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Abstract

With every Nachbin family on a Hausdorff completely regular space X ,
we associate natural locally convex algebras of different types. Fundamental
properties of these algebras are given. In particular every character of such
an algebra E is shown to be an evaluation at some point of β(X), the Stone-
Čech compactification of X . Results are also furnished extending to general
weighted algebras the relationship between the compact open, the strict and
the uniform topologies on Cb(X)

Introduction

Let X be a Hausdorff completely regular space, V a Nachbin family on X and CV (X)
and CV0(X) the corresponding weighted locally convex spaces in the sense of [2] and
[12]. In general these spaces need not be algebras. In [9], there are given necessary
and sufficient conditions for CV0(X) and CV (X) to be locally convex algebras of
a certain type. In case these conditions are not satisfied, questions involving the
algebra structure cannot be studied on the whole weighted space. In order to make
such a study possible, at least on a large part of CV (X) and CV0(X), we associate
with every Nachbin family on X canonical locally convex (resp. locally A-convex,
uniformly locally A-convex) algebras, contained respectively in CV (X) and CV0(X).
These algebras are maximal in some respect and offer a convenient framework for
results of Buck stated for Cb(X) in [3]. Finally we show that every character on a
selfadjoint subalgebra E of C(X) which is a Cb(X)-module (e.g. a weighted algebra)
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is an evaluation at some point of β(X), the Stone-Čech compactification of X, giving
the complex version of a result obtained, in the real case, in [1].

1 Preliminaries

Henceforth X will denote a Hausdorff completely regular space, C(X) the algebra
of all K-valued continuous functions on X (K = R or C) and V a Nachbin family
on X, i.e. a family of upper semicontinuous (u.s.c.) non negative functions v on X
such that for every v1, v2 ∈ V and λ > 0, there exists v ∈ V with max(λv1, λv2) ≤ v
and for every x ∈ X, v(x) 6= 0 for some v ∈ V . We will consider the so called
weighted locally convex spaces CV (X) := {f ∈ C(X) : |f |v is bounded for every
v ∈ V } and CV0(X) := {f ∈ C(X) : fv vanishes at infinity for every v ∈ V },
equipped with the (weighted) topology τV defined by the seminorms (| |v)v∈V , where
|f |v := sup{v(t)|f(t)| : t ∈ X}, f ∈ CV (X).

In all the sequel, unless the contrary is stated, all subspaces of CV (X) we will
consider are supplied with the topology induced by τV . For every v ∈ V , we will
denote by Bv(E) the unit ball of | |v in E. A subspace E of CV (X) is said to be
essential if, given x ∈ X, there is some f ∈ E so that f(x) 6= 0.

A locally convex algebra (l. c. a.) is any (here commutative) algebra E en-
dowed with a locally convex topology such that the multiplication of E is separately
continuous. A l. c. a. is said to be locally A-convex (l. A-c.) if zero admits a
fundamental system of neighbourhoods (Ui)i∈I consisting of A-convex sets (that is,
for every i ∈ I , Ui is absolutely convex, absorbing and absorbs xUi for every x ∈ Ui).
Equivalently E is a locally A-convex algebra if and only if its topology can be given
by a family (Pi)i∈I of A-seminorms; that is to say, for every i ∈ I and x ∈ E, there
is some M(x, i) > 0 such that Pi(xy) ≤ M(x, i)Pi(y), y ∈ E. If the constant M(x, i)
can be chosen depending only on x, but not on i, we say that E is a uniformly
locally A-convex algebra (u. l. A-c. a.) (cf. [4]). For any A-convex set B, =(B)
will designate the idempotent kernel of B, where =(B) := {x ∈ B : xB ⊂ B}. It is
clear that B and =(B) generate the same linear space. Hence if E is a l. A-c. a.,
then for every x ∈ E and every 0-neighbourhood θ, there is some r > 0 such that
{(x

r
)n, n ≥ 1} ⊂ θ. A locally m-convex algebra is a l. c. a. whose topology can be

defined by a family (Pi)i∈I of submultiplicative seminorms (cf. [7]).
We assume familiarity with the book of Jarchow [6] for the notations or termi-

nology not given here.

