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Preface

In this monograph we outline finite element methods for highly nonlinear bound-
ary value problems of elliptic and parabolic type in 1D and 2D with memory ef-
fects. These problems arise e.g. from a recent topic in the mathematical theory of
electromagnetism, viz the mathematical modelling and numerical evaluation of the
electromagnetic field in magnetic materials showing hysteresis behaviour. Thus, in
particular, we consider parabolic problems with nonlocal Neumann-BCs and we also
consider the coupling of a transient 2D-problem with a vector hysteresis model.

For each of the boundary value problems (BVPs) considered, the following 3
mathematical items are dealt with:

• the variational formulation in suitable function spaces (Sobolev spaces) on the
domain.

• the discretisation in the space variable by a conforming finite element method
with quadratic interpolation functions, followed by a modified Crank-Nicholson
finite difference method for the time discretisation.
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• suitable iteration procedures devised to take into account the strongly nonlin-
ear character of the differential equation (DE), as mentioned above. Actually,
the hysteresis concerns a major difficulty in the analysis.

The fully discrete approximation schemes are validated by comparison of numer-
ical results, obtained by means of the algorithms, with experimental values, where
the latter are available.

An outline of this work is now in order. For those readers who are not familiar
with finite element methods and finite difference methods, a short introduction is
provided. The same holds for the basic concepts of electromagnetic fields.

In Sections 2 and 3 we consider nonlinear parabolic problems with memory in 1D
and 2D respectively, using a scalar hysteresis model. In the 2D case we discuss both
the cartesian and the axi-symmetric setting. In Section 4 we return to a nonlinear
parabolic problem in 1D with memory, now invoking a vector hysteresis model.
The same vector hysteresis model is applied in Section 5, dealing with a 2D elliptic
problem. In each section we briefly state a physical problem, the mathematical
modelling of which precisely leads to the respective type of BVP considered. These
motivating problems all originate from the numerical evaluation of electromagnetic
fields in electric machines. However, the nonlinear BVPs with memory effects dealt
with in this monograph may also arise from other disciplines in engineering and
physics, cf. [1] for a readable, recent account.

1 Introduction

To keep this monograph self contained to a reasonable extent, we present in this
introduction some key features both of the finite element-finite difference methods
used and of the hysteresis behaviour of the magnetic materials considered.

1.1 Finite Element Methods (FEMs)

When describing the basic ideas of the specific FEMs used in this text, we may
restrict ourselves to two model problems of 2nd order elliptic problems on a bounded
interval Ω ⊂ R or a rectangle Ω ⊂ R2 respectively, with classical Neumann boundary
conditions (BCs). For the expository purpose we only consider here linear problems.
The modifications required for nonlinear problems will be discussed in some detail
in the specific sections where they are met. The same holds for the problems with
nonlocal BCs. The combined finite element - finite difference methods (FEMs-FDs),
used for the corresponding transient (parabolic) boundary value problems (BVPs),
are dealt with in Section 1.2.

As is well known, a FEM for a BVP rests upon a proper variational formulation
of this problem in suitable function spaces, obtained by applying Green’s theorem
in Sobolev spaces. This is recalled below. Throughout our work, for the sake of
numerical accuracy, in the finite element discretisation of the variational problems,
we shall use a quadratic finite element mesh. Thus, the trial and test functions will
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be taken to be continuous functions on Ω̄, which are piecewise quadratic polynomials
− piecewise with respect to the partition or triangulation of Ω in subintervals or
triangles respectively. For a comprehensive account on FEMs we may refer e.g. to
[2] and [3].

1.1.1 A 2nd order model problem on a bounded interval

We consider the following inhomogeneous Neumann-problem on the interval Ω=]0, 1[

Find a (real valued) function u ∈ H2(Ω):

− d

dx

[
p(x)

du

dx

]
+ q(x)u = f(x), a.e. in Ω, (1.1)

p(0)u′(0) = g1, p(1)u′(1) = g2, (1.2)

where the data p, q and f are sufficiently regular (real) functions of x and where g1

and g2 are given (real) constants. (The case q ≡ 0 in Ω and g1 = g2 = 0, being
disregarded, for the sake of uniqueness of the solution). Here Hm(Ω) ≡ Wm

2 (Ω),
m ∈ N0, is the usual mth order Sobolev space on Ω, i.e.

Hm(Ω) = {u ∈ L2(Ω)| the generalized (distributional) derivatives

dαu/dxα ∈ L2(Ω), α = 1, ...,m} (1.3)

First step: Variational formulation in H1(Ω)

We multiply both sides of (1.1) with an arbitrary test function v ∈ H1(Ω) and
integrate over Ω. Next, we use the formula of integration by parts in H1(Ω), i.e.

∫ 1

0

dw

dx
vdx = w(1)v(1)− w(0)v(0)−

∫ 1

0
w
dv

dx
dx, ∀v,w ∈ H1(Ω). (1.4)

Invoking the BCs (1.2), the solution u of (1.1)-(1.2), is seen to be a solution of the
following variational problem (continuous problem)

Find u ∈ H1(Ω):

a(u, v) = l(v),∀v ∈ H1(Ω) (1.5)

where

a(u, v) =
∫ 1

0
(p
du

dx

dv

dx
+ quv)dx, (1.6)

l(v) =
∫ 1

0
fvdx− g1v(0) + g2v(1). (1.7)
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By the well known Lax Milgram lemma, the existence of a unique, stable, solution
of (1.5) is guaranteed when

{
p, q and f ∈ L∞(Ω),
∃p0 > 0 (constant) : p ≥ p0, a.e. in Ω, q ≥ 0 a.e. in Ω.

(1.8)

Moreover, (1.5) is seen to be formally equivalent to the problem (1.1)-(1.2). [Notice
that, due to the continuous embedding H1(Ω) ↪→ C0(Ω̄), the trace (γv)(0) of v ∈
H1(Ω) in the boundary point x = 0 may simply be written as v(0), etc.]

Second step: Internal approximation of (1.5) − particular choice of a finite element
space

The Galerkin idea of the internal approximation of (1.5) is first to introduce a
suitable function space Xh,

Xh ⊂ H1(Ω), dimXh < +∞, (1.9)

and then to rephrase the variational problem in that space. This leads to the discrete
problem

Find uh ∈ Xh : a(uh, v) = l(v),∀v ∈ Xh (1.10)

In standard FEMs, Xh is chosen to be a space of continuous functions on Ω̄, which
are piecewise polynomials of some low degree − piecewise with respect to a partition
of Ω̄ in elements. To be specific, divide [0, 1] in n equal subintervals (elements) by
0 = x0 < x2 < ... < x2n−2 < x2n = 1, and let

Xh =
{
v ∈ C0([0, 1])| v is a quadratic polynomial in each element

[x2k−2, x2k], 1 ≤ k ≤ n} , (h =
1

n
= mesh parameter). (1.11)

To identify a suitable basis of Xh, we consider an internal node in each element, the
midpoint say, denoted by x2k−1, k = 1, .., n, cf. Fig. 1.1. The cardinal basis of Xh is
then defined by

(ϕi)
2n
i=0 ⊂ Xh, ϕi(xj) = δij, for i and j = 0, ..., 2n. (1.12)

Figure 1.1: A uniform FE-mesh

Notice that ϕi isn’t identically zero only in those elements that contain the node i.
Typical basis functions are depicted in Fig.1.2.
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Figure 1.2: (a)The basis function ϕ2k on its sup-
port (b)The basis function ϕ2k−1 on its support

Third step: Algebraic form of (1.10)

First, taking v = ϕi, i = 0, 1, ..., 2n in (1.10), and next, inserting

uh =
2n∑

j=0

cjϕj, (1.13)

we end up with the following algebraic system:

Find the column matrix [C] ≡ [c0, ..., c2n]
T ∈ R2n+1 :

[K][C] = [F ], (1.14)

where the stiffness matrix [K] ∈ R2n+1xR2n+1 and the force matrix [F ] ∈ R2n+1x1
are defined as

[K] = [Kij]0≤i,j≤2n and [F ] = [F0, ..., F2n]
T (1.15)

with
Kij = a(ϕi, ϕj), Fi = l(ϕi). (1.16)

The matrix K is symmetric. Due to the particular choice of the basis functions,
K is seen to have a band structure with bandwidth 5. Moreover, the conditions
(1.8) guarantee K to be positive definite and hence also non-singular. [In fact, the
Lax Milgram lemma automatically implies the problem (1.10), and, equivalently,
the algebraic problem (1.14), to have a unique solution].

1.1.2 A 2nd order model problem on a rectangle

We consider the following Neumann-problem on a rectangle Ω ⊂ R2.

Find a (real valued) function u ∈ H2(Ω):

−div (p(x)gradu) + qu = f(x), a.e. in Ω (1.17)
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p
∂u

∂n
= g(x), a.e. on ∂Ω (1.18)

where x = [x1, x2] and where p,q,f and g are sufficiently regular given functions of
x (now the case q ≡ 0 in Ω, g ≡ 0 on ∂Ω being excluded). Here the Sobolev space
Hm(Ω) ≡ Wm

2 (Ω), m ∈ N0, is given by

Hm(Ω) = {u ∈ L2(Ω)| the generalized (distributional) derivatives

Dαu =
∂ |α|

∂xα1
1 ∂x

α2
2

∈ L2(Ω),

for all α = [α1, α2] ∈ N2, with |α| ≤ m, |α| = α1 + α2

}
. (1.19)

Moreover, in (1.18), ∂u
∂n
∈ L2(Ω) denotes the generalized normal derivative of u, i.e.

∂u

∂n
= (γ

∂u

∂x1

)n1 + (γ
∂u

∂x2

)n2,

[n1, n2] = n̄ ≡ the outward unit normal vector to ∂Ω (1.20)

where γ: H1(Ω) → L2(∂Ω) is the usual trace operator.

First step: Variational formulation in H1(Ω)

We now lean upon Green’s formula, viz

∫

Ω

∂w

∂xi
vdx =

∫

∂Ω
(γw)(γv)nids −

∫

Ω
w
∂v

∂xi
dx, i = 1, 2, ∀v and w ∈ H1(Ω) (1.21)

to arrive at
Find u ∈ H1(Ω) : a(u, v) = l(v),∀v ∈ H1(Ω), (1.22)

where
a(u, v) =

∫

Ω
[(p gradu)gradv + quv]dx, (1.23)

l(v) =
∫

Ω
fvdx+

∫

∂Ω
g(γv)ds. (1.24)

Under the conditions (1.8) the Lax Milgram lemma again guarantees the existence
of a unique solution of (1.17)-(1.18).

Second step: Internal approximation of (1.17)-(1.18) − particular choice of a finite
element space

To construct a finite dimensional subspace Xh of H1(Ω), we may consider a
partition τh of Ω̄ in triangles (elements) K. For the conventions tacitly made in
such a triangulation, see e.g. [2].
We take

Xh = {v ∈ C0(Ω̄)| v is a quadratic polynomial in each element K ∈ τh} (1.25)



Finite element methods for nonlinear elliptic and parabolic problems 7

Figure 1.3: A uniform triangulation of Ω̄

(h = mesh parameter = length of the longest side in τh.)
To identify a suitable basis of Xh, recall that a quadratic polynomial on a triangle

K is uniquely defined by prescribing its value in the 3 vertices of K together with its
value in 3 side points, the midpoints of the sides of K, say. Let [xi1, x

i
2], 1 ≤ i ≤ N ,

be the set of all nodes, i.e. the set of all vertices of all triangles K ∈ τh and of all
midpoints of all corresponding sides. The cardinal basis of Xh is defined by:

(ϕi)
N
i=1 ⊂ Xh, ϕi(x

j
1, x

j
2) = δij for i and j = 1, ..., N. (1.26)

The support of ϕi is the union of the triangles sharing the node i. In particular,
when i refers to a side midpoint not belonging to ∂Ω, there are 2 triangles sharing
that node. For a vertex node i not lying on ∂Ω, ϕi is graphically represented by a
6-sided, quadratically curved pyramid resting upon the 6 triangles that share the
node i, its top lying vertically above that node at the height 1.

Third step: Algebraic form of (1.10)

The equivalent algebraic version of the discrete problem (1.10) is obtained simi-
larly as in (1.14). A major task is to construct the stiffness matrix K and the force
matrix F. In practice this is performed by splitting the involved integrals over Ω
and ∂Ω into contributions coming from the individual elements K ∈ τh and their
eventual sides on ∂Ω and to reduce the element computations to a fixed master
element K̂ and its sides by means of an affine, invertible transformation. In most
cases the integrations over K̂ and its sides may be simplified considerably by using
appropriate quadrature rules.

1.2 Finite Difference Methods (FDMs)

For the transient BVPs of the parabolic type, encountered in this work, we will
apply a combined FEM-FDM. Beginning with the space discretisation by a FEM,
we arrive at an inital value problem (IVP) for a system of 1st order ODEs for the
time varying nodel values ci(t) of the approximate unknown uh(x, t) in the nodes
x = xi, 1 ≤ i ≤ N , of the FE-mesh. This IVP is solved numerically by a FDM. We
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are led to a recurrent set of algebraic systems to be solved at each subsequent time
point tk of a time partitioning, cf. Section 7.4 in [4].

Below we illustrate the basic ideas for a simple model problem in 1D, which again
is chosen to be linear. The modifications required when dealing with a nonlinear
problem are discussed in some detail in the specific sections where these problems
are met.

A model parabolic problem

We look for a smooth function u(x, t), 0 ≤ x ≤ 1, t ≥ 0, which obeys, in a weak
sense, the DE

∂u

∂t
= κ

∂2u

∂x2
, 0 < x < 1, t > 0, (1.27)

along with the BCs

κu′(0, t) = g1(t), κu′(1, t) = g2(t), t > 0, (1.28)

and the IC
u(x, 0) = u0(x), 0 < x < 1. (1.29)

Here g1 and g2 are given, sufficiently regular functions of time; u0 is a given, suffi-
ciently regular function of x and κ > 0 is a given constant (e.g. a diffusion parame-
ter).

First step: Variational formulation

Treating the time variable t as a parameter and proceeding similarly as above,
we arrive at the following variational formulation of the problem (1.27)-(1.29):

Find a function u(x, t), which has the properties that u(., t) ∈ H1(Ω) and
∂u
∂t

(., t) ∈ L2(Ω) for each t > 0 and which obeys:

(
∂u

∂t
, v) + κ(

∂u

∂x
,
dv

dx
) = −g1(t)v(0) + g2(t)v(1), t > 0,∀v ∈ H1(Ω), (1.30)

along with the IC (1.29).

Here, for brevity, Ω denotes again the open interval ]0, 1[, and (., .) denotes the
L2(Ω)-inner product.

