
Recursive constructions for large caps

Yves Edel Jürgen Bierbrauer

Abstract

We introduce several recursive constructions for caps in projective spaces.
These generalize the known constructions in an essential way and lead to new
large caps in many cases. Among our results we mention the construction
of {(q + 1)(q2 + 3)}−caps in PG(5, q), of {q4 + 2q2}-caps in PG(6, q) and of
q2(q2 + 1)2-caps in PG(9, q).

1 Introduction

A cap in PG(k − 1, q) is a set of points no three of which are collinear. If we
write the n points as columns of a matrix we obtain a (k, n)-matrix such that every
set of three columns is linearly independent, hence the generator matrix of a linear
orthogonal array of strength 3. This is a check matrix of a linear code with minimum
distance ≥ 4. We arrive at the following:

Theorem 1. The following are equivalent:

• A set of n points in PG(k − 1, q), which form a cap.

• A q-ary linear orthogonal array of length n, dimension k and strength 3.

• A q-ary linear code [n, n− k, 4]q.
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Denote by m2(k−1, q) the maximum cardinality of a cap in PG(k−1, q). In the
binary case this is a trivial problem. In fact, choosing all nonzero (k − 1)-tuples as
columns we obtain a binary (k−1, 2k−1−1)-matrix of strength 2, where the number
of columns is clearly maximal. The dual is a binary code [2k−1 − 1, 2k−1 − k, 3]2.
Addition of a parity-check bit yields [2k−1, 2k−1 − k, 4]2. We conclude

m2(k − 1, 2) = 2k−1.

We can assume q > 2 in the sequel. For small dimensions there is no problem.
Trivially m2(1, q) = 2. It is an easy exercise to show that the solutions of the
homogeneous equation Z2 = XY form a set of q +1 points (a conic) in PG(2, q) no
three of which are collinear. (q+1)-caps in PG(2, q) are known as ovals, (q+2)-caps
as hyperovals. If q is odd then hyperovals do not exist. If q is a power of 2, then
each oval may be embedded in a hyperoval. It follows

m2(2, q) =

q + 1 if q is odd

q + 2 if q is even.

In projective dimension 3 the situation is just as clear:

m2(3, q) = q2 + 1 if q > 2.

(q2 + 1)-caps in PG(3, q) are known as ovoids. Just as in dimension 2 they
may be constructed as quadrics. We remark that there is a family of ovoids in
PG(3, 22f+1), f ≥ 1, the Tits ovoids, which are not quadrics. They are closely
related to the Suzuki groups. The smallest member of this family was constructed
by Segre [8], the construction in general is due to Tits [9].

2 The known recursive constructions

Only two general recursive constructions for large caps appear to be known. First
of all there is Segre’s construction from [7], which is based on ovoids and yields the
following:

Theorem 2 (Segre). m2(l + 3, q) ≥ q2m2(l, q) + 1,

By induction the following explicit bound is obtained:

m2(3l, q) ≥ (q2l+2 − 1)/(q2 − 1),

as well as analogous bounds on m2(3l + 1, q) and m2(3l + 2, q).
For the state of the art concerning bounds on these numbers we refer to [4].

The second general recursive construction is due to Mukhopadhyay [5]:

Theorem 3 (Mukhopadhyay). Assume the following exist:

1. An n-cap in AG(k, q), and

2. an m-cap in PG(l, q).
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Then there is an mn-cap in PG(k + l, q).

Mukhopadhyay applies this Theorem in cases n = 1, 2, 3. In case k = 1 this
yields in particular the following doubling process:

Theorem 4 (doubling). m2(l + 1, q) ≥ 2 ·m2(l, q).

Case k = 2 yields

m2(l + 2, q) ≥
(q + 1) ·m2(l, q) if q is odd

(q + 2) ·m2(l, q) if q is even.

In case k = 3 a slight strengthening leads him to another proof of Segre’s Theo-
rem 2.

3 A coding-theoretic explanation of the recursive constructions

We start by giving coding-theoretic proofs for some of the recursive constructions
mentioned in Section 2. The following is known as the (u, u + v)-construction in
the coding-theoretic literature.

