which are not contained in V_{n}. As a result $(\langle u\rangle) \subset S$.

We can now complete the proof. The subgeometry of the polar space of singular points and singular lines contained in V_{n} is generated by the points $x_{i}, y_{i}, 1 \leq i<n$ together with the two points $x_{1}+x_{2}+\cdots+x_{n}, y_{1}+y_{2}+\cdots+y_{n}$ and it is therefore the case that for every singular vector $u \in V_{n},(\langle u\rangle) \subset S$. Since V_{n} is a hyperplane of V every singular line meets V_{n} and thus $S=\mathcal{P}$. This completes the proof.

7 Generating the Root Subgroup Geometry of $\Omega^{-}(2 n+2, \mathbb{F}), n \geq$ 3.

We continue with the notation of sections two, three and five and let (V, Q) be of type $\Omega^{-}(2 n+2, \mathbb{F}), \mathbb{F}$ a prime field.

As in section five and six, it is well known that the space $\wedge^{2}(V)$ of dimension $2 n^{2}+3 n+1$ (which is irreducible when characteristic of \mathbb{F} is not two) affords an embedding of this geometry so that the generating rank of the long root subgroup geometry of $\Omega(2 n+1, \mathbb{F})$ is at least $2 n^{2}+3 n+1$.

In this section we complete the proof of our main theorem by treating the last case of an orthogonal geometry. This is achieved in

Theorem 7.1. Let \mathbb{F} be a prime field and $n \geq 3$. Then the generating rank of the long root subgroup geometry of $\Omega^{-}(2 n+2, \mathbb{F})$, is $2 n^{2}+3 n+1$.

Proof: For a subspace M of V let $\mathcal{P}(M)=\{l \in \mathcal{P} \mid l \subset M\}$. Set $V_{2 n-2}=$ $\left\langle x_{1}, y_{i} \mid 1 \leq i \leq n-1\right\rangle, V_{2 n-1}=V_{2 n-2} \oplus\left\langle z_{1}\right\rangle, V_{2 n}=V_{2 n_{1}} \oplus\left\langle z_{2}\right\rangle$ and $U=V_{2 n} \oplus\left\langle z_{3}\right\rangle$. U is a non-singular subspace of dimension $2 n+1$. Let Z_{0} be the following set of singular lines from U :

$$
\begin{gathered}
\left\langle x_{i}, x_{j}\right\rangle,\left\langle x_{i}, y_{j}\right\rangle,\left\langle y_{i}, y_{j}\right\rangle, i \neq j ; \\
\left\langle x_{i}, z_{j}\right\rangle,\left\langle y_{i}, z_{j}\right\rangle, 1 \leq i \leq n-1, j=1,2,3 ; \\
\left\langle x_{1}+x_{2}+\cdots+x_{n-1}+z_{1}, y_{1}-y_{i}\right\rangle, 2 \leq i \leq n-1, \\
\left\langle x_{1}+x_{2}+\cdots+x_{n-1}+z_{1}, y_{1}-z_{2}\right\rangle,\left\langle x_{1}-y_{2}, y_{1}+x_{2}\right\rangle ; \\
\left\langle x_{1}+x_{2}+\cdots+x_{n-1}+z_{1}, y_{1}-z_{3}\right\rangle ;\left\langle y_{1}+y_{2}+\cdots+y_{n-1}+z_{2}, x_{1}-z_{3}\right\rangle .
\end{gathered}
$$

Note that there are $2 n^{2}+n$ lines in Z_{0}. By the proof of (6.1) the subspace S_{0} of \mathcal{P} generated by Z_{0} is $\mathcal{P}(U)$. We now remark that for any singular vector $u \in U$ that $(\langle u\rangle) \cap \mathcal{P}(U)=\mathcal{P}\left(U \cap u^{\perp}\right)$ is a subspace of \mathcal{P} isomorphic to $\Omega(2 n-1, \mathbb{F})$ and is a geometric hyperplane in $(\langle u\rangle)$. Therefore, if l is any singular line on u not contained in $\mathcal{P}(U)$ then the subspace spanned by l and $(\langle u\rangle) \cap \mathcal{P}(U)$ is $(\langle u\rangle)$.