Second step: Semi-discrete (time continuous) approximation by a FEM

Retaining the space Xh, (1.11), we approximate the problem above by

Find a function uh(x, t), with uh(., t) and ∂uh
∂t

(., t) ∈ Xh for each t > 0,
which obeys

(
∂uh
∂t

, v) + κ(
∂uh
∂x

,
dv

dx
) = −g1(t)v(0) + g2(t)v(1), t > 0, ∀v ∈ Xh, (1.31)
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along with
uh(x, 0) = uh0(x), (1.32)

where uh0 ∈ Xh is an appropriate approximation of u0 (for instance the L2(Ω)-
projection of u0 on Xh). When u0 ∈ C0(Ω̄), we may take uh0 to be the piecewise
Lagrange interpolant of u0 in the FE-mesh. Denoting

uh(., t) =
2n∑

i=0

ci(t)ϕi, t ≥ 0, (1.33)

and

uh0 =
2n∑

i=0

biϕi, (1.34)

we may rewrite (1.31)-(1.32) as the following IVP:

Find [C(t)] ≡ [c0(t), c1(t), ..., c2n(t)]
T which obeys

[M ]
d[C]

dt
+ [K][C] = [L], (1.35)

[C(0)] = [B] ≡ [b0, b1, ..., b2n]
T . (1.36)

Here, the mass matrix [M], the stiffness matrix [K] and the force matrix [L] read

[M ] = [Mij]0≤i,j≤2n, Mij = (ϕi, ϕj), (1.37)

[K] = [Kij ]0≤i,j≤2n, Kij = κ(
dϕi
dx

,
dϕj
dx

), (1.38)

and
[L] = [−g1(t), 0, 0, ..., 0, g2(t)]

T (1.39)

respectively, where for the latter matrix the definition relation (1.12) is explicitly
used.

Third step: θ-family of finite difference schemes (cf. Section 7.4 in [4])

Let ∆t be a time step and let tk=k.∆t, k ∈ N, be the corresponding equidistant
time points. Let moreover θ ∈ [0, 1] be a parameter. We define an approximation

[C̃(k)] ' [C(tk)], k = 1, 2... (1.40)

by means of a recurrent set of algebraic systems, viz

[M ]
[C̃(k)]− [C̃(k−1)]

∆t
+ [K](θ[C̃(k)] + (1− θ)[C̃(k−1)]) =

θ[L(tk)] + (1− θ)[L(tk−1)], k = 1, 2... (1.41)

starting with
[C̃(0)] = [C(0)] = [B] (1.42)
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When useful, we may approximate [C(t)] for tk−1 < t < tk by means of linear
interpolation between [C̃(k−1)] and [C̃(k)].

The coefficient matrix [M+Kθ∆t] resulting from (1.41) is symmetric and positive
definite and thus also non-singular. Notice that for θ = 0 and θ = 1 we get the
explicit and the implicit Euler scheme, respectively. The choice θ = 1

2
leads to

the Crank-Nicholson scheme, which, we recall, is unconditionally stable and shows
O((∆t)2)-accuracy (whereas, the two Euler-schemes give only O(∆t)-accuracy, the
explicit scheme being moreover only conditionally stable).

1.3 Basic equations in electromagnetism

1.3.1 Maxwell equations and constitutive laws

It is well know that in electromagnetic field theory the magnetic field H̄ [A/m],
the electric field Ē [V/m] and the magnetic induction B̄ [T] are connected by the
Maxwell equations [5]:

rotH̄ = J̄ +
∂D̄

∂t
, (1.43)

rotĒ = −∂B̄
∂t
, (1.44)

divB̄ = 0. (1.45)

Here J̄ is the electric current density, while D̄ is the electric flux density, itself related
to the electric charge density ρ [C/m3] by

divD̄ = ρ, (1.46)

In general, ρ and J̄ are given quantities, while D̄, H̄, Ē and B̄ are unknown vector
fields. In addition to these Maxwell equations 3 constitutive laws have to be imposed,
viz

B̄ = B̄(H̄) (1.47)

J̄ = J̄(Ē) (1.48)

D̄ = D̄(Ē) (1.49)

In this monograph, the relation (1.48) will be assumed to be linear,

J̄ = σĒ (1.50)

where σ [S/m] is the electrical conductivity. Moreover, as capacity effects may be
neglected in this work, ρ and ∂D̄

∂t
may be taken to be zero and thus (1.49) may

be disregarded. For the problems considered in this text, the constitutive relation
(1.47) is a strongly nonlinear one, corresponding to the memory properties of the
material (’hysteresis properties’):

B̄ = B̄(H̄, H̄past) (1.51)
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Here, the dependence on the past values of the magnetic field vector (’memory’) is
denoted by H̄past, for shorthand. The complex form of this constitutive relation will
constitute the major difficulty in the evaluation of the electromagnetic field. To illus-
trate the complexity of this relation, in the next subsection, we briefly discuss some
experimentally observed properties, for the simplified case that the magnetic field
vector H̄ and the magnetic induction vector B̄ are uni-directional (their magnitude
being denoted by H and B respectively).

1.3.2 Hysteresis behaviour

In order to build models of the magnetic hysteresis phenomenon, we will begin with
an analysis of experimental magnetisation curves, giving B as a function of H (and of
Hpast), and we point out their fundamental characteristic features. These properties
are discussed theoretical in great depth by Mayergoyz in [14]. From this reference
text we adopt some terminology. First, we notice that B is not a single valued
function of H, precisely due to the hysteresis. As a consequence, in the BH-plane a
cycle or loop is observed. Next, a limit cycle is obtained as that BH-curve where H
varies from Hmax to -Hmax and back to Hmax when Hmax tends to infinity. Moreover,
when the time varying magnetic field shows local extrema minor loops inscribed in
larger BH-loops will occur.

Symmetry property

A property of almost every magnetic material is the symmetry with respect to the
origin (H=0,B=0) of the BH-curves occurring for opposite evolutions, see Fig.1.4,
i.e. when H(t) is symmetric with respect to the origin,

Nonlinearity and memory

The detailed relation between the magnetic induction B and the magnetic field
strength H in electrical steel is very complex. However, some specific properties may
be observed. As shown in Fig.1.4, the relation between B and H is strongly nonlinear
and non single valued. Moreover, each point within the limit cycle may be reached
in various ways. One of the most important properties of these nonlinearities is that
the relation between B and H at each time point depends on the excitation enforced
to the material in the past. The material is said to have a memory in which the
history is stored. It is clear that the extreme values of H have an important influence
on the BH-characteristic.

We also observe that, when a minor order loop is closed, the BH-characteristic
behaves as if the minor order loop has never existed. The minor order loop is evaded
from the memory.

Accommodation

Experiments also show that hysteresis loop are often preceded by some stabil-
isation process. This means, for instance, that when the magnetic field changes
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Figure 1.4: Symmetry, Non linearity and
memory property

Figure 1.5: Evading a minor order loop

from one time-periodic variation to another, the magnetic induction B also obtains
a new time-periodic variation after some transients. Thus, a considerable number
of periods may be required before a stable minor loop is achieved, see Fig.1.6. This
stabilisation process is called the reptation or accommodation process. In some cases
the accommodation process isn’t negligible, so that it must be modeled.

Noncongruency

Finally, in Fig.1.7, a measured BH-relation is given with five minor order loops.
Each minor order loop is enclosed by the same minimum and maximum value for
the magnetic field strength H, but corresponds with a different induction level B.
We see that these minor order loops are non-congruent.

2 1D Nonlinear Parabolic Problems with a scalar hysteresis model

2.1 A motivating physical problem and its mathematical model

The evaluation of the electromagnetic losses in electrical machines is based upon a
magnetodynamic model for one lamination of the material, see Fig.2.1, where the
thickness 2d of the lamination is very small relative to its width b. This model starts
from the well known Maxwell equations, (1.43), (1.44), (1.46) and (1.45).

Throughout the lamination, which is assumed to be isotropic, the time dependent
flux reads φ̄ = φ1̄z (per unit length in the y-direction), with

φ =
1

b

∫ d

−d
dx
∫ b

2

−b
2

B̄ · 1̄zdy. (2.1)



Finite element methods for nonlinear elliptic and parabolic problems 13

Figure 1.6: Accommodation Figure 1.7: Non-congruency

Figure 2.1: Magnetodynamic model of one lamination
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Neglecting the end effects, as d << b, and taking into account the isotropy as well
as the symmetry in the lamination, we have

H̄ = H(x, t)1̄z = H(−x, t)1̄z, (2.2)

B̄ = B(x, t)1̄z = B(−x, t)1̄z, (2.3)

J̄ = J(x, t)1̄y = −J(−x, t)1̄y. (2.4)

Finally, invoking the constitutive relation (1.50) we arrive at

1

σ

∂2H

∂x2
=
∂B

∂t
, 0 < x < d, t > 0. (2.5)

This differential equation (DE) must be completed with the appropriate boundary
conditions (BCs) and initial conditions (ICs), viz

∂H(x = 0, t)

∂x
= 0,

∂H(x = d, t)

∂x
=
σ

2

dφ

dt
(2.6)

and

H(x, t = 0) = 0. (2.7)

The first BC reflects the symmetry in the lamination. The second BC follows when
combining (2.5) with the symmetry and with the definition of the flux φ(t), (2.1),
through the lamination. Finally, the IC (2.7) corresponds to the demagnetized state
of the material.

To obtain a well posed boundary value problem (BVP) for H(x, t), B must be
eliminated from (2.5), by means of the material properties. For this purpose, in
the next section we lean upon a suitable hysteresis theory, more precisely a rate
independent and next a rate dependent Preisach model.

The aim is to determine the BH-relation from this mathematical model, as this
relation will allow us to evaluate the iron losses, during a time interval [t1,t2], with
length equal to an integer multiple of the period of the enforced magnetic field Hb(t)
or enforced magnetic induction Ba(t), according to the formula

E =
∫ t2

t1
Hb(t)

dBa

dt
dt (2.8)

where

Ba(t) =
φ(t)

2d
, (2.9)

Hb(t) = H(x = d, t). (2.10)

In practice two types of problems may occur: either the average flux Ba(t) in the
lamination is enforced, from which the magnetic field strength Hb(t) at the surface
of the lamination must be derived, or vice versa.
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2.2 Classical Preisach model versus rate-dependent Preisach model

In the Preisach model, the material is assumed to consist of small elementary dipoles.
We first discuss the basic properties of such a dipole and next we comment on the
Preisach model itself.

2.2.1 Behaviour of the elementary Preisach dipole

The elementary dipoles, composing the ferromagnetic material, are characterized by
two parameters, namely the switching fields α and β, entering the Preisach model,
[6].

Figure 2.2: (Md,H)-characteristics Figure 2.3: Enforced H(t)

In the classical (rate independent) Preisach model (CPM) the magnetisation Md

of the dipole only takes the value +1 or -1, see Fig.2.2 (dotted line). Explicitly,

Md =

{
+1 : H(t) > α or (β < H < α and Hlast > α)
−1 : H(t) < β or (β < H < α and Hlast < β)

(2.11)

Here Hlast is the last extreme value kept in memory outside the interval [β,α]. Thus
the CPM is rate-independent.

In the rate dependent Preisach model (RPM) of [7] the dipoles are assumed to
switch at a finite rate, proportional to the difference between the local magnetic field
H(t) and the elementary loop switching fields α and β. The factor of proportionality,
denoted by kd, is a material parameter. Explicitly, the evolution in time of the
magnetisation Md is given by

dMd

dt
=





kd(H(t)− α) , if H(t) > α and Md < +1
kd(H(t)− β) , if H(t) < β and Md > −1
0 , in the other cases

(2.12)
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Figure 2.4: Frequency dependency of the area enclosed

To give an idea of the (Md,H)-characteristic of one dipole in the RPM, we consider
two relevant examples.

Example 1 (Symmetric case)

For the imposed magnetic field H(t), represented by the dashed line in Fig.2.3, the
corresponding (Md,H)-loops are shown in Fig.2.2 (dashed and dash-dotted). As
may be observed from Fig.2.2, the dipole can switch on completely for sufficiently
low frequency, while this is no longer the case for higher frequencies.

The area enclosed by the (Md,H)-loop during one cycle is given in Fig.2.4 as
a function of the frequency, for the indicated set of data. Below a first critical
frequency fk,1, the extra enclosed area in comparison with the case of the CPM
is proportional to

√
f . Above a second critical frequency fk,2, the total area is

proportional to 1
f

and may become smaller than the classical area 2(α − β). In the
latter case the Preisach dipole does no longer switch completely from +1 to -1 and
from -1 to +1.

Example 2 (Asymmetric case)

A more complex situation results for the imposed magnetic field, represented by
the solid line in Fig.2.3. Due to the asymmetry of the field strength relative to the
α-β parameters, the corresponding (Md,H)-characteristics are asymmetric as well,
as shown in Fig.2.2 (solid line).

2.2.2 Material characterisation

The relative density of the Preisach dipoles is represented by the distribution func-
tion P (α, β), cf. [6] and [7]. Correspondingly, the induction B(H(t),Hpast(t)) takes
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Figure 2.5: The variation of the magnetic field H in the interval [0,t0]

the following form in the Preisach model:

B(H(t),Hpast(t)) =
1

2

∫ Hm

−Hm
dα
∫ α

−Hm
dβ η(α, β, t)P (α, β). (2.13)

Here, P (α, β) is assumed to be negligible small when either α > Hm or β < −Hm,
where Hm is directly obtained from the experimental evaluation of P. Moreover
η(α, β, t) is the value at the time t of the magnetisation Md for the dipole with the
parameters α and β. From (2.11) or (2.12), η(α, β, t) obviously depends on H(t)
and Hpast(t). Of course, this leads to the induction B to depend upon the magnetic
field H(t) and its history Hpast(t).

To illustrate in a theoretical way, the difference between the CPM and the RPM,
we consider the variation of the magnetic field H as shown in Fig.2.5 for a chosen
time interval [0,t0]. The two models are compared on two levels: the function η in
the (α,β)-plane and the BH-relation obtained by (2.13).

As mentioned above, in the CPM, η(α, β, t) only takes the values +1 or -1. The
region (−Hm < α < Hm, −Hm < β < α) is divided into two subregions S+ and S−

where η(α, β, t) equals +1 and -1 respectively. The interface between S− and S+

is determined by H(t) and Hpast(t), as described in detail in [6]. Fig.2.6 shows the
function η at time point t = t0.

For the CPM, (2.13) becomes:

B(H(t),Hpast(t)) =
1

2

∫

S+
dαdβ P (α, β)− 1

2

∫

S−
dαdβ P (α, β). (2.14)

More generally, when the field strength H varies monotonously in time, the variation
of the induction B, in absolute value, is given by:

∆B(H(t),Hpast(t)) =
∫

Ds
dαdβP (α, β), (2.15)

where Ds is the region in the (α,β)-plane in which the dipoles switch from one
polarisation to the opposite one.
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Figure 2.6: Typical Preisach diagram
for the CPM and for the RPM at time
point t = t0 when considering the H-
variation in Fig.2.5

Figure 2.7: BH relation obtained by
the CPM and the RPM when consid-
ering the H-variation in Fig.2.5

In the RPM however, η(α, β, t) varies (at each fixed time t) within the whole
range from -1 to +1, according to (2.12). Now, the function η can be visualized for
each time point in the (α,β)-plane using η-isolines. Fig.2.6 shows the η-isolines for
the time point t = t0.

Finally, using (2.13), we obtain for the RPM the BH-relation given by the full
line in Fig.2.7, while the CPM results in the BH-relation in dashed line. These
BH-relations correspond to the time interval [0,t0] in Fig.2.5.