Lemma 1 ((u, u + v)-construction). Let Ci be codes [n, ki, di]q, i = 1, 2. Define
a code C of length 2n whose codewords are parametrized by pairs (u, v), where u ∈
C1, v ∈ C2. The codeword of C parametrized by (u, v) is (u|u + v). Then C is a code

[2n, k1 + k2, min(d2, 2d1)]

If C2 has parameters [n, n − k, 4] we can choose C1 to be the all-even code
[n, n − 1, 2] and obtain a code [2n, 2n − (k + 1), 4]. In geometrical language this is
the doubling theorem 4. In fact, it yields a little more: as q > 2 the all-even code
[n, n− 1, 2] contains a vector of weight n. This shows that the code C constructed
via Lemma 1 also has maximum weight 2n. Geometrically this means that there is
a hyperplane, which avoids our point set. We obtain a point set contained in the
affine geometry AG(k, q).

Theorem 5. If there is an n-cap in PG(l, q), then there is a 2n-cap in AG(l +1, q).

As an example we obtain a 20-cap in AG(4, 3). This is known as the affine
Pellegrino cap (see [6]). We can use Theorem 5 together with Theorem 3 and
obtain

Theorem 6. m2(k + l + 1, q) ≥ 2 ·m2(k, q) ·m2(l, q).

It is known that m2(5, 3) = 56. Application of Theorem 6 to the 56-cap in
PG(5, 3) (the Hill cap, see [3]) yields m2(l + 6, 3) ≥ 112 · m2(l, 3), in particular
m2(9, 3) ≥ 1120 and m2(11, 3) ≥ 6272.
Theorem 3 can be proved by the basic coding-theoretic method of concatenation,
which we use in the following form (see [2]):
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Definition 1 (Blokh-Zyablov concatenation). Let Ci be a linear Qi-ary code
[N, Ki, Di], i = 1, 2, . . . , s (the outer codes), where Qi = qhi. Let further E1 ⊂
· · · ⊂ Es be a chain of linear q-ary codes [n, ki, di] (the inner codes) such that
the codimensions satisfy ki − ki−1 = hi. Put h1 = k1. Choose Fq-isomorphisms
αi : FQi −→ Ui ⊆ Fnq , where Ui is a complement of Ei−1 in Ei. The words of the
concatenated code

Concat(C1, . . . , Cs; E1 ⊂ · · · ⊂ Es)

are in bijection with the s-tuples (u1, . . . , us), where ui ∈ Ci. The word of the con-
catenated code corresponding to (u1, u2, . . . , us) is α1(u1) + · · · + αs(us), where the
αi are defined coordinatewise.

Lemma 2. The concatenated code Concat(C1, . . . , Cs; E1 ⊂ · · · ⊂ Es) of Definition 1
is a linear q-ary code with parameters [nN,

∑s
i=1 hiKi, mini{diDi}].

Proof: The length is obvious. The mapping from the s-tuples of words of the
outer codes to the words of the concatenated code is clearly Fq-linear. By construc-
tion the kernel of the mapping is trivial. The statement concerning the dimension
follows. Consider a nonzero tuple (u1, u2, . . . , us), where ui ∈ Ci. Choose i max-
imal such that ui 6= 0. Then αi(ui) has weight ≥ diDi. The addition of vectors
αj(uj), j < i does not destroy this property. The reason is that the components of
αj(uj) are contained in the smaller code Ej , which is contained in Ei. Here we use
the fact that the Ei form a chain, and the choice of the Ui. �

Consider a chain E1 ⊂ E2 ⊂ E3 of q-ary codes with parameters

[n, n− (k + 1), 4] ⊂ [n, n− 1, 2] ⊂ [n, n, 1].

This chain will exist if and only if a code E1 with the given parameters exists, whose
dual contains a word of weight n. Geometrically this is equivalent to an n-cap in the
affine geometry AG(k, q). We have then h1 = n − (k + 1), h2 = k, h3 = 1. We use
codes C1 = [m, m, 1]Q1, C2 = [m, m−1, 2]qk and C3 = [m, m−(l+1), 4]q. Observe that
C1, C2 always exist, independent of the choice of m and l. Code C3 is equivalent to
an m-cap in PG(l, q). Concatenation yields a q-ary code with length nm, dimension
m[n− (k + 1)] + (m− 1)k + m− (l + 1) = mn− (k + l + 1) and minimum weight 4.
We have proved the following:

Theorem 7. Assume there exists a q-ary code [n, n − (k + 1), 4] whose dual has
maximum weight n, and a q-ary code [m, m− (l + 1), 4]. Then there exists a code

[nm, nm− (k + l + 1), 4]q .