2 Locally convex algebras contained in CV (X)

Let us start with the following examples.

Examples 1: 1. Put X = R, V = {λv, λ > 0}, where v(t) = e−|t|, t ∈ R. Neither
CV (X) nor CV0(X) are algebras. But both contain, for example, the algebra Cb(X)
of all continuous and bounded functions and the algebra P (R) of all polynomials.
Here Cb(X) is a l. c. a. while P (R) is not.

2. Set X = [0, 1]∪Q+, v(t) = 1 on [0, 1] and e−t elsewhere and V = {λv, λ > 0}.
Then CV0(X) is isomorphic to the subalgebra of C [0, 1] consisting of those functions
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vanishing at 1, with the uniform norm. This is a Banach algebra, while CV (X) is
not even an algebra.

Since CV (X) and CV0(X) may fail to be algebras, one cannot deal with questions
involving the algebra structure in general. We are going to introduce different types
of locally convex algebras contained in CV (X) or CV0(X). Let us first show the
following lemma improving Theorem 2.1 of [12]. Our result is more general and the
proof is much shorter. If E is a subspace of CV (X), put coZ(E) := {x ∈ X : ∃f ∈ E
with f(x) 6= 0}.

Lemma 2. Let E be a subspace of CV (X) and f ∈ C(X) such that fE ⊂
CV (X). If E is a Cb(X)-module, then the mapping If : g 7→ fg is continuous from
E into CV (X) iff |f |V ≤ V on coZ(E); i.e. for every v ∈ V , there is v′ ∈ V such
that |f |v ≤ v′ pointwise on coZ(E).

Proof : If If is continuous, then for every v ∈ V , there is v′ ∈ V so that for
every g ∈ E, we have: |fg|v ≤ |g|v′ . We claim that |f |v ≤ v′ pointwise on coZ(E).
Indeed, take t ∈ coZ(E) and g ∈ E so that g(t) 6= 0. Put Un := {x ∈ X : v′(x) <
v′(t) + 1

n
and |g(x)| < |g(t)|+ 1

n
}. This is an open neighbourhood of t. Let gn be

a continuous function such that gn(t) = 1, 0 ≤ gn ≤ 1 and supp gn ⊂ Un. The
function hn := ggn belongs to E and then enjoys v(t)|f(t)hn(t)| ≤ |hn|v′ . Hence
v(t)|f(t)g(t)| ≤ (v′(t) + 1

n
)(g(t) + 1

n
). Since n is arbitrary and g(t) 6= 0, we get

|f(t)|v(t) ≤ v′(t). The converse is trivial. �

Remark 3: 1. If coZ(E) = X or f ∈ E, we get |f |v ≤ v′ pointwise on the whole
of X.

2. If, in the preceding proof, v′ can be taken equal to v, the function f must be
bounded on the set Nv := {x ∈ X : v(x) 6= 0}.

We are then led to consider the spaces C`V (X) := {f ∈ CV (X) : |f |V ≤ V },
C`V0(X) := {f ∈ CV0(X) : |f |V ≤ V }, CAV (X) := {f ∈ CV (X) : f is bounded on
each Nv, v ∈ V } and CAV0(X) := {f ∈ CV0(X) : f is bounded on each Nv, v ∈ V }.
It is also worthwhile to take into account CAV00(X) := {f ∈ CV0(X) : f vanishes
at infinity on each Nv, v ∈ V }, CuAV (X) := CV (X) ∩ Cb(X) and CuAV0(X) :=
CV0(X) ∩ Cb(X). We clearly have:

CAV00(X)⋂
CuAV0(X) ⊂ CAV0(X) ⊂ C`V0(X) ⊂ CV0(X)⋂ ⋂ ⋂ ⋂
CuAV (X) ⊂ CAV (X) ⊂ C`V (X) ⊂ CV (X).