2.2.3 Relation between dB
dt and H

In view of the magnetodynamic model, ∂B
∂t

must be related to the magnetic field
H(t), both for the CPM and for the RPM. In the former case one simply has

∂B

∂t
=
∂B

∂H

∂H

∂t
≡ µd(H(t),Hpast(t))

∂H

∂t
, t > 0, (2.16)

Here, the introduced function µd is the ’differential permeability’ of the magnetic
material. It can be derived numerically from the Preisach model using (2.13), the
latter making evident the dependency of µd on H(t) and Hpast(t).

In the RPM however, (2.13) combined with (2.12), written out for η(α, β, t),
leads to:

∂B

∂t
= µrev

∂H

∂t
+ k1(H(t),Hpast(t)) ·H − k2(H(t),Hpast(t)), t > 0 (2.17)
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with

k1(H(t),Hpast(t)) =
kd
2

∫

D1(t)
P (α, β)dαdβ +

kd
2

∫

D2(t)
P (α, β)dαdβ (2.18)

and

k2(H(t),Hpast(t)) =
kd
2

∫

D1(t)
αP (α, β)dαdβ +

kd
2

∫

D2(t)
βP (α, β)dαdβ. (2.19)

Herein µrev is the reversible differential permeability. D1 and D2 are the domains
in the Preisach plane that represent dipoles in an intermediate state, switching to
positive and negative saturation, respectively. Of course, the time dependency of
D1 and D2 is through the magnetic field H(t) and its history Hpast(t).

2.3 Combined magnetodynamic model - hysteresis model

In the CPM-case, combining (2.16) and (2.5) we get

1

σ

∂2H

∂x2
= µd(H(x, t),Hpast(x, t))

∂H

∂t
, 0 < x < d, t > 0, (2.20)

where now µd also depends on the space variable, through H(x, t) and Hpast(x, t).
Similarly, in the RPM-case, we arrive at

1

σ

∂2H

∂x2
= µrev

∂H

∂t
+ k1(H(x, t),Hpast(x, t))H − k2(H(x, t),Hpast(x, t)),

0 < x < d, t > 0, (2.21)

where the functions k1 and k2 have a similar form as (2.18) and (2.19) respectively,
however now showing the x-dependency too.

As stated above, to these respective governing DEs for H(x, t), we add the BCs
(2.6). Finally, the IC will be taken to be

H(x, t = 0) = 0,

{
η(x, α, β, t = 0) = +1 when α+ β < 0
η(x, α, β, t = 0) = −1 when α+ β > 0

, (2.22)

reflecting the chosen initial state of the material at t = 0. This initial state corre-
sponds to the state reached after a sufficiently long time during which a magnetic
field is enforced of the type

H(t) = Hme
−εtcos(2πft), ( f: frequency ) (2.23)

where Hm is defined by (2.13) and 0 < ε � 1. By definition, that limit state is
the ’demagnetized’ state of the material. According to the Preisach model, in that
state, the magnetisation of each dipole is precisely given by (2.22).
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2.4 Variational formulation

Case of CPM

We proceed as in Sections 1.1-1.2. Explicitly, let W 1
2 (]0, d[) be the usual first order

Sobolev space on the interval ]0, d[. Multiplying both sides of (2.20) with an arbitrary
test function w ∈ W 1

2 (]0, d[), integrating over the interval ]0, d[, invoking the formula
of partial integration in Sobolev spaces, (1.4), and applying the BCs (2.6), we arrive
at the following variational problem:

Find the function H(x, t), which for each t > 0 fulfills H(., t) ∈
W 1

2 (]0, d[), with ∂H(.,t)
∂t
∈ L2(]0, d[), and which moreover obeys

1

σ

∫ d

0

∂H(x, t)

∂x

dw(x)

dx
dx+

∫ d

0
µd
∂H(x, t)

∂t
w(x)dx =

w(d)

2

dφ

dt
,

∀w ∈ W 1
2 (]0, d[),∀t > 0 (2.24)

along with the IC (2.22).

This variational problem may be shown to be formally equivalent with the original
BVP (2.20)-(2.6)-(2.22).

Case of RPM

Proceeding similarly for (2.21), the variational equation now reads

1

σ

∫ d

0

∂H(x, t)

∂x

dw(x)

dx
dx+

∫ d

0
µrev

∂H(x, t)

∂t
w(x)dx+

∫ d

0
k1(x, t)H(x, t)w(x)dx

=
∫ d

0
k2(x, t)w(x)dx+

w(d)

2

dφ

dt
, ∀w ∈ W 1

2 (]0, d[), ∀t > 0. (2.25)

Here, for brevity, we denoted k1(x, t)=k1(H(x, t),Hpast(x, t)) and similarly for k2(x, t).

2.5 Finite Element Approximation

We apply the method described in Section 1.1. Consider the 2n+1 equidistant nodes
0 ≡ x1 < x2 < ...x2n < x2n+1 ≡ d. Denote Ω =]0, d[ and introduce the function
space

Wh = {v ∈ C0(Ω̄); v|[x2s−1,x2s+1] is a polynomial of 2nd degree, 1 ≤ s ≤ n}

⊂ W 1
2 (Ω) (2.26)

Let (ϕi(x))2n+1
i=1 be the canonical basis of Wh. Thus,

ϕi(xj) = δij, 1 ≤ j ≤ 2n+ 1. (2.27)
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Case of CPM

Following e.g. [4], we construct a FE-approximation of (2.24) by determining the
function Hh(x, t) ∈ W 1

2 (Ω), for t ≥ 0,

Hh(x, t) =
2n+1∑

i=1

ci(t)ϕi(x), x ∈ Ω̄, t ≥ 0, (2.28)

which obeys the discrete version of (2.24), viz

1

σ

∫ d

0

∂Hh(x, t)

∂x

dw(x)

dx
dx+

∫ d

0
µ̂d
∂Hh(x, t)

∂t
w(x)dx =

w(d)

2

dφ

dt
,

∀w ∈ Wh, t > 0 (2.29)

along with the IC

Hh(x, t = 0) = 0,

{
η(x, α, β, t = 0) = +1 : α+ β < 0
η(x, α, β, t = 0) = −1 : α+ β > 0

. (2.30)

Here, we have deliberately approximated the space dependency of the differential
permeability µd by passing to µ̂d, defined by

µ̂d(x, t) = µd(x2s,Hh(x2s, t),Hpast,h(x2s, t)),

x2s−1 ≤ x ≤ x2s+1, 1 ≤ s ≤ n, t > 0. (2.31)

Thus, we have discretized the space dependency of µd by means of the values in the
element midpoints, being consistent with the finite element method and resulting in
a manageable memory data.

The resulting initial value problem (IVP) for the nodal values Hh(xi, t) ≡ ci(t),
t > 0, reads:

Find the column matrix [C(t)] = [c1(t), ..., c2n+1(t)]
T which obeys

[M ]
d[C]

dt
+ [K][C] = [F ], t > 0, (2.32)

along with

[C(0)] = 0,

{
η(x2s, α, β, t = 0) = +1 : α + β < 0
η(x2s, α, β, t = 0) = −1 : α + β > 0

, 1 ≤ s ≤ n. (2.33)

Here, the mass matrix [M ], the stiffness matrix [K] and the force matrix [F ] have
the form:

[M(t)] = [Mij]1≤i,j≤2n+1, Mij =
∫ d

0
µ̂dϕiϕjdx, (2.34)

[K(t)] = [Kij]1≤i,j≤2n+1, Kij =
1

σ

∫ d

0

dϕi
dx

dϕj
dx

dx, (2.35)
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[F (t)] = [Fi]1≤i≤2n+1, Fi =
1

2

dφ

dt
δi(2n+1). (2.36)

Case of RPM

Proceeding in a similar way, the IVP for Hh(x, t) ' H(x, t) shows the same form as
(2.32)-(2.33), however with the mass, stiffness and force matrix now being defined
by

[M(t)] = [Mij]1≤i,j≤2n+1,Mij =
∫ d

0
µ̂revϕiϕjdx, (2.37)

[K(t)] = [Kij]1≤i,j≤2n+1,Kij =
1

σ

∫ d

0

dϕi
dx

dϕj
dx

dx+
∫ d

0
k̂1(x, t)ϕi(x)ϕj(x)dx (2.38)

[F (t)] = [Fi]1≤i≤2n+1, Fi =
∫ d

0
k̂2(x, t)ϕi(x)dx+

1

2

dφ

dt
δi(2n+1). (2.39)

Here, for g=µrev, g=k1 and g=k2, we put

ĝ(x, t) = g(x2s, t), x2s−1 ≤ x ≤ x2s+1, 1 ≤ s ≤ n, t > 0. (2.40)

For brevity we denoted

k̂1(x, t) = k̂1(Hh(x, t),Hh,past(x, t)) (2.41)

and similarly for k̂2(x, t).
The IVP’s (2.32)-(2.33), where the mass matrix, stiffness and force matrices are

given by (2.34)-(2.36) in the case of the CPM and by (2.37)-(2.41) in the case of the
RPM, are nonlinear. Indeed in the CPM-case the elements of [M ] depend on the
(approximated) differential permeability µ̂d that is a function of the (approximated)
magnetic field Hh(x, t) and its history Hh,past(x, t). Similarly, in the RPM-case, the
elements of [M ] depend on µ̂rev, that is a function of Hh(x, t), while the components
of the stiffness matrix and of the force matrix depend on k̂1 and k̂2 respectively,
both being functions of Hh(x, t) and Hh,past(x, t).

2.6 Time discretisation: Modified Crank-Nicholson method

The nonlinear IVPs derived above will be solved numerically by a suitable FDM,
viz by a modified Crank-Nicholson scheme, cf. the procedure described in Section
1.2, combined with an iterative procedure. Thus, we will properly take into account
the hysteresis behaviour of the material, reflected in the dependence of µd on H
and Hpast in the CPM-case and reflected in the dependence of µrev on H and in the
dependence of D1 and D2 on H and Hpast in the RPM-case.

Case of CPM

Let ∆t be a time step and let tl=l · ∆t, l = 1, 2, 3, 4, ..., be the corresponding
equidistant time points. We want to define an approximation H∗l (x) of Hh(x, tl),

H∗l (x) =
2n+1∑

i=1

c
(l)
i ϕi(x) '

2n+1∑

i=1

ci(tl)ϕi(x), (2.42)
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by means of a recurrent set of nonlinear systems for

[C(l)] = [c
(l)
1 , c

(l)
2 , ..., c

(l)
2n+1]

T , l = 1, 2, .... (2.43)

First, notice the discontinuities with respect to time of the differential permeability
µ̂d(x2s, t) = ∂Bh

∂Hh
(x2s, t), (2.31), in two cases: (a) when dc2s

dt
changes sign, (b) when a

minor order loop is closed, cf. Fig.2.8. From (2.32) we get

∫ tl+1

tl

[M ]
d[C]

dt
dt+ [K]

∫ tl+1

tl

[C]dt =
∫ tl+1

tl

[F ]dt, t > 0. (2.44)

To properly take into account the possible jump of µ̂d(x2s, t) in the interval [tl, tl+1],
we approximate the first term as

∫ tl+1

tl

[M ]
d[C]

dt
dt ' [M̃ (l+1)]([C(l+1)]− [H

(l+1)
ext ]) + [M̃ (l)]([H

(l+1)
ext ]− [C(l)]), (2.45)

where [M̃ (l)] is a square matrix and [H
(l+1)
ext ] is a column matrix, defined by

M̃
(l)
ij =

∫ d

0
µ̃d(x, tl)ϕi(x)ϕj(x)dx, i, j = 1, ..., 2n+ 1, (2.46)

H
(l+1)
ext,2r−1 =

1

2
[c

(l+1)
2r−1 + c

(l)
2r−1], r = 1, ..., n+ 1, (2.47)

H
(l+1)
ext,2r =

{
1
2
[c

(l+1)
2r−1 + c

(l)
2r−1] if there is no jump of µ̃d(x, t) in [tl, tl+1]

g2r,tl if there is a jump of µ̃d(x, t) in [tl, tl+1]
,

r = 1, ..., n. (2.48)

Here, g2r,tl is the approximation of the extremal value of c2r(t) in the interval [tl, tl+1],
as shown in Fig.2.8 , corresponding to the cases (a) and (b) mentioned above. More-
over in (2.46), µ̃d(x, tl) stands for the approximation of µ̂d(x, tl), (2.31), which is
found when we use H∗p (x), 1 ≤ p ≤ l, to describe the dependency on the magnetic
field and its history up to t = tl.

Let 0 ≤ θ ≤ 1 be a parameter of the method. We approximate the 2nd and 3rd
term of (2.44) as follows

[K]
∫ tl+1

tl

[C]dt ' [K](θ[C (l+1)] + (1− θ)[C (l)])∆t, (2.49)

∫ tl+1

tl

[F ]dt ' (θ[F (tl+1)] + (1− θ)[F (tl)])∆t. (2.50)

Finally, combining (2.45), (2.49) and (2.50), we get from (2.44)

(
[M̃ (l+1)]

∆t
+ θ[K]

)
[C(l+1)] =

(
[M̃ (l)]

∆t
− (1 − θ)[K]

)
[C(l)]

+

(
[M̃ (l+1)]− [M̃ (l)]

∆t

)
[H

(l+1)
ext ] + θ([F (tl+1)] + (1 − θ)[F (tl)]), l = 0, 1, 2..., (2.51)
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Figure 2.8: Parabolic interpolation arc for
the magnetic field (upper curve); correspond-
ing differential permeability (lower curve)

along with
[C(0)] = 0. (2.52)

As the matrix [M̃ (l+1)] and the matrix [H
(l+1)
ext ], introduced in (2.46) and (2.47)-(2.48),

depend on the unknown H∗l+1(x), we set up a Newton-Raphson iteration procedure to
solve the nonlinear system (2.51) at each time point t = tl. The approximation of C (l)

at the k-th iteration level is denoted by C (l),(k). The corresponding approximation of
(2.28) is written as H

(l),(k)
h (x). In the final iteration level nl we write H

(l)
h := H

(l),(nl)
h ,

which is then used as the input for the iteration procedure at the subsequent time
point tl+1.

In practice, convergence has been observed in 4 iterations.

Case of RPM

Let again 0 ≤ θ ≤ 1 be a parameter of the method. We now define an approxima-
tion H∗l (x) of Hh(x, tl), (2.42), by means of the following recurrent set of nonlinear
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systems for [C (l)], (2.43), l = 1, 2, ...,

(
[M̃ (l+1)]

∆t
+ θ[K̃(l+1)]

)
[C(l+1)] =

(
[M̃ (l+1)]

∆t
− (1 − θ)[K̃(l)]

)
[C(l)]

+ θ[F̃ (l+1)] + (1 − θ)[F̃ (l)], l = 0, 1, 2, ..., (2.53)

along with
[C(0)] = 0. (2.54)

Here, the approximated mass matrix [M̃ (l)] ' [M(tl)], stiffness matrix [K̃(l)] '
[K(tl)] and force matrix [F̃ (l)] ' [F (tl)] are defined by

M̃
(l)
ij =

∫ d

0
µ̃(l)
revϕiϕjdx, (2.55)

K̃
(l)
ij =

1

σ

∫ d

0

dϕi
dx

dϕj
dx

dx +
∫ d

0
k̃

(l)
1 (x)ϕi(x)ϕj(x)dx, (2.56)

F̃
(l)
j =

∫ d

0
k̃

(l)
2 (x)ϕj(x)dx+

1

2

dφ

dt
δj(2n+1), (2.57)

with
µ̃(l)
rev = (1− θ)µ̂rev(H∗l−1(x)) + θµ̂rev(H

∗
l (x)). (2.58)

Moreover, k̃
(l)
1 (x), appearing in (2.56), is the approximation of k̂1(x, tl), (2.41), that

is found when we use H∗p (x), 1 ≤ p ≤ l, to describe the dependency on the magnetic

field and its history up to t = tl; k̃
(l)
2 (x) is obtained in a similar way.