This is precisely Theorem 3, stated in terms of coding theory. Case k = 1, n = 2
yields Theorem 4. The special case leading to a code [102, 96, 4]4 has been given by
L.Tolhuizen in his Ph.D. thesis [10].
As ovoids are not affine we cannot apply Theorem 3 to cover a gap of three in the
dimension. In particular we have not given a satisfactory explanation of Theorem 2
yet. It is clear that a more general construction must exist, which covers the case
when none of the two caps is contained in the affine geometry. This will be done in
the following section.
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4 New recursive constructions

Theorem 8. Assume the following exist:

1. An n-cap K1 ⊂ PG(k, q) and a hyperplane H of PG(k, q) such that |K1\H| =
w, and

2. an m-cap in PG(l, q).

Then there is an {wm + (n −w)}-cap in PG(k + l, q).

Proof: We use the language of linear orthogonal arrays. We say that a matrix has
strength t if any set of t of its columns is linearly independent. The assumptions
of the theorem guarantee the existence of the following q-ary matrices:

• A (k + 1, n)-matrix A of strength three, whose first row has w entries = 1 in
the first columns, whose remaining entries are 0, and

• an (l + 1, m)-matrix B of strength 3.

We have to construct a (k + l + 1, wm + n− w)-matrix of strength three.
Let a vary over the first w columns of A, b over the columns of B and α over the last
n − w columns of A. Denote by a′, α′ the k-tuples arising by omitting the leading
entry in column a, α, respectively. The columns of our matrix are defined as follows:

s(a, b) = (b, a′) and s(α) = (0, α′),

where a, b, α vary as described above. Observe that the coordinate segments have
lengths l + 1 and k, respectively. We have to show that any three of these columns
are linearly independent. It is clear that there is no 0-column and that no two of our
columns are scalar multiples of each other. Assume some three columns are linearly
dependent. We know that the coefficients of the dependency are nonzero. As A has
strength three, at least one of the columns must have type s(a, b). The first segment
of coordinates shows that at least two columns must have this type. Assume one of
the columns does have type s(α). The linear dependency looks as follows:

λ1(b1, a
′
1) + λ2(b2, a

′
2) + λ3(0, α

′) = 0.

As B has strength 3 we conclude b1 = b2, λ1 + λ2 = 0. It follows 0 = λ1a
′
1 + λ2a

′
2 +

λ3α
′ = λ1a1 +λ2a2 +λ3α, a contradiction. We conclude that all three columns must

have type s(a, b). The linear dependency looks as follows:
∑3
i=1 λi(bi, a

′
i) = 0. The

first coordinate segment shows b1 = b2 = b3 and
∑3
i=1 λi = 0. The second segment

now shows
∑3
i=1 λiai = 0, hence a1 = a2 = a3, contradiction. �

Theorem 8 is a common generalization of Theorem 2 and Theorem 3. In fact,
Theorem 2 is obtained as an application of Theorem 8 to ovoids. Theorem 3 is
obtained in the special case n = w. It is observed in [5] that Theorem 3, when applied
to two affine caps (case n = w, m = v) yields an affine cap. Our construction displays
this feature, too (the first row of the resulting matrix has nonzero entries). Moreover
our construction has another interesting property in this direction. Assume i rows of
A have all entries nonzero (equivalently: there are i hyperplanes in general position,
which avoid cap K1). Then the resulting matrix still has i− 1 rows with all entries
nonzero. We obtain the following:
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Corollary 1. Assume the following exist:

1. An n-cap in AG(k, q), which is avoided by i ≥ 2 hyperplanes in general posi-
tion, and

2. an m-cap in PG(l, q).

Then there is an mn-cap in AG(k + l, q), which is avoided by some i− 1 hyper-
planes in general position.

This applies in particular in case k = 2. As ovals and hyperovals certainly possess
triangles of exterior lines we have i = 3 (equivalently: a generator matrix of the
(hyper)oval can be found, all of whose entries are nonzero). Repeated application
of Corollary 1 yields the following:

Theorem 9. The following caps exist, for all dimensions l, k, m :

• an {m2(2, q) ·m2(l, q)}−cap in AG(l + 2, q),

• an {m2(2, q) ·m2(l, q) ·m2(k, q)}−cap in AG(l + k + 2, q), and

• an {m2(2, q) ·m2(l, q) ·m2(k, q) ·m2(m, q)}−cap in PG(l + k + m + 2, q).