All the spaces here are solid and hence Cb(X)-modules. We will write CV(0)(X)
to mean “CV (X) (resp. CV0(X))”. The same also holds for C`V(0)(X), CAV(0)(X)
and CuAV(0)(X). We summarise properties of these spaces in:

Theorem 4. 1. CuAV(0)(X) is the largest u. l. A-c. a. contained in CV(0)(X).
It is essential whenever CV(0)(X) is.
2. CAV(0)(X) is the largest locally A-convex algebra contained in CV(0)(X).
3. C`V(0)(X) is the largest locally convex algebra which is both a Cb(X)-module and
contained in CV(0)(X).
4. CAV00(X) is essential whenever X is locally compact.
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Proof : 1. It is clear that CuAV(0)(X) is a uniformly locally A-convex algebra.
Now, since every element of a u. l. A-c. a. is regular ([11]), if A is any such
algebra contained in CV(0)(X), then for every f ∈ A, there is some r > 0 so that

the sequence (( f
r
)n)n is bounded in A. This is true only if f is bounded. Now if

x ∈ X and f ∈ CV(0)(X) enjoy f(x) 6= 0, then the function g := min(|f(x)|, |f |) is in
CuAV(0)(X) and verifies g(x) 6= 0. Hence CuAV(0)(X) is essential provided CV(0)(X)
is.

2. By its very definition, CAV(0)(X) is a locally A-convex algebra. Take any
l. A-c. a. A contained in CV(0)(X). For every v ∈ V and f ∈ A, there is some

r > 0 such that ((f
r
)n)n ⊂ Bv(A). We then have, for every t ∈ Nv and every n ≥ 1,

|f(t)| ≤ r( 1
v(t)

)
1
n . This is only true if |f(t)| ≤ r. Hence A ⊂ CAV(0)(X).

3. By Lemma 2, for every f ∈ C`V(0)(X), the mapping If : g 7→ fg is con-
tinuous from C`V(0)(X) into CV(0)(X). We then have to show that fg belongs to
C`V(0)(X). But this follows from the very definition of C`V(0)(X). As to the largeness
of C`V(0)(X), it is also an immediate consequence of Lemma 2 and remark 3.1.

4. If X is locally compact, CAV00(X) is essential since it contains the continuous
functions with compact support. �

Remark 5: 1. By Theorem 4, CV(0)(X) is a locally convex algebra (resp. a l.
A-c. a. resp. a u. l. A-c. a.) iff it is equal to C`V(0)(X) (resp. CAV(0)(X), resp.
CuAV(0)(X)) (compare [9], Proposition 2).

2. The algebra C`V(0)(X) may fail to be the largest algebra contained in CV(0)(X).
In example 1.1, the algebra C`V(0)(X) coincides with Cb(R) and P (R) intersects
C`V(0)(X) only at {0}. Notice that P (R) is not a l. c. a., the product by x is not
continuous.

3. In general, the algebras in Theorem 4 may differ from each other. They will
be referred to as weighted algebras. If, however, V = {λv : λ > 0} for some weight
v on X, then CuAV (X) = C`V (X) and CuAV0(X) = C`V0(X).

To give an example where the nine (algebras or) spaces above all differ from each
other, let us first recall a method, given in case of n = 2 in [10], of constructing
new weighted spaces starting from given ones. For i = 1, ..., n, let Xi denote a
Hausdorff completely regular space, and X = ∪̇1≤i≤nXi the disjoint union. This is
the set ∪1≤i≤nXi in which we distinguish any xi ∈ Xi from each xj ∈ Xj, i 6= j.
Equip X with the topology whose open sets are exactly the unions of open sets
of the Xi’s. Assume that, for every i = 1, ..., n, Vi is a Nachbin family on Xi

and set V :=
∏n
i Vi. If, for v = (vi)i ∈ V and x ∈ X, we put v(x) = vi(x) if

x ∈ Xi, we then get a Nachbin family on the Hausdorff completely regular space X
such that the following equalities hold algebraically and topologically: CV(0)(X) =∏n
i=1 C(Vi)(0)(Xi) and C?V(0)(X) =

∏n
i=1 C?(Vi)(0)(Xi), where ? stands for `, A or

uA; finally, also CAV00(X) =
∏n
i=1 CA(Vi)00(Xi).