As the mass, stiffness and force matrices, entering (2.53), all depend on the
unknown, as just mentioned, we again set up a usual Newton-Raphson iterative
procedure to solve the nonlinear system (2.53) at every time point tl. Again, in
practice, convergence has been observed for 4 iterations.

2.7 Experimental Validation

The magnetodynamic model, including either the CPM or the RPM, as well as its
FE - FD discretisation, as outlined in this chapter, has been verified by numerous
experiments. The numerical results obtained for relevant physical quantities, such
as the BH-loops and the iron losses, are in good agreement with the values obtained
by measurements.

Here, we consider two materials with different magnetic structure, referred to as
Mat.1 and Mat.2. The former is a material with high carbide contents and large
mechanical stresses. Mat.2, known as V-450-50-E in the classification of [8], results
from Mat.1 by the process of decarbonizing and stress relieving. We compare the
quasi-static and the dynamic behaviour of the two materials.

The quasi-static behaviour is obtained at sufficiently slowly varying period mag-
netic fields, such that a BH-loop occurs in which dynamic effects can be neglected.
Typically we can take 10 seconds for one period.
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A. Quasi-static characterisation
Fig.2.9 shows the measured Preisach functions P (α, β), being introduced in Section
2.2.2. for Mat.1 and Mat.2. The Preisach function is measured by the technique of
[9], which is based upon the Everett theory. Notice that the Preisach function for
Mat.1 shows two extrema, while Mat.2 shows only one extremum. As a test for these
Preisach functions, Fig.2.10 and Fig.2.11 show a very good agreement between the
quasi-static measured BH-loops and the loops obtained from the hysteresis model.

Figure 2.9: Preisach function P (α, β) for Mat.1 and
Mat.2, ∆P denoting the difference between 2 neighbour-
ing isolines of the Preisach function. The most inner
isoline is the one with the highest P-value, denoted by
Pmax

B. Dynamic characterisation
We now consider the following type of excitation: we enforce the time dependent

magnetic field strength at the outer boundary of the lamination, denoted by Hb(t).
The average magnetic induction Ba(t) through the lamination is a direct result. The
calculated and the measured dynamic BaHb-loops are observed to coincide, which,
of course, results in a striking good agreement between the numerically obtained
and the measured values of the total iron losses. The numerical values are evaluated
from the expression (2.8).

The electrical conductivity σ, entering (2.20)-(2.21), is directly measured. It
takes the values σ=29.2 105 and σ =30.7 105 for Mat.1 and Mat.2 respectively. The
parameter θ in Section 2.6 is given the value 0.5.
B.1 Limit cycles
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The enforced magnetic field Hb(t) is taken to be a piecewise linear function of time,
namely the piecewise linear interpolant of the extremal values Hb(ti) in the successive
points ti, i=0,1,2,...
For brevity we denote this as:

[
Hb(t)

t

]
=

[
0 Hb(t1) Hb(t2) ... Hb(ti) Hb(ti+1) ...

0 t1 t2 ... ti ti+1 ...

]
.

Mat.1

For this material the CPM is found to be sufficiently accurate for describing the
dynamic behaviour. Fig.2.12 shows the BaHb-loops, corresponding to the field

[
Hb(t)
t

]
=

[
0 1200 −1200 1200 −1200 ...

0 1
4f

3
4f

5
4f

7
4f ...

]
, f = 500Hz,

while Fig.2.14 gives the total iron losses for one cycle as a function of the frequency
f.

Mat.2

The hysteresis behaviour of this second material can no longer be described ade-
quately by the CPM. Instead, this behaviour turns out to be rate-dependent. How-
ever, it can be modelled correctly by the RPM, with k = 55m/As. (Moreover, this
value itself is observed to be frequency independent). Fig.2.13 and Fig.2.14 show
the BaHb-loops and the corresponding total iron losses respectively; the measured
values are compared with the numerical values (obtained by both using the RPM
and the CPM). In this case the enforced excitation reads

[
Hb(t)

t

]
=

[
0 400 −400 400 −400 ...
0 1

4f
3

4f
5

4f
7

4f ...

]
, f = 500Hz.

For the FEM we typically take n=10 (quadratic) elements. In the time discretisation
we observed that the time step ∆t must be taken much smaller in the RPM-case
than in the CPM to retain the same accuracy, typically ∆t = 1

4000f
and ∆t = 1

400f

respectively. The parameter θ in Section 2.6 is given the value 0.5.
B.2 Minor Loops

The mathematical model outlined in this chapter also provides adequate results
for the minor order loops BaHb, corresponding to the local extrema of the magnetic
field H(t), as described for instance in [10]. Again for Mat.1 the dynamic behaviour
is found to be accurately modelled when using the CPM, while for Mat.2 the RPM
must be used to describe the hysteresis behaviour properly. As an example, we
consider the BaHb-loops for Mat.1 and Mat.2 in the case of H-excitation, under the
enforced fields

[
Hb(t)
t

]

=

[
0 −400 400 −150 200 −150 200 −150 200 −400 0

0 0.02 0.03 0.0368 0.0412 0.0455 0.0498 0.0542 0.0585 0.0660 0.071

]
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Figure 2.10: Quasi static B-H loop for
Mat.1

Figure 2.11: Quasi static B-H loop for
Mat.2

Figure 2.12: BaHb-loop for Mat.1 with
H-excitation

Figure 2.13: BaHb-loop for Mat.2 with
H-excitation
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Figure 2.14: Total electromagnetic
losses, H-excitation

Figure 2.15: BaHb-loop for Mat.1 with
minor loops

Figure 2.16: BaHb-loop for Mat.2 with
minor loops
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and

[
Hb(t)
t

]
=

[
0 1000 −1000 1000 −300 300 −1000
0 0.01 0.03 0.05 0.063 0.069 0.082

]

respectively. Fig.2.15 and Fig.2.16 show a good agreement between the measured
and the numerically obtained loops.

3 2D Nonlinear Parabolic Problems with a scalar hysteresis model

3.1 A motivating physical problem and its mathematical model

In this part we deal with 2D nonlinear parabolic problems with memory effects
arising in the context of electromagnetic field calculations in one lamination of an
electrical machine. These field computations are important for the evaluation of the
electromagnetic loss in the magnetic circuit. A part of such a magnetic circuit is
shown in Fig.3.1.

Figure 3.1: A part of the magnetic
circuit, with corresponding flux lines;
T:tooth, Y:yoke

Fig.3.2-3.3 show the cross section of a tooth and a yoke respectively. The elec-
tromagnetic losses are determined from the magnetic field H̄ in a cross section S,
both of the tooth and the yoke, orthogonal to the direction of the time varying,
enforced flux φ(t).

The relevant Maxwell equations for the magnetic field H̄ , the electric field Ē, the
electric flux density D̄ and the magnetic induction B̄ are given by (1.43)-(1.45), while
the constitutive relation for the current density vector J̄ is given by (1.50). Again
neglecting the displacement current and the electric charge density, the magnetic
field H̄ is found to be related to the magnetic induction B̄ by the following DE:

−rot(rot(H̄)) = σ
∂B̄

∂t
in S, t > 0. (3.1)
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Integrating both sides over the section S, using Green’s formula, see (1.21), and
invoking the definition of the total flux, viz

φ(t) =
∫

S
B̄ · dS̄, t > 0, (3.2)

H̄ is seen to obey the following nonlocal, inhomogenous BC on ∂S:

∫

∂S
rotH̄ · dl̄ = −σdφ(t)

dt
, t > 0. (3.3)

The magnetic motoric force per unit interval of the space variable in the flux
direction (with unit-vector 1̄fl) may be assumed to be space independent along ∂S,
as the magnetic flux lines, shown in Fig.3.1, can be approximated to be uniform
along ∂S, see [11]. Thus, denoting the corresponding segment along a flux line by
Γ, the following inhomogeneous Dirichlet BC must be imposed:

∫

Γ
H̄ · 1̄fldγ = Cb(t), (3.4)

Here Cb(t), which varies in time, but which is space independent along ∂S, is not
known a priori, but must be determined as part of the problem.

Finally, the system (3.1)-(3.4) must be completed with initial data, viz

H̄ = 0,

{
η(α, β, t) = +1 when α+ β < 0
η(α, β, t) = −1 when α+ β > 0

, in S, at t = 0, (3.5)

corresponding to the demagnetized state of the material.
Actually, the value Cb(t) is the physical relevant quantity in the present field

problem. Indeed, the electromagnetic loss [joule] over a time interval (T1, T2) per
unit interval of the space variable in the flux direction is given by [5]:

E =
∫ T2

T1

Cb(t)
dφ

dt
dt. (3.6)

Assuming the material isotropic, H̄ may taken to be unidirectional, i.e. H̄ =
H · 1̄fl. Consequently, also B̄ is unidirectional. Therefore, a scalar hysteresis model
may be used to describe the BH-relation. We again will use the CPM and RPM
presented in the previous sections. Thus, we are left with a scalar parabolic problem
for H, with a nonlocal Neumann boundary condition on ∂S, as well as with a
Dirichlet side condition, in which the boundary value of H on ∂S is unknown too.

Alternatively, we can consider the parabolic problem where the function Cb(t),
entering (3.4), is given, while the flux φ(t), appearing in (3.3), must be sought as
part of the problem. We will consider the parabolic problem in both the tooth
and the yoke cross section, cf. Fig.3.2 and Fig.3.3, where we use a cartesian and a
cylindrical coordinate system, respectively.
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3.2 Combined magnetodynamic-hysteresis model

3.2.1 Parabolic problem in a tooth cross-section S

Case of CPM

Taking the cartesian coordinate system as in Fig.3.2, the problem (3.1)-(3.5) for the
magnetic field H̄ = H · 1̄fl, (1̄fl = 1̄z), in a cross section S of a tooth simplifies to
the following scalar parabolic problem for H(x, y; t):

1

σ

(
∂2H

∂x2
+
∂2H

∂y2

)
= µd(H(x, y, t),Hpast(x, y, t))

∂H

∂t
in S, t > 0, (3.7)

∫

∂S

∂H

∂n
dl = σ

dφ(t)

dt
, t > 0, (3.8)

H = Cb(t), on ∂S, t > 0, (3.9)

H = 0,

{
η(x, y, α, β, t) = +1 when α+ β < 0
η(x, y, α, β, t) = −1 when α+ β > 0

, ∀(x, y) ∈ S, at t = 0. (3.10)

Figure 3.2: Cross section of a tooth, orthogonal to the flux line

Case of RPM

Now the governing DE becomes

1

σ

(
∂2H

∂x2
+
∂2H

∂y2

)
= µrev

∂H

∂t
+ k1(H(x, y, t),Hpast(x, y, t))H

− k2(H(x, y, t),Hpast(x, y, t)) in S, t > 0, (3.11)

along with the BCs (3.8)-(3.9) and the IC (3.10).

In both cases, as said above, we have one of the two situations: either Cb(t) is
not given a priori, while φ(t) is given (enforced), or vice versa.



Finite element methods for nonlinear elliptic and parabolic problems 33

3.2.2 Parabolic problem in a yoke cross section S

Case of CPM

Taking the cylindrical coordinate system as in Fig.3.3, the problem (3.1)-(3.5) for
the magnetic field H̄ = H 1̄fl, (1̄fl = 1̄ϕ), in a cross section S of a yoke can now be
reduced to the following scalar parabolic problem for H(r, z; t):

1

σ

(
∂

∂r
(
1

r

∂

∂r
(rH)) +

∂2H

∂z2

)
= µd(H(r, z, t),Hpast(r, z, t))

∂H

∂t
,

in S, t > 0, (3.12)
∫

∂S
[
∂H

∂z
nz +

1

r

∂(rH)

∂r
nr]dl = σ

dφ(t)

dt
, t > 0, (3.13)

rH = Cb(t), on ∂S, t > 0, (3.14)

H = 0,

{
η(r, z, α, β, t) = +1 when α+ β < 0
η(r, z, α, β, t) = −1 when α+ β > 0

, ∀(r, z) ∈ S, at t = 0. (3.15)

Figure 3.3: Cross section of a yoke, orthogonal to the flux line

Case of RPM

Now the governing DE becomes

1

σ

(
∂

∂r
(
1

r

∂

∂r
(rH)) +

∂2H

∂z2

)
= µrev

∂H

∂t
+ k1(H(r, z, t),Hpast(r, z, t))H

− k2(H(r, z, t),Hpast(r, z, t)) in S, t > 0, (3.16)

where we retain the BCs (3.13)-(3.14) and the IC (3.15).

In both cases, a similar remark concerning Cb(t) and φ(t) applies as in Section
3.2.1.
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3.3 Variational formulation

3.3.1 Parabolic problem in a tooth cross-section S

Case of CPM

To derive a suitable variational form of this problem, we introduce the function
space

V =
{
v ∈ W 1

2 (S) | v|∂S is constant
}
. (3.17)

Here W 1
2 (S) is the usual first order Sobolev space on S and the condition

”v|∂S is constant ” must be understood in the sense of traces, as defined e.g. in [2].
Then, multiplying both sides of (3.7) with a test function v ∈ V , integrating

over S, applying Green’s formula (1.21) and invoking the boundary condition (3.8),
the problem (3.7)-(3.10) is found to be (formally) equivalent with the following
variational problem:

Find H(x, y; t), obeying H ∈ V and ∂H
∂t
∈ L2(S) for every t > 0, such that

∫

S
µd
∂H

∂t
v dxdy +

1

σ

∫

S
gradH · gradv dxdy =

dφ(t)

dt
v|∂S,∀v ∈ V, t > 0 (3.18)

along with the IC (3.10)

Notice that by the requirement H ∈ V for every t > 0, (3.9) is automatically taken
into account.

Case of RPM

The variational form of the problem (3.11), (3.8)-(3.10), is obtained in a similar way:

Find H(x, y; t), obeying H ∈ V and ∂H
∂t
∈ L2(S) for every t > 0, such that

∫

S
µrev

∂H

∂t
v dxdy +

1

σ

∫

S
gradH · gradv dxdy +

∫

S
k1(x, y, t)Hv dxdy

=
∫

S
k2(x, y, t)v dxdy +

dφ(t)

dt
v|∂S,∀v ∈ V, t > 0, (3.19)

along with the IC (3.10).