Now let Z_{1} be the following set of singular lines:

$$
\begin{gathered}
\left\langle x_{i}, z_{4}\right\rangle,\left\langle y_{i}, z_{4}\right\rangle, 1 \leq i \leq n-1 ; \\
\left\langle x_{1}+z_{1}, y_{1}-z_{4}\right\rangle,\left\langle x_{1}+z_{2}, y_{1}-z_{4}\right\rangle,\left\langle x_{1}+z_{3}, d y_{1}-z_{4}\right\rangle .
\end{gathered}
$$

There are $2 n+1$ lines in Z_{1}. Set $Z=Z_{0} \cup Z_{1}$ and note that $|Z|=2 n^{2}+3 n+1$. Let S be the subspace spanned by Z. Next note that for each $i, 1 \leq i \leq n-1$ that $\left\langle x_{i}, z_{4}\right\rangle$ is a line on x_{i} not contained in U and so by the argument of the previous paragraph, $\left(\left\langle x_{i}\right\rangle\right) \subset S, 1 \leq i \leq n-1$. Similarly, $\left(\left\langle y_{i}\right\rangle\right) \subset S$. By the argument of the proof of Theorem C for every singular point $w \in V_{n-1},(\langle w\rangle) \subset S$.

Now since $\left\langle x_{1}+z_{1}, y_{1}-z_{4}\right\rangle$ is a singular line on $x_{1}+z_{1} \in U$ which is not in $\mathcal{P}(U)$ it follows by the same reasoning that $\left(\left\langle x_{1}+z_{1}\right\rangle\right) \subset S$. Since the polar space of singular points and lines in $V_{2 n-1}$ is generated by the singular points contained in $V_{2 n-2}$ together with $x_{1}+z_{1}$ it then follows that for every singular vector in $V_{2 n}$, S contains $(\langle w\rangle)$. Arguing in similar fashion we next get every line on $x_{1}+z_{2}$ is contained in S and then for every singular point $w \in V_{2 n},(\langle w\rangle) \subset S$. In like fashion because the singular line $\left\langle x_{1}+z_{3}, d y_{1}-z_{4}\right\rangle \in Z$ we conclude that for every singular vector $w \in U,(\langle w\rangle) \subset S$. We are now done: U is a hyperplane of V. If l is a singular line $l \cap U \neq 0$. If $w \in l \cap U$ then $l \in(\langle u\rangle) \subset S$.

8 Generating Sets of Lie Incidence Geometries

In this section we collect what is known about the generation of Lie incidence geometries. The first result can be found explicitly in [2], [11], and implicitly in [15].

Theorem 8.1. (a) Let \mathbb{F} be any field.
(i) The generating rank of the Lie incidence system $A_{n, k}(\mathbb{F})$ is $\left.\begin{array}{c}n+1 \\ k\end{array}\right)$.
(ii) The generating rank of the Lie incidence geometry $D_{n, n}(\mathbb{F})$ is 2^{n-1}.
(iii) The generating rank of the Lie incidence geometry $E_{6,1}(\mathbb{F})$ is 27 and the generating rank of the Lie incidence geometry $E_{7,1}(\mathbb{F})$ is 56 .
(b) Assume the characteristic of \mathbb{F} is not two. Then the generating rank of $B_{n, n}(\mathbb{F})$ is 2^{n}.

In each instance the generating rank is equal to the embedding rank.

The following results are contained in [5] and [7], respectively:

Theorem 8.2 (Cooperstein). Let \mathbb{F} be a field, $|\mathbb{F}|>2$. Then the generating rank of the Lie incidence geometry $C_{n, n}(\mathbb{F})$, which is isomorphic to the dual polar space $\operatorname{DSP}(2 n, \mathbb{F})$ of symplectic type, is $\binom{2 n}{n}-\binom{2 n}{n-2}$.
Theorem 8.3 (Cooperstein). Let \mathbb{F} be a field, $|\mathbb{F}|>2$. Then the generating rank of the Lie incidence geometry ${ }^{2} A_{2 n-1, n}(\mathbb{F})$, which is isomorphic to the dual polar space $\operatorname{DSU}(2 n, \mathbb{F})$ of unitary type, is $\binom{2 n}{n}$.

Note that in characteristic two the geometries $B_{n, n}(\mathbb{F})$ and $C_{n, n}(\mathbb{F})$ are identical and so, except for the field of two elements, the generating rank of this geometry is known as well. Andries Brouwer has made the following:

Conjecture 8.4. The embedding rank of the dual polar space $\operatorname{DSP}(2 n, 2)$ is $\frac{\left(2^{n}+1\right)\left(2^{n-1}+1\right)}{3}$.