Example 6: For i = 1, ..., 4, take Xi to be the real line with its usual topology
and X = ∪̇iXi. Assume V1 := {λ1K , K ⊂ X1 compact, λ > 0}, V2 := {λ1, λ > 0},
where 1K denotes the characteristic function of K and 1 the constant function
with value 1, V3 := {λe−

1
n
|.|, n ≥ 1, λ > 0} and V4 := {λe−|.|, λ > 0}. If we

put V :=
∏4

1 Vi, then, by the remark above, we get that the (algebras and) spaces
CV (X), CV0(X), C`V (X), C`V0(X), CAV (X), CAV0(X), CuAV (X), CuAV0(X), and
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CAV00(X) are pairewise different since CV (V4)(X4) is not an algebra, C(V2)(X2) 6=
C(V2)0(X2), C`(V2)(X2) 6= C`(V2)0(X2), CA(V3)(X3) 6= C`(V3)(X3), CA(V3)0(X3) 6=
C`(V3)0(X3), CA(V2)0(X2) 6= CA(V2)(X2), CuA(V1)(X1) 6= CA(V1)(X1),
CuA(V1)0(X1) 6= CA(V1)0(X1), CuA(V1)0(X1) 6= CA(V1)00(X1), CuA(V1)(X1) 6=
CA(V1)00(X1) and CA(V3)00(X3) 6= CA(V3)0(X3).

Actually such an example may also be obtained by considering, as X, the bound-
ary of any complex rectangle without its extreme points, with an appropriate Nach-
bin family.

Let E be a l. c. a. over the field K (= R or C) and x ∈ E. By the spectrum of
x relatively to E (even in the real case), we mean the set spEx := {λ ∈ K : x− λe
is not invertible} if E has a unit e and spEx := {0} ∪ {λ ∈ K\{0} : x

λ
is not quasi-

invertible} if E does not have a unit, where x is said to be quasi-invertible if there is
y ∈ E so that xy = x + y. The radius of boundedness β(x) and the spectral radius
ρ(x) are defined as β(x) = inf{α > 0 : (( x

α
)n)n is bounded} and ρ(x) = sup{|λ| : λ ∈

spEx}. We then obtain:

Proposition 7. Let E be a subalgebra of C`V (X). If E is a Cb(X)-module,
then for every f ∈ E, one has ρ(f) = β(f) = ||f ||, where ||f || := sup{|f(t)|, t ∈ X}.
Proof : Clearly ||f || ≤ ρ(f). For the converse, we only have to show that if
|λ| > ||f ||, then λ 6∈ spEf . For such a λ, the function g := f − λ is continuous and
bounded away from 0 (i.e. |f − λ| > δ for some δ > 0). If 1 ∈ E, then Cb(X) is
contained in E and then 1

g
∈ E. Hence λ 6∈ spEf . Now if 1 6∈ E, the function f

g

belongs to E and the equality f2

λg
= f

g
+ f

λ
shows that λ 6∈ spEf . As to β, if |f(t)| > α

for some t ∈ X, then (( f
α
)n)n is unbounded even in CV (X). Hence ||f || ≤ β(f).

In particular, if f is unbounded, ||f || = β(f) = +∞. Now if f ∈ Cb(X) ∩ E and
α > ||f || are given, then for every v ∈ V and n ≥ 1, we have |( f

α
)n|v ≤ | fα |v. Hence

β(f) ≤ α and then β(f) = ||f ||. �

The equality β(f) = ||f || actually holds in every subalgebra of C`V (X). More-
over, with a similar proof as in the first part above, one shows easily that if f belongs
to a subalgebra E of C`V (X) which is a Cb(X)-module, then f(X) ⊂ spEf ⊂ f(X).

A locally convex algebra E is said to be strongly sequential if the set {x ∈ E :
(xn)n is bounded} is a 0-neighbourhood. It is a Q-algebra if the set of all its (quasi-)
invertible elements is open. Equivalently, E is strongly sequential (resp. Q) iff β
(resp. ρ) is continuous at 0 (cf. [5]). We then have:

Corollary 8. Let E be a subalgebra of C`V (X). If E is a Cb(X)-module, the
following assertions are equivalent: i) E is strongly sequential, ii) E is a Q-algebra,
and iii) || || is a continuous norm on E.