3.3.2 Parabolic problem in a yoke cross section S

Case of CPM

Introducing the new unknown Ĥ(r, z; t) = rH(r, z; t) and retaining the function
space V , (3.17), the problem (3.12)-(3.15) may be reduced to the (formally) equiv-
alent variational problem:
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Find Ĥ(r, z; t), obeying Ĥ ∈ V and ∂Ĥ
∂t
∈ L2(S) for every t > 0, such that

∫

S
µd

1

r

∂Ĥ

∂t
v drdz +

1

σ

∫

S

1

r
gradĤgradv drdz =

dφ(t)

dt
v|∂S,∀v ∈ V, t > 0, (3.20)

along with the IC (3.15), rewritten for Ĥ.

Case of RPM

The problem (3.16), (3.13)-(3.15), now leads to the following variational problem:

Find Ĥ(r, z; t), obeying Ĥ ∈ V and ∂Ĥ
∂t
∈ L2(S) for every t > 0, such that

∫

S
µrev

1

r

∂Ĥ

∂t
v drdz +

1

σ

∫

S

1

r
gradĤ · gradv drdz +

∫

S

1

r
k1(r, z, t)Ĥv drdz

=
∫

S
k2(r, z, t)v drdz +

dφ(t)

dt
v|∂S, for every v ∈ V, t > 0, (3.21)

along with the IC (3.15), rewritten for Ĥ.

Notice that, by the choice of the new unknown Ĥ, we arrive at a variational equa-
tion similar to (3.18) and (3.19), respectively, apart from a weight factor 1

r
, (which

is of course smooth in S), entering the integrands. This is particularly attractive
from computational point of view, viz when constructing the mass and stiffness ma-
trices in the FEM-FDM, outlined in the next section, starting from the variational
problems.

3.4 Nonstandard FE-approximation in the space variable

We extend the method described in Section 1.1, to take into account the nonstandard
BCs.

3.4.1 Field problem in a tooth cross section S

For the triangulation τh (h mesh parameter), shown in Fig.3.4, we consider a usual
quadratic finite element mesh (with nT the number of triangles).

By ϕj(x, y), (j = 1, ..., J), we denote the standard cardinal basis functions, as-
sociated to the nodes (xj, yj), (j = 1, ..., J), J being the total number of nodes.
Here, the nodes, being either vertices of the triangles or midpoints of their sides, are
numbered such that the first I of them, I < J , belong to the open domain S. We
then have, with C0(S̄) being the space of continuous functions on S̄ and with P2(T )
being the space of polynomials of degree ≤ 2 on the triangle T ,

Xh ≡
{
v ∈ C0(S̄); v|T ∈ P2(T ), ∀T ∈ τh

}
= span(ϕj)

J
j=1 (3.22)

and
X0h ≡ {v ∈ Xh; v = 0 on ∂S} = span(ϕj)

I
j=1 (3.23)
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Figure 3.4: The triangulation τh of S

Next we introduce the special function

ψI+1(x, y) =
J∑

j=I+1

ϕj(x, y) ∈ Xh (3.24)

On a side ζ of T ∈ τh, for which ζ ⊂ ∂S, we have ψI+1|ζ ≡ 1, as clearly ψI+1|ζ is a
quadratic function of one variable (either x or y) showing the value 1 in the 3 nodes
on ζ. Consequently,

ψI+1 ≡ 1 on ∂S (3.25)

Moreover, ψI+1 is readily understood to vanish throughout S apart from the triangles
T ∈ τh adjacent to ∂S.

Writing, for convenience, ψj = ϕj, 1 ≤ j ≤ I, we finally define

Vh = span(ψj)
I+1
j=1 = X0h

⊕
span(ψI+1). (3.26)

This space Vh is suitable for a conforming FEM as

Vh ⊂ V. (3.27)

Indeed, for v ∈ Vh one evidently has v ∈ Xh ⊂ W 1
2 (S), while also v is constant on

∂S, due to (3.25). Moreover, the particular choice of ψI+1, (3.24), will turn out to
be attractive from computational point of view.

From here on we must distinguish between the cases CPM and RPM.

Case of CPM

The finite element approximation Hh(x, y; t) ∈ Vh of H(x, y; t) is defined by a
variational problem similar to (3.18), (3.10), now with V replaced by Vh. Here, we
simplify the space dependency of µd, by passing to µ̂d ' µd,

µ̂d(x, y, t,Hh(x, y; t),Hh,past(x, y; t))

= µd(x
c
T , y

c
T , t,Hh(x

c
T , y

c
T , t),Hh,past(x

c
T , y

c
T , t)), in T, ∀T ∈ τh, t > 0 (3.28)

where (xcT , y
c
T ) is the center of gravity of T . This will allow us to take properly into

account the non-linear and hysteresis effects, resulting in the complicated form of
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the differential permeability µd. µd now depends upon the finite element approxi-
mation Hh(x, y; t) and Hh,past(x, y; t) of the magnetic field H(x, y; t) and its history
Hpast(x, y; t) respectively.

Explicitly, decomposing Hh as

Hh(x, y; t) =
I+1∑

j=1

cj(t)ψj(x, y), t > 0, (3.29)

we have cj(t) = Hh(xj, yj; t), 1 ≤ j ≤ I, and cI+1(t) = Hh(x, y; t)|∂S, due to the
proper choice of the basis functions of Vh, (3.26). A similar result holds for the finite
element approximation Hh,past(x, y; t) of Hpast(x, y; t), the expansion coefficients now
being denoted as cpast,1(t), cpast,2(t),..., cpast,I+1(t).
Thus, we are led to a system of first order ODEs for the coefficient functions cj(t),
1 ≤ j ≤ I + 1, viz,

[M(t)]
d[C]

dt
+ [K][C] = [F ], t > 0, (3.30)

along with the I.C.

[C(0)] = 0,

{
η(xcT , y

c
T , α, β, t = 0) = +1 when α + β < 0

η(xcT , y
c
T , α, β, t = 0) = −1 when α + β > 0

∀T ∈ τh, (3.31)

where
[C(t)] = [c1(t), c2(t), ..., cI+1(t)]

T ,

[Cpast(t)] = [cpast,1(t), cpast,2(t), ..., cpast,I+1(t)]
T (3.32)

and
[M(t)] = [Ml,m]1≤l,m≤I+1, [K] = [Kl,m]1≤l,m≤I+1 (3.33)

with

Kl,m =
1

σ

∫

S
gradψl · gradψm dxdy, (3.34)

Ml,m =
∫

S
µ̂d(x, y, t,Hh(x, y; t),Hh,past(x, y; t))ψlψm dxdy, (3.35)

and moreover

[F (t)] =
dφ

dt
[0, 0, ..., 0, 1]T . (3.36)

In the last equation we used (3.25) and the fact that ψ1, ψ2, ..., ψI all vanish on ∂S.
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Case of RPM

Proceeding in a similar way, the IVP for Hh(x, y, t) ' H(x, y, t) shows the same
form as (3.30)-(3.31), however with the mass, stiffness and force matrix now being
defined by

[M(t)] = [Mlm]1≤l,m≤I+1, Mlm =
∫

S
µ̂revψlψmdxdy, (3.37)

[K(t)] = [Klm]1≤l,m≤I+1, Klm =
1

σ

∫

S
gradψlgradψmdxdy

+
∫

S
k̂1(x, y, t)ψlψmdxdy, (3.38)

[F (t)] = [Fl]1≤l≤I+1, Fl =
∫

S
k̂2(x, y, t)ψldxdy +

dφ

dt
δl(I+1). (3.39)

Here, for g=µrev, g=k1 and g=k2, we put

ĝ(x, t) = g(xcT , y
c
T , t), ∀(x, y) ∈ T, ∀T ∈ τh. (3.40)

For brevity we denoted

k̂1(x, y, t) = k̂1(Hh(x, y, t),Hh,past(x, y, t)) (3.41)

and similarly for k̂2(x, t).

3.4.2 Field problem in a yoke cross section S

As mentioned above, by introducing the new unknown Ĥ(r, z, t) = rH(r, z, t), the
magnetic field problem in a cross section S = {(r, z)|0 < r1 < r < r2, z1 < z < z2} of
a yoke, has been given a variational formulation similar to the problem (3.18),(3.10)
for H(x, y; t) in the cross section of a tooth. Formally, the only modification required
is due to the smooth weight factor 1

r
in the integrand.

In particular, for the IVPs, when allowing for non-linear effects or hysteresis
effects, it must be noted that in the CPM case, the evaluation of µ̂d rest upon
Hh and its history instead of Ĥh and its history. Similarly, in the RPM case, the
evaluation of µ̂rev, k̂1, k̂2 rest upon Hh and its history.

3.5 A modified θ-family of finite difference discretisations in time and an

iterative procedure

We only discuss the time discretisation of the IVPs (3.30), (3.31), (3.34)-(3.36) and
(3.30), (3.31), (3.37)-(3.39), resulting from the FEM for the field problems in a tooth
cross section. The IVPs resulting from the FEM for the field problem in a yoke cross
section may be discretised in a similar way. We recall that the underlying variational
formulations took a similar form as in the case of a tooth cross section, when passing
to a suitably chosen new unknown.

Case of CPM
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To take properly into account the jump discontinuities of µd with respect to
time, we outline a modified θ-family of FDMs in time for the problem (3.30)-(3.31),
0 ≤ θ ≤ 1 .
Let ∆t be a time step and tl = l∆t, (l = 0, 1, 2, ...), be the corresponding equidistant
time points.
We define an approximation H∗l (x, y) of Hh(x, y, tl), explicitly

H∗l (x, y) ≡
I+1∑

i=1

c
(l)
i ψi(x, y) '

I+1∑

i=1

ci(tl)ψi(x, y) ≡ Hh(x, y, tl), (3.42)

by means of a recurrent set of nonlinear systems for [C (l)]=[c
(l)
1 , c

(l)
2 , ..., c

(l)
I+1]

T , similar
to (2.51)-(2.52).

Now, the stiffness matrix K take the form (3.34), while the mass matrix is ap-
proximated by

M̃ij =
∫

S
µ̃d(x, y, t,Hh(x, y, t),Hh,past(x, y, t))ψiψjdxdy, (3.43)

and the appearing column matrix [H
(l+1)
ext ] is defined in a similar way as (2.47)-(2.48),

explicitly

H
(l+1)
ext,r =





gT,tl : if there is a jump of µ̃d(x, t) in one of
the triangles T sharing the node r in
[tl, tl+1],

1
2
[c(l+1)
r + c(l)

r ] : in the other cases.

(3.44)

Case of RPM

Let again 0 ≤ θ ≤ 1 be a parameter. We now introduce an approximation H∗l (x, y)
of Hh(x, y, tl), viz

H∗l (x, y) =
I+1∑

l=1

c
(l)
i ψi(x, y), (3.45)

by means of the following recurrent set of algebraic systems for [C (l)]=[c
(l)
1 , ..., c

(l)
I+1]

T ,
l = 0, 1, 2, ...,

(
[M̃ (l+1)]

∆t
+ θ[K̃(l+1)]

)
[C(l+1)] =

(
[M̃ (l+1)]

∆t
− (1 − θ)[K̃(l)]

)
[C(l)]

+ θ[F̃ (l+1)] + (1− θ)[F̃ (l)], (3.46)

starting from
[C(0)] = 0. (3.47)

Here, the approximated mass matrix [M̃ (l)] ' [M(tl)], stiffness matrix [K̃(l)] '
[K(tl)] and force matrix [F̃ (l)] ' [F (tl)] are defined by

M̃
(l)
ij =

∫

S
µ̃(l)
revψiψjdxdy, (3.48)
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K̃
(l)
ij =

1

σ

∫

S
gradψi · gradψjdxdy +

∫

S
k̃

(l)
1 (x, y)ψiψjdxdy, (3.49)

F̃
(l)
j =

∫

S
k̃

(l)
2 (x, y)ψjdxdy +

dφ

dt
δj(I+1), (3.50)

with
µ̃(l)
rev = (1− θ)µ̂rev(H∗l−1(x, y)) + θµ̂rev(H

∗
l (x, y)). (3.51)

Moreover k̃
(l)
1 (x, y), appearing in (3.49), is the approximation of k̂1(x, y, tl), (3.41),

which is found when we use H∗p (x, y), 1 ≤ p ≤ l, to describe the dependency on the

magnetic field and its history up to t = tl; k̃
(l)
2 (x, y) is obtained in a similar way.

As the mass, stiffness and force matrices, entering (3.46), all depend on the
unknown, as just mentioned, we again set up a Newton-Raphson iterative procedure
to solve the nonlinear system (3.46) at every time point tl.

3.6 Computational aspects

In practice, the construction of the mass matrices M and the stiffness matrices
K, entering the IVPs that results from the FEM, only requires an adaption of a
standard technique for BVPs with a classical Neumann condition throughout ∂S,
see [2] and [3].

This attractive feature follows from the proper choice of the basis function ψI+1,
(3.24). Indeed, return to the basis (ϕj)

J
j=1 of Xh, (3.22), and denote

M
(cl)
l,m =

∫

S
ĝϕlϕmdxdy, 1 ≤ l,m ≤ J (3.52)

where

ĝ =

{
µ̂d in the CPM-case
µ̂rev in the RPM-case

, (3.53)

Then, we have for the (symmetric) mass matrix M ,

Ml,m = M
(cl)
l,m for 1 ≤ l,m ≤ I, (3.54)

Ml,I+1 =
J∑

k=I+1

M
(cl)
l,k for 1 ≤ l ≤ I, (3.55)

and

MI+1,I+1 =
J∑

k=I+1

J∑

r=I+1

M
(cl)
r,k . (3.56)

Thus, the assembling of the global mass matrix from the local element mass
matrices, has to be modified as compared to the standard construction of [M (cl)],
see e.g. [3], as follows: in the Boolean selection matrices associated to the triangles
adjacent to ∂S, the nodes which belong to ∂S must all be treated as one single
node. The same remark applies to the stiffness matrix K. Similarly, in the case of
RPM, the actual force matrix may be constructed out of the classical force matrix
in a simple way.
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3.7 Numerical results

The effectiveness and the reliability of the variational approximation method for
the problem (3.1)-(3.5), as outlined in the previous sections, has been confirmed by
several numerical experiments, both for the yoke and the tooth. Thus, Example 1
illustrates the reliability of the method, by comparison with results from a common
1D model, while Example 2 shows that the approach is effective for the evaluation of
the physical quantity, we are looking for. In the numerical examples we have taken
a quadratic finite element mesh similar to the one of Fig. 3.4 (with 348 triangular
elements), while ∆t = 1

400f
, (f being introduced below). Again we have taken θ = 0.5

in Section 3.5.

Example 1: Recovery of the electromagnetic loss in a tooth, calculated
from the 1D model.

We consider a linear model, with µd = 2000µ0 [H/m], µ0 = 4π10−7 and σ =
30−1108 [S/m], for a tooth with cross section as shown in Fig.3.5, for the cases
2d = 0.35 mm, 2d = 0.50 mm and 2d = 0.65 mm.

Figure 3.5: The cross section S of the tooth with width 2d and length L

The enforced flux is:

φ = 2dLBavsin(2πft), (3.57)

where Bav = 1 T and f = 50 Hz.