Among the applications of Theorem 9 we mention a 102-cap in AG(5, 4) and a
156-cap in AG(5, 5), both of which are avoided by two hyperplanes.
What is a little unsatisfactory about Theorem 8 is that it does not use its ingredients
in a symmetrical fashion. We symmetrize the approach. Let the following be given:

• A (k + 1, n)-matrix A of strength three, whose first row has w entries = 1 in
the first columns, whose remaining entries are 0, and

• an (l + 1, m)-matrix B of strength 3, whose first row has v entries = 1 in the
first columns, whose remaining entries are 0.

Denote by a one of the w first columns of A, by α one of the n−w last columns.
Analogously denote by b one of the v first columns of B, by β one of the m − v
of its last columns. Further a′, α′, b′, β ′ are obtained by omitting the first entry
(0 or 1). With this terminology the columns used in the proof of Theorem 8 are
(1, b′, a′)t, (0, β ′, a′)t and (0, 0, α′)t. This exhibits the asymmetrical nature of the con-
struction. Let us consider instead the columns of the following types:

(1, b′, a′)t (type I) , (0, β ′, a′)t (type II) , (0, b′, α′)t (type III) .

Observe that the coordinate segments have lengths 1,l and k, respectively. Theo-
rem 8 shows that the columns of types I and II yield a matrix of strength 3. By
symmetry the same is true of the columns of types I and III. Let the matrix M
consist of all the columns of types I,II and III.
Our first aim is a recursive construction making more efficient use of ovoids. More
in general let us consider the case w = n− 1, v = m− 1 (equivalently: each of our
caps, K1 ⊂ PG(k, q) and K2 ⊂ PG(l, q) possesses a tangent hyperplane). We claim
that M has strength three. In order to simplify the proof we choose notation such
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that the first column of A is (1, 0, 0, . . . , 0), likewise for the first column of B. This
can be achieved by adding suitable multiples of the first row to the remaining rows.
We claim that column α′ is not a multiple of any column a′. This is certainly true
when a′ is the zero column. If a′ 6= 0 is a multiple of α′, then we obtain a multiple
of the first column as a linear combination of a and α, contradicting the fact that
A has strength three.
We check at first that M has strength ≥ 2. It suffices to prove that no column of type
II is a scalar multiple of a column of type III. Assume λ · (0, β ′, a′) = µ · (0, b′, α′).
The last coordinate segment shows that λ ·a′ = µ ·α′, a contradiction. It is now just
as easy to show that M has strength 3. Assume three columns are linearly depen-
dent. We know that the coefficients of the linear relation must be nonzero. We also
know that a column of type II and a column of type III must be involved. If the
third column has type I, then the first coordinate yields a contradiction. Because
of symmetry we can assume that two columns of type III and one of type II are
involved. The linear dependency looks as follows:

λ1(0, b
′
1, α

′) + λ2(0, b
′
2, α

′) + λ3(0, β
′, a′) = 0.

The last segment shows (λ1 + λ2)α
′ = −λ3a

′. By what we have shown above this
forces λ1+λ2 = 0. This together with the middle segment shows λ1b1+λ2b2+λ3β = 0,
a contradiction to the fact that B has strength 3. We have proved the following:

Theorem 10. Assume the following exist:

1. An n-cap K1 ⊂ PG(k, q) possessing a tangent hyperplane, and

2. an m-cap K2 ⊂ PG(l, q) possessing a tangent hyperplane.

Then there is an {nm− 1}-cap in PG(k + l, q).

This Theorem certainly applies when K1 and K2 both are ovoids. We obtain the
following:

Theorem 11. m2(6, q) ≥ q4 + 2q2.

In particular m2(6, 4) ≥ 288, m2(6, 5) ≥ 675. We can go a step further. Let
K be the cap constructed from ovoids K1 and K2 via Theorem 11. Let the second
coordinate correspond to another tangent hyperplane of K2. This yields a hyperplane
intersecting K in precisely q2 +1 points. An application of Theorem 8 with an ovoid
as second ingredient yields the following:

Theorem 12. m2(9, q) ≥ q2(q2 + 1)2.

5 A product construction

Next we describe a general and very formal product construction.

Definition 2. • Let F : PG(u − 1, q) ∪ {0} −→ P(Fvq) be a mapping. Write
F (x) for F (< x >). Denote by M(F ) the family of all vectors (x, y) ∈ Fu+v

q ,
where y ∈ F (x). Here x varies over a fixed family of representatives of the 1-
dimensional subspaces of Fuq and 0. We may also consider M(F ) as a matrix,
where the order of the columns is irrelevant.
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• Let F : PG(u− 1, q) ∪ {0} −→ P(Fvq) and G : PG(u − 1, q) ∪ {0} −→ P(Fv′q )

as above be given. Define (F ⊗G) : PG(u − 1, q) ∪ {0} −→ P(Fv+v′q ) by

(F ⊗G)(x) = {(y, y′) | y ∈ F (x), y′ ∈ G(x)}.