This corollary provides a large class of non complete normed Q-algebras. Take
any CuAV(0)(X) and endow it with the uniform norm.
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3 M-convex topologies in subalgebras of C`V (X)

Notice first that, with the same proof as for Lemma 2.1 of [10], one shows

Lemma 9. Let E be a subalgebra of C`V (X) which is a Cb(X)-module. For
every v ∈ V and t ∈ coZ(E), one has 1

v(t)
= sup{|f(t)| : f ∈ Bv(E)} with 1

0
= +∞.

For every locally A-convex topology τ on an algebra E, we will write M(τ ) for
the weakest locally m-convex topology on E stronger than τ (cf. [8]). In what
follows, we deal with M(τV ) on CAV (X) and its subalgebras. For this purpose, we
need some additional notations from [10]. For every v ∈ V and every ε > 0, we
consider Nv,ε := {x ∈ X : v(x) ≥ ε}, Nv := {x ∈ X : v(x) > 0} and the mappings
uv,ε := max(v, ε) on Nv and 0 otherwise and wv,ε = v on Nv,ε and 0 elsewhere. Both
uv,ε and wv,ε are weights on X and verify uv,ε = εu v

ε
,1 and wv,ε = εw v

ε
,1. Hence

U := {λuv,1, λ > 0} and W := {λwv,1, λ > 0} are Nachbin families on X. Let
CU(0)(X) and CW(0)(X) be the corresponding weighted spaces. By Proposition 2
of [9] these are locally m-convex algebras and, by construction, W ≤ V ≤ U . Hence
CU(0)(X) ⊂ CV(0)(X) ⊂ CW(0)(X) and on CU(0)(X), one has τW ≤ τV ≤ τU .
Actually we have:

Theorem 10. The equalities CU(X) = CAV (X) and CU0(X) = CAV00(X)
hold algebraically. Moreover on every Cb(X)-module E which is a subalgebra of
CAV (X), τU coincides with M(τV ) and τW is the strongest weighted locally m-
convex topology coarser than τV .

Proof : Let f be in CU(X) and v ∈ V . Then f ∈ CV (X) and for every t ∈ Nv,
one has |f(t)| ≤ |f(t)|uv,1(t) ≤ |f |uv,1 . Hence f belongs to CAV (X). Assume now f
is in CAV (X) and v in V . We have that |f |uv,1 is less than the maximum of |f |v and
||f ||Nv . Then f belongs to CU(X). As to CU0(X) = CAV00(X), let f ∈ CU0(X),
v ∈ V and ε > 0 be given. The set {t ∈ Nv : |f(t)| ≥ ε} is closed and contained
in the compact set {t ∈ X : |f(t)|uv,1(t) ≥ ε}. Hence f ∈ CAV00(X). Conversely,
take f ∈ CAV00(X), v ∈ V and ε > 0. The sets A := {t ∈ Nv,1 : |f(t)|v(t) ≥ ε}
and B := {t ∈ Nv : |f(t)| ≥ ε} are compact. Since {t ∈ X : |f(t)|uv,1(t) ≥ ε} is
closed and contained in A∪B, f belongs to CU0(X). Now let E be a Cb(X)-module
which is a subalgebra of CAV (X) and let us show that τU = M(τV ) on E. Since τU
is m-convex, M(τV ) is coarser than τU (cf. [8]). To get the equality, we only have
to show that for every v ∈ V , Buv,1(E) contains the idempotent kernel =(Bv(E))
of Bv(E). But for f ∈ =(Bv(E)), we have f ∈ Bv(E) and fBv(E) ⊂ Bv(E).
This means that |f(t)|v(t) ≤ 1 and |f(t)g(t)|v(t) ≤ 1 for t ∈ Nv and g ∈ Bv(E).
Now if t 6∈ coZ(E), obviously |f(t)|uv,1(t) ≤ 1. If t ∈ coZ(E), by Lemma 9,

1
v(t)