Brouwer has demonstrated that $\operatorname{er}(D S P(2 n, 2)) \geq \frac{\left(2 n^{+} 1\right)\left(2^{n-1}+1\right)}{3}$. The cases $n \leq$ 5 of this conjecture are known to be true: When $n=2$ this incidence geometry is just the $(2,2)$ generalized quadrangle which has embedding rank 5 and generating rank 5. Brouwer [3] has shown that the embedding rank of the dual polar space $\operatorname{DSP}(6,2)$ is 15 and Cooperstein and Shult prove in [10] that the generating rank is also 15. Brouwer has also demonstrated that the embedding rank of $\operatorname{DSP}(8,2)$ is 51 . In [6] Cooperstein proves that the generating rank is 51 when $n=4$ and 187 when $n=5$, also settling Brouwer's conjecture affirmatively in the latter case. Thus we have

Theorem 8.5. For $2 \leq n \leq 5$ the generating rank of the dual polar space of type $\operatorname{DSP}(2 n, 2)$ is $\frac{\left(2^{n}+1\right)\left(2^{n-1}+1\right)}{3}$.

Another general gap in our knowledge exists for the dual polar spaces $\operatorname{DSU}(2 n, 2)$ of unitary type over the field with two elements. It has been conjectured [13] that the embedding rank of this geometry is $\frac{4^{n}+2}{3}$. The cases $n=2,3$ are known: When $n=2$ this geometry is the generalized quadrangle with parameters $(2,4)$ which consists of the singular points and lines in the orthogonal space $\Omega^{-}(6,2)$ which has embedding rank and generating rank six. On the other hand, Yoshiara in [18] has shown that $D S U(6,2)$ has embedding rank 22 . The generating rank of this geometry has also been obtained (see [8])

Theorem 8.6 (Cooperstein). The generating rank of $\operatorname{DSU}(6,2)$ is 22.
Finally, Frohardt and Johnson [12] show that each of the generalized hexagons with parameters $(2,2)$ have embedding rank 14. In [8] the generating ranks of these Lie incidence geometries are determined:

Theorem 8.7 (Cooperstein). The generating rank of either generalized hexagon with parameters (2,2) is 14 .

Added in proof :

In "A note on Embeddable GF(2)-Geometries" Stefan Heiss has given an elegant counterexample to Conjecture 1.3.

References

[1] M. Aschbacher and G.M. Seitz. Involutions in Chevalley groups over fields of even order. Nagoya Math. J., 63:1-91, 1976.
[2] R.J. Blok and A.E. Brouwer. Spanning point-line geometries in buildings of spherical type. Preprint, submitted for publication.
[3] A.E. Brouwer. personal communication.
[4] F. Buekenhout, editor. Handbook of Incidence Geometry. Elsevier, 1995.
[5] B.N. Cooperstein. On the generation of Dual Polar Spaces of Symplectic Type Over Finite Fields. To appear in Journal of Combinatorial Theory, Series A.
[6] B.N. Cooperstein. On the Generation of Some Dual Near Polygons of Symplectic Type Over $G F(2)$. European Journal of Combinatorics 18 (1997), no. 7, 741-749.
[7] B.N. Cooperstein. On the Generation of Dual Polar Spaces of Unitary Type Over Finite Fields. European Journal of Combinatorics 18 (1997), no.8, 849856.
[8] B.N. Cooperstein. On the generation of embeddable $G F(2)$ geometries. Preprint.
[9] B.N. Cooperstein. The geometry of root subgroups in exceptional groups, I. Geometriae Dedicata, 8:317-381, 1979.
[10] B.N. Cooperstein and E.E. Shult. Combinatorial Construction of Some Near Polygons Journal of Combinatorial Theory, Series A 78 (1997), no.1, 120-140.
[11] B.N. Cooperstein and E.E. Shult. Frames of Lie Incidence Geometries. Journal of Geometry 60 (1997), no. 1-2, 17-46.
[12] D. Frohardt and P. Johnson. Geometric hyperplanes in generalized hexagons of order (2,2). Communications in Algebra, 22:773-797, 1994.
[13] A.A. Ivanov. Personal communication.
[14] W. M. Kantor. Subgroups of classical groups generated by long root elements. Transactions of the Amer. Math. Soc., 248:347-379, 1979.
[15] M. Ronan and S.D. Smith. Sheaves on buildings and modular representations of Chevalley groups,. Journal of Algebra, 96:319-346, 1985.
[16] S.D. Smith and H. Völklein. A geometric presentation for the adjoint module of $S L_{3}(k)$. Journal of Algebra, 127:127-138, 1989.
[17] H. Völklein. On the geometry of the adjoint representation of a Chevalley group. Journal of Algebra, 127:139-154, 1989.
[18] A. Yoshiara. Embeddings of flag-transitive classical locally polar geometries of rank 3. Geometriae Dedicata, 43:121-165, 1992.

Department of Mathematics University of California, Santa Cruz

[^0]: *Supported in part by National Security Agency grant MDA904-95-H-1017
 Received by the editors March 1997.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : 51M15.
 Key words and phrases : Incidence system, embedding rank, generating rank, classical group, root subgroup geometry.