In Fig.3.6, the electromagnetic loss E, defined by (3.6), with T2 − T1 = 1
f
, is

plotted versus ∆ = L
2d

. For increasing ∆ (i.e. for increasing length relative to the
width) the computed values of E tend to these obtained by the 1D model, as it
should.

Example 2: Evaluation of the electromagnetic loss in a yoke (with
increasing curvature)

According to (3.6) the electromagnetic loss over one time period is given by:

E =
∮ +

Cb(φ)dφ (3.58)
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Figure 3.6: The electromagnetic loss versus ∆ = L
2d

We now consider the axi-symmetric model, with hysteresis effects, of the magnetic
field in a cross section of a yoke, shown in Fig.3.7, with 2d = 0.5 mm and r2− r1 =
1 cm. We retain σ = 30−1108 [S/m]. µd is derived from the Preisach model, directly
using the experimentally obtained distribution function P (α, β), as described in [12]
(in contrast to [13], where an approximating analytical expression for P (α, β) is
constructed, based upon data fitting). Furthermore we retain f = 50 Hz.

Figure 3.7: The cross section S of the yoke
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Figure 3.8: (Cb, φ)-loops

r1(m) E (J) Ev (J)
0.0025 0.00014878 1.5095
0.0225 0.00055418 1.5334
0.0425 0.00096351 1.5435
0.0625 0.00135212 1.5243
0.0825 0.00175755 1.5285

Table 1: Electromagnetic loss E and energy loss density Ev

In Fig.3.8, Cb (i.e. the constant value of Ĥ on ∂S) is plotted versus the en-
forced flux for different values of r1, viz r1 = 0.0025; r1 = 0.0225; r1 = 0.0425; r1 =
0.0625; r1 = 0.0825. The surface enclosed by the respective (Cb, φ)-loops is a mea-
sure of the electromagnetic loss E, (3.58), shown in Table 1. For physical reasons it
can be expected that for increasing r1 (with retaining r2 = r1 + 1) the influence of
this radius (curvature of the yoke) on the energy loss density becomes neglectible.
This is confirmed by our numerical experiment, summarized in the Ev(J)-column of
Table 1.

4 A 1D nonlinear Parabolic Problem - use of a vector hysteresis

model

4.1 A motivating physical problem and its mathematical model

The magnetic behaviour of ferromagnetic laminations can be described in terms
of the macroscopic fields, taking into account the interacting hysteresis and eddy
current phenomena.
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We consider a single lamination of length l, width w and thickness 2d, see Fig.4.1.
Throughout the sheet, which is assumed isotropic, the time dependent total flux
vector φ̄(t) flows parallel to the (x,y)-plane. Thus the magnetic field and the mag-
netic induction take the form H̄=Hx1̄x+Hy 1̄y and B̄=Bx1̄x+By 1̄y, respectively. As
d << w and d << l, eliminating the edge effects, we may assume Hx, Hy and Bx,
By to vary in the z-direction only.

Next, we recall the relation J̄ = σĒ, (1.50), between the electric field Ē and the
current density J̄ (both parallel to the (x,y)-plane) and we eliminate these vectors
from the relevant Maxwell equations (1.43)-(1.45). We arrive at the governing DEs
for the magnetic field H̄(z, t), 0 ≤ z ≤ d, t ≥ 0:

1

σ

∂2Hx

∂z2
=
∂Bx

∂t
, 0 < z < d, t > 0, (4.1)

1

σ

∂2Hy

∂z2
=
∂By

∂t
, 0 < z < d, t > 0, (4.2)

along with the BCs

∂Hx

∂z
(z = 0, t) =

∂Hy

∂z
(z = 0, t) = 0, t > 0, (4.3)

∂Hx

∂z
(z = d, t) =

σ

2

dφx
∂t

, t > 0, (4.4)

∂Hy

∂z
(z = d, t) =

σ

2

dφy
∂t

, t > 0 (4.5)

and the ICs
Hx(z, t = 0) = 0, Hy(z, t = 0) = 0, 0 < z < d. (4.6)

The BCs (4.3) reflect the symmetry in the lamination. The BCs (4.4) and (4.5)
follow when combining (4.1) and (4.2), respectively, with that symmetry and with
the definition of the flux, viz

φ̄(t) = φx(t)1̄x + φy(t)1̄y, (4.7)

where

φx(t) =
1

l

∫ d

−d

∫ l

0
Bxdydz, φy(t) =

1

w

∫ d

−d

∫ w

0
Bydxdz. (4.8)

The ICs (4.6) correspond to the demagnetized state of the material.
In (4.1)-(4.2), the magnetic induction B̄ is related to the magnetic field H̄ by

the vector Preisach hysteresis model [14].
The total electromagnetic losses per unit volume in the lamination during a time

interval [T1,T2] are calculated by summing up the hysteresis losses and the eddy
current losses,respectively being given by, see e.g. [5],

Ph =
1

2d

∫ d

−d
dz
∫ T2

T1

(Hx
∂Bx

∂t
+Hy

∂By

∂t
)dt, (4.9)

and

Pe =
1

2dσ

∫ d

−d
dz
∫ T2

T1



(
∂Hx

∂z

)2

+

(
∂Hy

∂z

)2

 dt. (4.10)
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Figure 4.1: Magneto-dynamic model of one lamination

4.2 The vector Preisach theory

4.2.1 Scalar Preisach Model

The BH-relation can be described by a scalar Preisach model if H̄ and B̄ are
unidirectional.

We recall that in the classical rate-independent Preisach model, as briefly dis-
cussed in Section 2.2, the material is assumed to consist of small dipoles, each being
characterized by a rectangular hysteresis loop as shown in Fig.2.2 (dotted line), [6].
The magnetisation of the dipole Md takes the value -1 or +1. The characteristic
parameters α and β are distributed statistically according to a Preisach function
Ps(α, β).

Denoting the magnitude of the induction vector B̄ and of the magnetic field
vector H̄ by B=|B̄| and by H=|H̄ | respectively, the BH-relation is given by, cf.
(2.13),

B(H,Hpast) =
1

2

∫ Hm

−Hm
dα
∫ α

−Hm
dβ ηs(α, β, t)Ps(α, β), (4.11)

Here, ηs(α, β, t) takes the time dependent value of the magnetisation Md of the
dipole with parameters α and β. Consequently, the induction B depends upon the
magnetic field H(t) and its history, denoted by Hpast(t).

4.2.2 Vector Preisach model

In the magnetodynamic model of one lamination, the magnetic field H̄ may rotate
in a plane parallel to the (x,y)-plane. Therefore, we must pass to a vector hysteresis
model.

In such a model, as described in [14], the vector H̄ is projected on an axis d̄,
which encloses an angle γ with the fixed x-axis, −π

2
< γ < π

2
, see Fig.4.2. The

corresponding value
Hγ = Hxcosγ +Hysinγ (4.12)

is taken to be the input of a scalar Preisach model on the axis d̄.
The BH-relation is now given by [15]

B̄(H̄, H̄past) =
1

π

∫ π
2

−π
2

dγBγ(Hγ ,Hpast,γ)1̄γ, (4.13)
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Figure 4.2: Vector Preisach model

with

Bγ(Hγ ,Hpast,γ) =
∫ Hm

−Hm
dα
∫ α

−Hm
dβ ηr(γ, α, β, t)Pr(α, β), (4.14)

where ηr(γ, α, β, t) is obtained from the component Hγ , and thus depends on H̄(t)
and H̄past(t). The Preisach function Pr used in this rotational model can be obtained
from the function Ps, entering (4.11). From (4.12)-(4.14) we infer that the differential
permeabilities µxx = ∂Bx/∂Hx, µxy = ∂Bx/∂Hy, ..., are given by

µxx =
1

π

∫ π
2

−π
2

µγ(Hγ,Hpast,γ) cos2 γdγ,

µxy =
1

π

∫ π
2

−π
2

µγ(Hγ,Hpast,γ) cos γ sin γdγ, etc. (4.15)

where, similar to (2.16),

µγ =
∂Bγ

∂Hγ

(4.16)

is the differential permeability in the scalar Preisach model that corresponds to the
axis d̄.

4.2.3 Relation between dB
dt

and H

In view of the magnetodynamic model (4.1)-(4.2), ∂Bx
∂t

and ∂By
∂t

must be related to
the magnetic field H̄(t). For the vector Preisach model one simply has

∂Bx

∂t
= µxx(H̄, H̄past)

∂Hx

∂t
+ µxy(H̄, H̄past)

∂Hy

∂t
, (4.17)

∂By

∂t
= µyx(H̄, H̄past)

∂Hx

∂t
+ µyy(H̄, H̄past)

∂Hy

∂t
. (4.18)
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4.3 Combined magnetodynamic model - hysteresis model

Combining (4.17) and (4.18) with (4.1) and (4.2) respectively, we get

1

σ

∂2Hx

∂z2
= µxx(H̄, H̄past)

∂Hx

∂t
+ µxy(H̄, H̄past)

∂Hy

∂t
, 0 < z < d, t > 0, (4.19)

1

σ

∂2Hy

∂z2
= µyx(H̄, H̄past)

∂Hx

∂t
+ µyy(H̄, H̄past)

∂Hy

∂t
, 0 < z < d, t > 0, (4.20)

where now µxx, µxy, µyx and µyy also depend on the space variable, through H̄(z, t)
and H̄past(z, t).

As stated above, to these respective governing DEs for H̄(z, t), we add the BCs
(4.3)-(4.5). Finally, the IC will be taken to be

Hx(z, t = 0) = 0, Hy(z, t = 0) = 0,

{
ηr(γ, z, α, β, t = 0) = +1 : α+ β < 0
ηr(γ, z, α, β, t = 0) = −1 : α+ β > 0

,−d < z < d,−π
2
< γ <

π

2
, (4.21)

reflecting the chosen initial (demagnetized) state of the material at t = 0. Due
to the complexity of the material model used, (4.19)-(4.20) constitutes a system of
highly nonlinear coupled PDEs with memory.

4.4 Variational formulation

Proceeding similarly as before, the BVP above leads to the following variational
problem:

Find the functions Hx(z, t), Hy(z, t), which for each t > 0 fulfill that

Hx(., t) and Hy(., t) ∈ W 1
2 (]0, d[), with ∂Hx(.,t)

∂t
and ∂Hy(.,t)

∂t
∈ L2(]0, d[),

and which moreover obey

1

σ

∫ d

0

∂Hx(z, t)

∂z

dw(z)

dz
dz +

∫ d

0
µxx

∂Hx(z, t)

∂t
w(z)dz

+
∫ d

0
µxy

∂Hy(z, t)

∂t
w(z)dz =

w(d)

2

dφx
dt

,∀w ∈ W 1
2 (]0, d[),∀t > 0 (4.22)

and
1

σ

∫ d

0

∂Hy(z, t)

∂z

dw(z)

dz
dz +

∫ d

0
µyx

∂Hx(z, t)

∂t
w(z)dz

+
∫ d

0
µyy

∂Hy(z, t)

∂t
w(z)dz =

w(d)

2

dφy
dt

,∀w ∈ W 1
2 (]0, d[),∀t > 0 (4.23)

along with the IC (4.21).

This variational problem may be shown to be formally equivalent with the original
BVP (4.19)-(4.20), (4.3)-(4.5) and (4.21).
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4.5 Fully discrete numerical scheme

The variational problem (4.22)-(4.23) is solved numerically. We combine (a) a fi-
nite element method using quadratic interpolation functions for the discretisation in
space, (b) a suitable Crank-Nicholson finite difference scheme for the time discretisa-
tion, (c) a numerical quadrature formula with equidistant nodes for the integration
over the angle γ in (4.13).

A major computational difficulty in the discretisation arises from the hysteresis
behaviour of the material, reflected in the dependency of the functions µxx, ..., µyy
on the vector H̄past(t) (as well as on H̄(t) itself).

4.5.1 Space discretisation by a FEM

We retain the partition 0 ≡ z1 < z2 < ...z2n < z2n+1 ≡ d of [0, d] with 2n+1
equidistant nodes, as in Section 2.5. We also consider the same approximation
space Wh, (2.26), and its canonical basis (2.27).
We consider the FE-approximation of (4.22)-(4.23) by determining the functions
Hx,h(z, t) and Hy,h(z, t) of the form,

Hx,h(z, t) =
2n+1∑

i=1

cx,i(t)ϕi(z), z ∈ [0, d], t ≥ 0, (4.24)

Hy,h(z, t) =
2n+1∑

i=1

cy,i(t)ϕi(z), z ∈ [0, d], t ≥ 0, (4.25)

which obeys the discrete version of (4.22)-(4.23), viz

1

σ

∫ d

0

∂Hx,h(z, t)

∂z

dw(z)

dz
dz +

∫ d

0
µ̂xx

∂Hx,h(z, t)

∂t
w(z)dz

+
∫ d

0
µ̂xy

∂Hy,h(z, t)

∂t
w(z)dz =

w(d)

2

dφx
dt

,∀w ∈ Wh,∀t > 0, (4.26)

and
1

σ

∫ d

0

∂Hy,h(z, t)

∂z
· dw(z)

dz
dz +

∫ d

0
µ̂yx

∂Hx,h(z, t)

∂t
w(z)dz

+
∫ d

0
µ̂yy

∂Hy,h(z, t)

∂t
w(z)dz =

w(d)

2

dφy
dt

,∀w ∈ Wh,∀t > 0. (4.27)

along with
Hx,h(z, t = 0) = 0, Hy,h(z, t = 0) = 0,

{
ηr(γ, z2s, α, β, t = 0) = +1 : α+ β < 0
ηr(γ, z2s, α, β, t = 0) = −1 : α+ β > 0

, 1 ≤ s ≤ n,−π
2
< γ <

π

2
. (4.28)

Here, we have approximated the space dependency of the differential permeability
µg by passing to µ̂g, introduced by

µ̂g(z, t) = µg(z2s, H̄h(z2s, t), H̄h,past(z2s, t)),
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z2s−1 ≤ z ≤ z2s+1, 1 ≤ s ≤ n, t > 0, (4.29)

with the index g referring to xx, xy, etc, and with H̄h and H̄past,h being defined by

H̄h = Hx,h1̄x +Hy,h1̄y ; etc. (4.30)

The resulting IVP for the nodal values Hx,h(zi, t) ≡ cx,i(t) and Hy,h(zi, t)≡ cy,i(t)
t > 0, reads:

Find the column matrices [Cx(t)] = [cx,1(t), ..., cx,2n+1(t)]
T and

[Cy(t)] = [cy,1(t), ..., cy,2n+1(t)]
T which obey

[
Mxx Mxy

Myx Myy

]
d

dt

[
Hx,h

Hy,h

]
+

[
K 0
0 K

] [
Hx,h

Hy,h

]
=

[
Fx
Fy

]
, (4.31)
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along with

[Cx(0)] = 0, [Cy(0)] = 0,

{
ηr(γ, z2s, α, β, t = 0) = +1 when α+ β < 0
ηr(γ, z2s, α, β, t = 0) = −1 when α+ β > 0

,

− π

2
< γ <

π

2
, 1 ≤ s ≤ n. (4.32)

Here, the block mass matrix entering (4.31) is defined by

(Mxx)ij =
∫ d

0
µ̂xxϕiϕjdz, i and j = 1, 2, ..., 2n+ 1; etc. (4.33)

The block [K] = [Kij]1≤i,j≤2n+1 in the total stiffness matrix that enters (4.31), is
defined by

(K)ij =
∫ d

0

1

σ

dϕi
dz

dϕj
dz

dz. (4.34)

Moreover the total force matrix [Fx(t) Fy(t)]
T is given by

[Fx] =

[
0 0 ...