= sup{|g(t)| : g ∈ Bv(E)}, whence |f(t)| ≤ 1 for every t ∈ Nv. This leads to

|f(t)|uv,1(t) ≤ 1, t ∈ Nv and then f ∈ Buv,1(E). Now take a Nachbin family V ′ on X
so that (E, τV ′) is locally m-convex. From Proposition 2. 4) of [9], we may assume
that, for every v′ ∈ V ′, ε := inf{v′(t) : t ∈ Nv′ ∩ coZ(E)} > 0. If, in addition,
τV ′ ≤ τV on E, then for such a v′ there is some v ∈ V so that |f |v′ ≤ |f |v, f ∈ E.
This leads to v′ ≤ v pointwise and then v′ ≤ wv,ε on coZ(E). Since v′ is arbitrary
in V ′, we get the required result. �

Actually, on every subalgebra of C`V (X), τW is the strongest weighted locally
m-convex topology coarser than τV . We do not know whether τW coincides with the



On different types of algebras contained in CV (X) 117

strongest locally m-convex topology coarser than τV .

We now give a result connecting the bounded sets of the topologies τW , τV and τU ,
extending the corresponding results of [3] from Cb(X) to general weighted algebras.
By an m-bounded set, we mean any set absorbed by an idempotent bounded disc.

Proposition 11. Let E be a subalgebra of CAV (X).
1. τW and τU always have the same m-bounded sets in E.
2. If E is a Cb(X)-module, then every completing τV -bounded disc in E is τU -
bounded. In particular τU and τV have the same bounded sets whenever (E, τV ) is
locally complete.
3. Given (fn)n ⊂ E. Then (fn)n τV -converges to f ∈ E whenever it is τU -bounded
and τW -convergent. The converse is true if E is a Cb(X)-module and locally com-
plete.

Proof : 1. Let B be an idempotent τW -bounded disc of E and v in V . Then, for
every ε > 0, there is Mε > 0 so that |fn(t)|v(t) ≤ Mε, t ∈ Nv,ε and n ≥ 1. This
gives |f(t)| ≤ 1 on Nv,ε. Since ε is arbitrary, we get |f(t)|uv,1 ≤ max(1, M1) and B
is τU -bounded.

2. derives from the well known Banach-Mackey theorem and the fact that every
0-neighbourhood for M(τV ) contains a τV -barrel.

3. Assume (fn)n τU -bounded and τW -convergent to f ∈ CAV (X). Then for
every v ∈ V , there is M > 1 with |fn(t)| ≤ M and |f(t)| ≤ M for every t ∈ Nv

and n ∈ N. Since (fn)n τW -converges to f , for a given ε > 0, consider ε′ = ε
2M

and
v′ = v/ε′; then |fn− f |wv′,1 ≤ 1 for sufficiently large n. This leads, for such an n, to
|fn− f |v ≤ ε and then (fn)n τV -converges to f . The converse is a consequence of 2.

4 Scalar homomorphisms on weighted algebras

In this section we are interested in the characters of a weighted algebra E. By
a character, we mean a non zero algebra morphism from E onto K. The set of
all characters will be denoted by M∗(E) while M(E) will designate the continuous
ones. We show that every character of E is an evaluation at some point of β(X),
the Stone-Čech compactification of X. Actually we get this result for more general
subalgebras of C(X), providing the complex version of Lemma 2 of [1].

From now on, let E denote an arbitrary subalgebra of C(X) and for every f ∈ E,
let f̄ be the complex-conjugate of f . We will say that E is selfadjoint if f̄ ∈ E
whenever f ∈ E. E is said to be hermitian if it is selfadjoint and for every character
χ of E and every f ∈ E, the equality χ(f̄) = χ(f) holds. The character χ will be
referred to as verifying property (P ) if for every f ∈ E, χ(f) belongs to the closure
cl(f(X)) of f(X).

Lemma 12. If χ is a character on E with property (P ), then χ(ḡ) = χ(g)
whenever g and ḡ belong to E. This holds, in particular, when E is a Cb(X)-module.