The same set of representatives x has to be used for F, G and F ⊗G.

Here is the promised general product construction:

Theorem 13. Let F : Fuq −→ Fvq and G : Fuq −→ Fv′q . If M(F ) and M(G) both
have strength 3 (equivalently: are caps in PG(u + v − 1, q) and PG(u + v′ − 1, q),
respectively), then M(F ⊗G) has strength 3 and hence represents a cap in PG(u +
v + v′ − 1, q).

The proof of Theorem 13 is trivial. We make use of the following description of
conic sections in PG(2, q) and elliptic quadrics in PG(3, q), which has been given in
[1]:

Proposition 1. Let q be a prime power. Consider Fq and its quadratic extension
Fq2. Fix an element a ∈ F∗q .

1. The set of columns (1, b)t, where b ∈ Fq2 varies over the elements satisfying
bq+1 = a, has strength 3 (equivalently: this describes an oval in the projective
plane of order q).

2. The columns e2 = (0 : 1 : 0 : 0)t and (1 : a ·uq+1 : u)t, where u varies over Fq2 ,
form an ovoid in PG(3, q).

We see that the ovoid given in Proposition 1 may be described in the language of
Definition 2 by a function F : PG(1, q) ∪ {0} −→ P(F2

q), where F (1, 0) = F (0, 1) =
{(0, 0)} and |F (x)| = q + 1 for all x = (1, α), 0 6= α ∈ Fq. Direct application of
Theorem 13 to two copies of this ovoid yields a cap in PG(5, q) of size 1 + 1 + (q −
1)(q + 1)2. We will refine this construction as follows:
Consider three types of points in PG(5, q) : type I consists of all (x, y, z), where
x = (1, α) as above and yq+1 = zq+1 = α. Type II consists of all 6-tuples (x′, 0, ζ),
where x′ = (1, 0) or x′ = (0, 1) and ζq+1 = 1. Type III consists of all columns
(x′, ρ, 0), with x′ as above and ρq+1 = α0. Here α0 ∈ Fq \ {0, 1} is fixed. This defines
a set of (q− 1)(q +1)2 +4(q +1) = (q +1)(q2 +3) points in PG(5, q). We claim that
they form a cap.
It follows from Theorem 13 that the points of type I form a cap. Proposition 1
shows that the same is true of the points of type II and of those of type III. It is also
clear that no two of our vectors are scalar multiples of each other. Assume there
is a nontrivial linear combination involving three of our columns. The middle set
of coordinates shows that at most one of them can have type II. Likewise at most
one can have type III. It follows that at least one point of type I has to be involved.
Assume two points of type I are involved. If the third point has type II, then the
first two coordinate sets yield a contradiction. If the third point has type III, then
the first and the last set of coordinates taken together yield a contradiction. We
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conclude that the only critical case is when one column of each type is involved.
The linear combination looks as follows:

λ1 · (x1, y1, z1) + λ2 · (a′, 0, ζ) + λ3 · (b′, ρ, 0) = 0.

Here x1 = (1, α) ∈ F2
q and yq+1

1 = zq+1
1 = α. The last coordinate section shows

λ1z1 = −λ2ζ, the middle section shows λ1y1 = −λ3ρ. Consider the first section. It
is impossible that a′ = b′. We have to consider two cases:
Assume a′ = (1, 0), b′ = (0, 1). Then λ2 = −λ1, λ3 = −λ1α. Together with the
equations above we get z1 = ζ, y1 = αρ. Raising to the (q + 1)th power we obtain
α = 1 and α = α2α0, hence α0 = 1, contradiction.
The second case is a′ = (0, 1), b′ = (1, 0). Then λ3 = −λ1, λ2 = −λ1α. We obtain
y1 = ρ, z1 = αζ. Raising to the (q +1)th power yields α = α0 and α = α2. We obtain
the contradiction α0 = α = 1. We have proved the following:

Theorem 14. There is a {(q + 1)(q2 + 3)}−cap in PG(5, q).

Moreover we have given an effective description of such a cap. In particular we
obtain m2(5, 5) ≥ 168.
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