1

2

dφx
dt

]T
, [Fy] =

[
0 0 ...

1

2

dφy
dt

]T
. (4.35)

4.5.2 Time discretisation by a Crank-Nicholson method

The nonlinear IVP (4.31)-(4.32) will again be solved numerically by a θ-family of
finite difference schemes, introduced in Section 1.2, combined with an iterative pro-
cedure.The procedure is a bit simpler than the one followed in Section 2.6. Indeed,
at a fixed time point t there are only a finite number of possible discontinuity points
in the integration interval [−π

2
, π

2
] in the expression of (4.15) of µxx, . . . , µyy , not af-

fecting their continuity as a function of time. Let ∆t be a time step and let tl = l·∆t,
l = 1, 2, 3, 4, . . . , be the corresponding equidistant time points. We want to define
an approximation H∗xl(z) of Hx,h(z, tl) and H∗yl(z) of Hy,h(z, tl), i.e.

H∗xl(z) =
2n+1∑

i=1

c
(l)
x,iϕi(z) '

2n+1∑

i=1

cx,i(tl)ϕi(z), (4.36)

H∗yl(z) =
2n+1∑

i=1

c
(l)
y,iϕi(z) '

2n+1∑

i=1

cy,i(tl)ϕi(z), (4.37)

by means of a recurrent set of nonlinear systems for

[C(l)
x ] = [c

(l)
x,1, c

(l)
x,2, ..., c

(l)
x,2n+1]

T , l = 1, 2, ...., (4.38)

and

[C(l)
y ] = [c

(l)
y,1, c

(l)
y,2, ..., c

(l)
y,2n+1]

T , l = 1, 2, ...., (4.39)

involving a parameter θ ∈ [0, 1] of the method.



Finite element methods for nonlinear elliptic and parabolic problems 51

From (4.31) we get

∫ tl+1

tl

[
Mxx Mxy

Myx Myy

]
d

dt

[
Cx
Cy

]
dt+

∫ tl+1

tl

[
K 0
0 K

] [
Cx
Cy

]
dt

=
∫ tl+1

tl

[
Fx
Fy

]
dt (4.40)

We approximate the first term as

∫ tl+1

tl

[
Mxx Mxy

Myx Myy

]
d

dt

[
Cx
Cy

]
dt

'
[
M̃ (l+1)

xx M̃ (l+1)
xy

M̃ (l+1)
yx M̃ (l+1)

yy

] ([
C(l+1)
x

C(l+1)
y

]
−
[
C(l)
x

C(l)
y

])
(4.41)

Here, M̃ (l)
xx , M̃ (l)

xy , ..., are defined by

(
M̃ (l)

xx

)
ij

=
∫ d

0
µ̃(l)
xxϕiϕjdz, etc., (4.42)

with
µ̃(l)
xx = θµ̂(l)

xx + (1− θ)µ̂(l−1)
xx , (4.43)

where µ̂(l)
xx is the approximation of µ̂xx(z, tl),(4.29), when we use H∗xp, (4.36), and

H∗yp, (4.37), 1 ≤ p ≤ l, to describe the dependency on the magnetic field and its
history up to t = tl.

We approximate the 2nd and 3rd term of (4.40) as follows

∫ tl+1

tl

[
K 0
0 K

] [
Cx
Cy

]
dt

'
[
K 0
0 K

](
θ

[
C(l+1)
x

C(l+1)
y

]
+ (1− θ)

[
C(l)
x

C(l)
y

])
∆t (4.44)

and ∫ tl+1

tl

[
Fx
Fy

]
dt '

(
θ

[
Fx(tl+1)
Fy(tl+1)

]
+ (1− θ)

[
Fx(tl)
Fy(tl)

])
∆t. (4.45)

Finally, combining (4.41), (4.44) and (4.45), we get from (4.40)

(
1

∆t

[
M̃ (l+1)

xx M̃ (l+1)
xy

M̃ (l+1)
yx M̃ (l+1)

yy

]
+ θ

[
K 0
0 K

]) [
C(l+1)
x

C(l+1)
y

]

=

(
1

∆t

[
M̃ (l+1)

xx M̃ (l+1)
xy

M̃ (l+1)
yx M̃ (l+1)

yy

]
− (1− θ)

[
K 0
0 K

]) [
C(l)
x

C(l)
y

]

+ θ

[
Fx(tl+1)
Fy(tl+1)

]
+ (1− θ)

[
Fx(tl)
Fy(tl)

]
, l = 0, 1, 2... (4.46)
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along with, see (4.32),

[H
(0)
x,h] = [H

(0)
y,h] = 0. (4.47)

As the matrices [M̃ (l+1)
xx ], [M̃ (l+1)

xy ], etc., depend on the unknown H∗xp(z) and H∗yp(z),
1 ≤ p ≤ l + 1, (4.36)-(4.37), we set up a Newton-Raphson iteration procedure to
solve the nonlinear system (4.46) at each time point t = tl.

4.5.3 Discretisation of the Preisach model

We choose a natural number N and we consider the partition of[−π/2, π/2] given
by γs = −π/2 + (s− 1)π/N , 1 ≤ s ≤ N .We then discretize the equation (4.13) by

B̄(H̄, H̄past) '
1

N

N∑

s=1

Bγs(Hγs,Hpast,γs)1̄γs (4.48)

where Hγs and Hpast,γs are the projections of H̄ and H̄past, respectively, on the axis
d̄s enclosing an angle γs with the x-axis.

Similarly as in (4.15) we now get

µxx '
1

N

N∑

s=1

µscos
2γs, etc. (4.49)

In practice, a choice of N exceeding 20 is found to give no relevant increase of
accuracy.

4.6 Numerical results

We present some numerical results obtained from the combined magnetodynamic
model described in Section 4.3. Again in the finite element discretisation we have
taken n=10 (quadratic) elements, while in the time discretisation, ∆t = T

400
, (T

being defined below). Again we have taken θ = 0.5 in Section 4.5.2. The magnetic
field strength at the outer boundary of the lamination is enforced:

{
Hx(z = d, t) = Hx,b = Hxmaxcos(

2πt
T

)
Hy(z = d, t) = Hy,b = Hymaxsin(2πt

T
)

(4.50)

Fig.4.3 depicts the average induction Bx,a (with respect to z) as a function of the
magnetic field strength Hx,b at the outer boundary of the lamination under alter-
nating conditions (dashed line) and rotational excitation (full line). In both cases
T=20ms.

A full validation, similarly as the one in Section 2.7, of the numerical model
developed above is not yet possible as experimental results are still lacking. How-
ever, several properties, both qualitative and quantitative, of the combined mag-
netodynamic model - hysteresis model, described above, indicate its reliability and
efficiency.
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Figure 4.3: Dynamic Bx,aHx,b- and By,aHy,b-
loops under alternating and rotating condi-
tions using the vector hysteresis model

Figure 4.4: Quasi-static and dynamic
Bx,aHx,b-, By,aHy,b-loops under elliptical ex-
citation
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Figure 4.5: Dynamic Bx,aHx,b- and By,aHy,b-
loops under alternating conditions using the
model of section 2 and the model of section 4

For instance, for the limit case of alternating excitation, there is a good agreement
with the results obtained from the model of Section 2.3, where a scalar Preisach
theory was used. This is shown in Fig.4.5.

At the other hand, Fig.4.4 confirms the enclosed area of the BH-loops to in-
crease with increasing frequency. This reflects the physically evident increase of the
electromagnetic losses due to the eddy current effects.

5 A 2D Elliptic Problem - use of a vector hysteresis model

5.1 A motivating physical problem and its mathematical model

We consider a single tooth region, see Fig.5.1, where the electrical conductivity σ
now is assumed to be zero. The relevant Maxwell equations for the magnetic field
H̄=Hx1̄x + Hy 1̄y and the magnetic induction B̄ = Bx1̄x + By1̄y, in the 2D domain
D now read, see (1.43), (1.45),

rotH̄ = 0, (5.1)

divB̄ = 0, (5.2)

where the relation between H̄ and B̄ is again defined by the material characteristics
obtained by the vector Preisach hysteresis model, described in Section 4.2.

The boundary ∂D is divided into six parts ∂D1, ∂D2, ..., ∂D6, see again Fig.5.1.
We considera total flux φs(t) through the parts ∂Ds, s=1,2,3, which are assumed to
be perfect magnetically conducting (i.e.

∫ a2
a1
H̄ · d̄l = 0 for each couple of points a1

and a2 on ∂Ds). Thus we are led to the following BCs

φs(t) =
∫

∂Ds
B̄ · n̄dl, t > 0, s = 1, 2, 3, (5.3)
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Figure 5.1: Model of one tooth region

and
H̄xn̄ = 0̄ on ∂Ds, t > 0, s = 1, 2, 3, (5.4)

where n̄ is the unit outward normal vector to the boundary part ∂Ds.
At the other hand a zero flux leakage through ∂D4, ∂D5 and ∂D6 results in the

additional BCs:

B̄ · n̄ = 0 on ∂Ds, t > 0, s = 4, 5, 6. (5.5)

The demagnetized state of the material at t = 0 is expressed by the IC, cf.(4.21),

H̄(x, y, t = 0) = 0,

{
ηr(γ, x, y, α, β, t = 0) = +1 when α+ β < 0
ηr(γ, x, y, α, β, t = 0) = −1 when α+ β > 0

,

− π

2
< γ <

π

2
,∀(x, y) ∈ D. (5.6)

5.2 A nonstandard variational formulation

First, we rewrite the Maxwell equations (5.1)-(5.2) in a suitable form. From (5.1)
a scalar potential ζ(x, y, t) may be introduced such that H̄ = −gradζ (of course, ζ
can only be determined apart from a constant, the choice of which will be specified
below). The Maxwell equation divB̄ = 0 can not be rewritten in a manageable
way in terms of the scalar potential ζ, entering H̄ = −gradζ, to take properly into
account the material characteristics of the vector Preisach model given by (4.13)-
(4.14).
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To overcome this difficulty, notice that the differential permeabilities µxx =
∂Bx/∂Hx, µxy = ∂Bx/∂Hy, µyx = ∂By/∂Hx and µyy = ∂By/∂Hy are uniquely
defined by the vector Preisach model. Hence, a suitable reformulation of the prob-
lem should incorporate the material characteristics by means of these permeabilities.
Therefore, we pass to the auxiliarly unknown u, defined as

u(x, y, t) =
∂ζ

∂t
. (5.7)

First, from the representation of H̄ and from the definition of the permeabilities, we
have

−∂Bx

∂t
= µxx

∂u

∂x
+ µxy

∂u

∂y
, (5.8)

−∂By

∂t
= µyx

∂u

∂x
+ µyy

∂u

∂y
. (5.9)

Consequently, (5.2) leads to the elliptic DE for the auxiliarly function u(x, y, t),
(5.7),

∂

∂x

(
µxx

∂u

∂x
+ µxy

∂u

∂y

)
+

∂

∂y

(
µyx

∂u

∂x
+ µyy

∂u

∂y

)
= 0, in S, t > 0(param.). (5.10)

in which the time variable t > 0 is only a parameter appearing in the coefficient
functions µxx,...,µyy. The BCs (5.3), (5.4) and (5.5) respectively imply

dφs(t)

dt
=
∫

∂Ds

dB̄

dt
· n̄ dl, t > 0, s = 1, 2, 3 (5.11)

ζ = Cs(t) (constant) on ∂Ds, t > 0, s = 1, 2, 3 (5.12)

and

dB̄

dt
· n̄ = 0 on ∂Ds, t > 0, s = 4, 5, 6. (5.13)

Here, to remove the degree of freedom involved in the scalar potential ζ, we choose

ζ = 0 on ∂D3, t > 0. (5.14)

We must add the IC resulting from (5.6) and (5.14), viz

ζ(x, y, t = 0) = 0,

{
ηr(γ, x, y, α, β, t = 0) = +1 when α+ β < 0
ηr(γ, x, y, α, β, t = 0) = −1 when α+ β > 0

,

− π

2
< γ <

π

2
, ∀(x, y) ∈ D. (5.15)

Source conditions
Two types of source conditions occur.
(a) With φ-type excitation, the total flux φs(t) through ∂Ds, s=1,2,3 is enforced. On
account of (5.2), (5.3) and (5.5) we must require that

∑3
s=1 φs(t) = 0, t > 0. Then,
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the uniform but time depending value of the scalar potential ζ on ∂Ds, denoted
by Cs(t), s = 1 or 2, is not given a priori, but must be determined as part of the
problem.

(b) With so called ζ-excitation, the uniform value ζ(t) = Cs(t), t > 0, at ∂Ds, s = 1
and 2, is enforced, (recall (5.14)). From the BVP (5.10), (5.12)-(5.13), (5.15), we
may obtain the magnetic induction B̄. The total flux φs(t), s = 1, 2 or 3, then
follows from (5.11) when we take into account that φs(t = 0) = 0 due to(5.15).

To derive a suitable variational form of this problem, we introduce the function
space

V = {v ∈ W 1
2 (D); v|∂Ds is a constant depending on s, s = 1, 2, 3}. (5.16)

Here, W 1
2 (D) is the usual first order Sobolev space on D and the condition ” v|∂Ds

is constant” must be understood in the sense of traces, as defined e.g. in [2]. Mul-
tiplying both sides of (5.10) with a test function v(x, y) ∈ V , integrating over D,
applying Green’s formula (1.21) and invoking the BC (5.11), the problem (5.10)-
(5.15) is found to be (formally) equivalent with the following variational problem:

Find a function ζ(x, y, t), with u(x, y; t) = ∂ζ
∂t

, that shows the property

ζ ∈ V and ∂ζ
∂t
∈ L2(D) for every t > 0, and obeys

∫

D

[
(µxx

∂u

∂x
+ µxy

∂u

∂y
)
∂v

∂x
+ (µyx

∂u

∂x
+ µyy

∂u

∂y
)
∂v

∂y

]
dxdy =

3∑

s=1

dφs(t)

dt
v|∂Ds (5.17)

∀ v ∈ V, t > 0
along with the IC (5.15)

Notice that by the requirement ζ ∈ V , for every t > 0, (5.12) is automatically taken
into account.

5.3 A combined FE-FD-discretized vector Preisach model

5.3.1 Space discretisation by finite elements

For a usual triangulation τh of the domain D, (h mesh parameter), shown in Fig.5.2,
we consider a quadratic finite element mesh, as introduced in Section 1.1.