Proof : If K = R, there is nothing to show. In the complex case, let g and ḡ belong
to E. Then Reg = (g+ ḡ)/2 and Img = (g− ḡ)/2i also belong to E. The hypothesis
on χ ensures that χ(Reg) and χ(Img) are real. The linearity of χ then leads to the
required equality. Now assume that E is a Cb(X)-module, χ ∈ M∗(E), f ∈ E and
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χ(f) 6∈ cl(f(X)). Then there is ε > 0 so that |f(x) − χ(f)| > ε, x ∈ X. In case
χ(f) 6= 0, the function g := f

f−χ(f)
belongs to E and then f = gf − χ(f)g. This

leads to the contradiction χ(f) = 0. Now χ(f) = 0 cannot occur since then 1/f
would belong to E. �

According to Lemma 12, if E is a Cb(X)-module, then the algebra E ∩ Ē is
hermitian. In particular, the weighted algebras (involved in Theorem 4) are all
hermitian.

In the sequel, for f ∈ C(X), f̃ will designate the (unique) extension of f to
β(X) with values in the one point compactification K ∪ {∞} of K. If E fails to be
essential, its unitization E1 (consisting of all the functions of the form f + λ, f ∈ E
and λ ∈ K) is always essential. Moreover χ ∈ M∗(E) satisfies (P ) with respect to
E if and only if this also holds for χ1 : f + λ 7→ χ(f) + λ with respect to E1. We
then get the complex version of Lemma 2 of [1]:

Theorem 13. Let E be a selfadjoint subalgebra of C(X). If χ ∈M∗(E) satisfies
(P ), then there is some z ∈ β(X) such that χ(f) = f̃ (z) for each f ∈ E.

Proof : According to the comment above, we (may) assume E essential. For f ∈ E
and ε > 0, set F (f, ε) := {x ∈ X : |f(x) − χ(f)| ≤ ε} and G(f, ε) := {x ∈ β(X) :
|f̃(x) − χ(f)| ≤ ε}. We then have F (f, ε) ⊂ G(f, ε) and the hypothesis on χ gives
F (f, ε) 6= ∅. By compactness of β(X), the set If := ∩ε>0G(f, ε) cannot be empty
for any f ∈ E. Moreover for every x ∈ If , one has χ(f) = f̃(x). Furthermore
if f1, f2, ..., fn are elements of E and ε > 0, since E is selfadjoint, the function
h :=

∑n
i=1 fif̄i−

∑n
i=1 χ(fi)fi−

∑n
i=1 χ(fi)f̄i belongs to E. By Lemma 12, F (h, ε2) ⊂

∩ni=1G(fi, ε). Once again by compactness, I = ∩f∈EIf is not empty and χ is the
evaluation at any point of I . �

If E is selfadjoint and a Cb(X)-module, then every character on E is an evaluation
at some point of β(X). This holds in particular for any weighted algebra. Another
consequence of Theorem 13 is, if E is a Cb(X)-module and χ ∈ M∗(E) does not
vanish identically on E ∩ Ē, then χ is an evaluation at a point of β(X).

Henceforth, as in [9], we will consider: N(E) := {x ∈ β(X) : f̃(x) 6= 0 for
some f ∈ E}, F (E) := {x ∈ β(X) : f̃(x) 6= ∞ for every f ∈ E} and S∗(E) :=
N(E) ∩ F (E). We then give a precise description of M∗(E):

Corollary 14. Let E be selfadjoint and a Cb(X)-module. Then M∗(E) is
homeomorphic to S∗(E).

Proof : Let δ be the mapping which assigns to every x ∈ S∗(E) the evaluation δx
at x. It is one to one, since E is a Cb(X)-module and β(X) compact, and onto by
Theorem 13. Now if x0 ∈ S∗(E) and f1, ..., fn ∈ E are given, then

δ({x ∈ S∗(E) : |h̃(x)− h̃(x0)| < ε2}) ⊂ {δx ∈M∗(E) : |δx(fi)− δx0(fi)| < ε,

i = 1, ..., n}

where h :=
∑n
i=1 fif̄i −

∑n
i=1 f̃i(x0)fi −

∑n
i=1 f̃i(x0)f̄i. This shows the continuity of δ

at x0. To show that δ is open, let U be an open subset of S∗(E) and x0 ∈ U . Then
U = W ∩ S∗(E) for some open set W in β(X). Take f ∈ C(β(X)) and g ∈ E such
that 0 ≤ f ≤ 1, f(x0) = 1 and supp f ⊂ W and g̃(x0) = 1. Then k := f|Xg ∈ E

and {χ ∈M∗(E) : |χ(k)− k̃(x0)| < 1
2
} ⊂ δ(U), whence the result. �
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Remark 15: 1. It is not difficult to show that S∗(E) is actually contained in

coZ(E)
βX

. But the latter is a continuous image of β(coZ(E)). Hence every character
on E is an evaluation at some point of the Stone-Čech compactification of coZ(E).
This can be directly seen using a slight modification of the proof of Theorem 13.

2. If u is an u.s.c. function on a subset A of a Hausdorff completely regular
space Y with values in R+ and if w is an u.s.c. extension of u to Y with values in
R+∪{+∞}, we will consider ũ := inf{w : Y −→ R+∪{+∞}, w u.s.c. and w|X ≥ u}.
This is the minimal u.s.c. extension of u to Y . If u happens to be bounded, then
so is also ũ and ||u||A = ||ũ||Y . In case E ⊂ CV (X), Y = S∗(E) and A = coZ(E),
every v ∈ V admits a minimal u.s.c. extension ṽ to S∗(E). For, by Lemma 9, 1/w is
u.s.c. and extends v to S∗(E), where w(x) := sup{|f̃ (x)|, f ∈ Bv(E)}. Furthermore

if f ≥ 0 belongs to CV (X), then f̃ ṽ is u.s.c. and extends fv. Hence f̃v ≤ f̃ ṽ.

Conversely if we define w on S∗(E) by w(x) = f̃ v(x)

f̃(x)
if f̃ (x) 6= 0 and w(x) = +∞

elsewhere, we get an u.s.c. function on S∗(E) whose restriction to coZ(E) is larger

than v. Hence ṽ ≤ w and then ṽf̃ = f̃v.

In what follows, for every v ∈ V , set Ñv := {x ∈ S∗(E) : ṽ(x) 6= 0} and let Ñ(V )
be the union of all the Ñv’s. We then obtain:

Theorem 16. Let E ⊂ C`V (X) be selfadjoint and a Cb(X)-module. Then
M(E) is homeomorphic to Ñ(V ).

Proof : We only have to show the algebraic equality δ(Ñ(V )) = M(E). Let
χ = δx be a continuous character on E. There is some v ∈ V such that, for
every f ∈ E, |f̃(x)| ≤ |f |v. We claim that ṽ(x) 6= 0. If not, take f ∈ E and
an open subset Wn of β(X) such that f̃(x) = 1 and Un = Wn ∩ S∗(E), where
Un := {t ∈ S∗(E) : 1− 1

n
< |f̃(t)| < 1 + 1

n
and v(t) < 1

n
}. Let gn ∈ C(β(X)) enjoy

0 ≤ gn ≤ 1, gn(x) = 1 and supp gn ⊂ Wn. Then hn := (gn)|Xf belongs to E and

|h̃n(x)| ≤ |hn|, n ∈ N. Hence

|gn(x)f̃(x)| = 1 ≤ sup
t∈Un

ṽ(t)|f̃(t)gn(t)|

≤ 1

n
(1 +

1

n
).

This is impossible since n is arbitrary. Conversely if ṽ(x) 6= 0, then for every f ∈ E,
one has |f̃(x)| ≤ 1

ṽ(x)
|f |v. �

Corollary 17. If E ⊂ CV0(X) is selfadjoint and a Cb(X)-module, then M(E)
is homeomorphic to coZ(E).

Proof : Assume that δx ∈ M(E), ṽ(x) 6= 0 and x 6∈ coZ(E). From the equal-

ity ṽ(x)f̃(x) = f̃v(x) = 0, for every f ∈ E, one derives x 6∈ S∗(E). This is a
contradiction. �
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