By ϕj(x, y), (j = 1, ..., J), we denote the standard cardinal basis functions, asso-
ciated to the nodes (xj, yj), (j = 1, ..., J), J being the total number of nodes. Here,
the nodes are numbered such that the first I of them, I < J , belong to the domain
D or to the boundaries ∂D4, ∂D5 and ∂D6. On the boundaries ∂D1, ∂D2 and ∂D3

we have J1, J2 and J3 nodes, respectively (J − I = J1 + J2 + J3). We introduce the
spacesXh and X0h similarly as in (3.22)-(3.23).
Next we introduce the special functions belonging to Xh:

ψI+1(x, y) =
I+J1∑

j=I+1

ϕj(x, y), (5.18)
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Figure 5.2: Triangulation τh for the domain D

ψI+2(x, y) =
I+J1+J2∑

j=I+J1+1

ϕj(x, y), (5.19)

ψI+3(x, y) =
J∑

j=I+J1+J2+1

ϕj(x, y), (5.20)

showing the property
ψI+s ≡ 1 on ∂Ds, s = 1, 2, 3. (5.21)

Moreover, ψI+s is readily understood to vanish throughout D apart from the trian-
gles T ∈ τh adjacent to ∂Ds.

Writing, for convenience, ψj = ϕj, 1 ≤ j ≤ I, we finally define the space Vh by:

Vh = span(ψj)
I+3
j=1 = X0h

⊕
span(ψI+s)

3
s=1. (5.22)

This space Vh is suitable for a conforming FEM as Vh ⊂ V . Indeed, for v ∈ Vh one
evidently has v ∈ Xh ⊂ W 1

2 (D), while moreover v is constant on ∂D1, ∂D2 and
∂D3, due to (5.21).

The finite element approximation ζh(x, y; t) ∈ Vh of ζ(x, y; t) is defined by a
variational problem similar to (5.17)-(5.15), now with V replaced by Vh. Here, we
approximate the space dependency of µkl, by passing to µ̂kl ' µkl, defined by

µ̂kl(x, y, t, ζh(x, y; t), ζh,past(x, y; t))

= µkl(x
c
T , y

c
T , t, ζh(x

c
T , y

c
T , t), ζh,past(x

c
T , y

c
T , t)),

∀(x, y) ∈ T, ∀T ∈ τh, t > 0, (5.23)
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where (xcT , y
c
T ) is the center of gravity of T . This allows us to take properly into

account the nonlinear and hysteresis effects, resulting in the complicated form of
the differential permeability µkl. Here, µkl now depends upon the finite element ap-
proximation Hh(x, y; t)=−gradζh and Hh,past(x, y; t) = −gradζh,past of the magnetic
field H(x, y; t) and its history Hpast(x, y; t), respectively.

Explicitly, recalling (5.14) and decomposing ϕh as

ζh(x, y; t) =
I+2∑

j=1

cj(t)ψj(x, y), t > 0, (5.24)

we have cj(t) = ζh(xj, yj; t), 1 ≤ j ≤ I, and moreover c(t) = ζh(x, y; t)|∂Ds, s = 1, 2,
due to the proper choice of the basis functions of Vh, (5.22).

Notice that in the case of φ-excitation (case (a) in Section 5.2), all coefficient
functions cj(t), 1 ≤ j ≤ I + 2, are unknown, while in the case of ζ-excitation (case
(b) in Section 5.2), the coefficient functions cI+1(t) and cI+2(t) are given.

These unknown coefficient functions will be derived from a system of first order
ODEs, resulting from the finite element discretisation of (5.17). More precisely,
take as test functions in (5.17) either v = ψi, 1 ≤ i ≤ I + 2 (case (a)), or v = ψi,
1 ≤ i ≤ I, (case (b)). Then, we are led to the following system of ODEs

[M(t, C(t), C (past)(t))]
d[C]

dt
= [F ], t > 0, (5.25)

along with the ICs, cf. (5.15),
[C(0)] = 0 (5.26)

and {
ηr(x, y, α, β, t = 0) = +1 when α+ β < 0
ηr(x, y, α, β, t = 0) = −1 when α+ β > 0

,∀(x, y) ∈ D. (5.27)

The second IC corresponds to the history of the material at t=0 (i.e. the demagne-
tized state of the material).

Here, the matrices involved read as follows.

case (a): φ-type excitation

[C] and [C(past)] are the column matrices,

[C(t)] = [c1(t), c2(t), ..., cI+2(t)]
T ,

[Cpast(t)] = [c1,past(t), c2,past(t), ..., cI+2,past(t)]
T , (5.28)

while [M ] is the mass matrix given by

[M(t, C(t), Cpast(t))] = [Ml,m]1≤l,m≤I+2, (5.29)

with
Ml,m =
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∫

D

(
µ̂xx

∂ψl
∂x

∂ψm
∂x

+ µ̂xy
∂ψl
∂x

∂ψm
∂y

+ µ̂yx
∂ψl
∂y

∂ψm
∂x

+ µ̂yy
∂ψl
∂y

∂ψm
∂y

)
dxdy (5.30)

Finally, the force matrix [F ], corresponding to the RHS of (5.17), is a column matrix
with(I + 2) elements, viz

[F (t)] =
dφ1

dt
[0, 0, ..., 0, 1, 0]T +

dφ2

dt
[0, 0, ..., 0, 0, 1]T , (5.31)

where we used (5.21) and the fact that ψ1, ψ2, ..., ψI all vanish on ∂D1 and ∂D2.

case (b): ζ-type excitation

[C], [Cpast] and [M ] take a similar form as in case (a), of course with the proper
dimensions: now in the system (5.25) I equations are left.
The force matrix now has the form

[F (t)] = [F1(t), F2(t), ..., FI(t)]
T (5.32)

with

Fi(t) = −Mi,I+1
d

dt
cI+1(t)−Mi,I+2

d

dt
cI+2(t), 1 ≤ i ≤ I. (5.33)

in which cI+1(t) ≡ ζI+1(t) and cI+2(t) ≡ ζI+2(t) are given. (5.33) results from
transferring to the RHS of (5.25) the terms containing the known functions dcI+1

dt

and dcI+2

dt
.

5.3.2 Time discretisation by finite differences

The IVP (5.25)-(5.27) is solved numerically by a suitable FDM, extending the clas-
sical technique introduced in Section 1.2. We may restrict ourselves to the case of
φ-excitation, (case (a)), the case of ζ-excitation being completely analogous. The
analysis proceeds similarly as in [12].

Let ∆t be a time step and let tk = k ·∆t, (k = 0, 1, 2, ...), be the corresponding
equidistant time points. Let θ ∈ [0, 1] be a parameter of the method. We define an

approximation C (k)=[c
(k)
1 , c

(k)
2 , ..., c

(k)
I+2]

T of C(tk)=[c1(tk), c2(tk), ..., cI+2(tk)]
T , (k =

1, 2, ...), by the following recurrent set of algebraic systems

[M̃ (k)]
[C(k)]− [C(k−1)]

∆t
= θ[F (tk)] + (1 − θ)[F (tk−1)], k = 1, 2, ... (5.34)

starting from, see (5.26),
[C(0)] = 0. (5.35)

Here, the matrix [M̃ (k)] is constructed out of the matrix [M ], (5.29)-(5.30), by a
time averaging technique for the differential permeabilities in the time interval [tk−1,
tk]. More precisely, µ̂xx is replaced by

µ̃(k)
xx = θµ̂xx(tk) + (1 − θ)µ̂xx(tk−1) (5.36)
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and similarly for µ̂xy, ..., µ̂yy .

By means of [C (k)] we construct an approximation ζ
(k)
h (x, y) of ζh(x, y, tk), (5.24),

viz

ζ
(k)
h (x, y) =

I+2∑

j=1

c
(k)
j ψj(x, y). (5.37)

As the matrix M̃ (k) depends on the unknown C (k), we set up an iterative Newton-
Raphson procedure to solve the nonlinear system (5.34) at every time point tk,
similarly as in (2.51). In practice we take θ = 0.5.

5.4 Numerical results

The effectiveness of the variational approximation method for the problem (5.10)-
(5.15), as outlined in the previous section, has been confirmed by several numerical
experiments, both for the case of φ-excitation and for the case of ζ-excitation. Here,
we consider a test problem with practical relevance, viz the evaluation of the local
field patterns in one tooth region of an asynchronuous machine, shown in Fig.5.1.
We used the triangulation shown in Fig.5.2. The time step used was again ∆t = 1

400f
,

(f being introduced below).
The numerical results obtained with the present model are compared with these

resulting from more common models based upon a single valued material character-
istic. More precisely, we will compare the numerical results for the time variation
of H̄ and B̄ in selected points of the tooth region D. As both the scalar potential
excitation and the flux excitation are periodic in time, we may use a complex Fourier
decomposition for the local vector fields H̄(x, y; t) and B̄(x, y; t), viz

H̄(x, y; t) ≡
+∞∑

k=−∞
Hk(x, y) · ej(kωt+αk), (5.38)

B̄(x, y; t) ≡
+∞∑

k=−∞
Bk(x, y) · ej(kωt+βk). (5.39)

Here, ω is 2π times the basic frequency, αk [resp. βk] and Hk [resp. Bk] are the
phase angle and the amplitude of the k-th harmonic of H̄ [resp. B̄].

For the magnetic material we used the Preisach function Pr which obeys

∫ H2

H1

dα
∫ α

H1

dβPr(α, β) = 13.10−6|H1 −H2|

+0.56(q(H1)− q(H2))(q(−H2)− q(−H1)),−Hm ≤ H1 ≤ H2 ≤ Hm (5.40)

with
q(x) = arctan(x/200). (5.41)

This corresponds to a physically relevant function Pr for an industrial available
material, intensively analyzed. We present numerical results for the 2 types of
excitation mentioned above.
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case 1: ζ-excitation

We enforce a simple time variation of the scalar potential at the boundary parts
∂D1 and ∂D2, viz

ζI+1(t) = ζmaxcos(2πft + γ1) (5.42)

and
ζI+2(t) = −ζmaxcos(2πft+ γ2) (5.43)

with ζmax = 120, f = 50Hz, γ1 = 25o and γ2 = 6o.
For this excitation we compute the field pattern in the domain D and we consider

point 2 in Fig.5.1. Fig.5.3 reveals the difference between the BxBy-loci obtained with
the vector Preisach model and the one obtained with the more common single valued
material characteristic.

Figure 5.3: BxBy-loci in point 2, case 1

Up to now, no measurement set up for rotating magnetic fields are available to the
authors to validate experimentally the numerical approach.
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case 2: φ-excitation

The enforced (realistic) flux patterns through ∂D1 and ∂D2 are

φj(t) = aj,1cos(2πft+ γj,1) + aj,15cos(30πft + γj,15) + aj,17cos(34πft + γj,17),

j = 1, 2, (5.44)

where the amplitudes and phase angles are given in Table 2 and where f = 50Hz.

Figure 5.4: BxHx- and ByHy-loops in point 1 and point 2, case 2

We consider the 2 points indicated in Fig.5.1, for which we expect a different type
of field pattern. The corresponding BxHx-loop and ByHy-loops are shown in Fig.5.4.
For point 1, the BxHx-loop is ommitted as, in correspondence with the alternating
character of the flux pattern, Bx ' Hx ' 0. Fig.5.5 shows the scaled spectra of the
amplitudes for the vectors B̄ and H̄ for point 1, according to (5.38)-(5.39).

Again the values obtained with the vector Preisach model deviates from those
obtained with the single valued material characteristics (the more when the scaling
factors are different, as indicated). Moreover, notice the symmetry for each pair
of positive and negative harmonics. This corresponds to alternating field vectors,
which is in agreement with a qualitative property for points such as point 1 in D.
This symmetry is lost in the case of point 2 in D, see Fig.5.6, corresponding to
rotational fields H̄ and B̄ in this point.

aj,1 aj,15 aj,17 γj,1 γj,15 γj,17

φ1 1.262 0.0178 0.0105 25. 109. -36.

φ2 1.268 0.0067 0.0050 5.9 -155 27.

Table 2: amplitudes (1,2 and 3th column in Tesla) and
angles (4,5 and 6th column in degrees) of the excitation
in case 2, see formulas (5.42) and (5.43)
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Figure 5.5: Spectrum of the amplitude of B̄ and H̄ in point 1, case 2

Figure 5.6: Spectrum of the amplitude of B̄ and H̄ in point 2, case 2
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6 Concluding Remarks

In this paper we dealt with several types of nonlinear elliptic and parabolic BVPs
with memory properties, both in 2D and 1D, in the former case with nonlocal BCs,
arising e.g. from the mathematical modelling of the electromagnetic fields in mag-
netic materials with hysteresis behaviour. We presented effective numerical meth-
ods, proceeding in 3 steps: (1) a suitable (weak) variational formulation of the BVPs
considered, (2) a nonstandard finite element method with quadratic elements w.r.t.
the space dependency and (3) a time discretisation method of the Crank-Nicholson
type, combined with Newton-Raphson iteration techniques. The major difficulty
concerns the hysteresis behaviour of the material, reflected in the coefficient func-
tion (magnetic permeability) of the PDEs. The material models used are either
scalar Preisach models (both rate-dependent and rate-independent) and a vector
(rate-independent) Preisach model.

In the case of the scalar Preisach models the numerically obtained BH-loops
and corresponding values of the electromagnetic losses agree with the experimental
results, obtained by measurements. Actually, the material behaviour is described
adequately by the material model. The calculations performed with the RPM are
considerably more CPU-time consuming than those for the CPM, viz about 30 times
more.

For the situations where the magnetic induction vector B̄ and the magnetic field
vector H̄ are no longer uni-directional, a vector hysteresis model must be used. Al-
though the vector Preisach theory has experimentally been found not to be adequate
in all cases, this material model is the mostly elaborated and mostly used one in the
literature. We have been able to incorporate it into the magnetic field calculations,
although in a more complex way than for the scalar Preisach models. The combi-
nation of more refined vector hysteresis models, not available yet in the literature,
with the magnetic field calculations will proceed along similar lines as in Sections
4-5.

The combined finite element - finite difference codes, which properly take into
account the complex material behaviour in the BVPs considered, have been devel-
opped by the authors themselves, as the existing packages turned out not to be
feasible, mainly due to that hysteresis behaviour.

Finally, we indicate some limitations of the paper and corresponding directions
for further research. First, as emphasized from the beginning, in this article we
restrict ourselves to BVPs in 1D and 2D, however showing memory properties (hys-
teresis) and, for the 2D-problem, showing also nonlocal BCs of the Neumann type.
These 2 features make the BVPs nonstandard. In principle, 3D problems could be
dealed with as well by the FEM-FDMs described, of course on the cost of higher
computational complexity. However, as far as hysteresis models of Preisach-type
are concerned, which must be coupled with the parabolic or elliptic problems, no
thorough experimentally validated models in 3D exist (The mathematically much
involved models developped by Mayergoyz, [14], for instance, are not really validated
by measurements).

Other, more specific limitations concern the 2D-problems in Section 3 and 5. In
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the underlying physical problems of Section 3 of electromagnetic field calculations
in one lamination of an electric machine, the enforced flux is taken to be orthogonal
to the cross section of both the yoke and the tooth, while in Section 5, the flux
lies in the plane of the cross section, however with neglecting eddy current effects
(i.e. J̄ = 0 in (1.43)). Without these physical assumptions the resulting BVPs
are considerably more difficult. Thus, for instance, in Section 5, a scalar potential
formulation would be no longer possible and, for the numerical approximation, the
use of edge elements would be more appropriate than the one of finite elements.
These extensions are topics for further research.
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