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Abstract

This note provides a group theoretic characterisation of small line covers
of PG(3, p) and, more generally, small congruence covers of PG(2t+ 1, p). It
is shown that any group of square order s2 which admits a cover by at most
s + p− 1 subgroups of order s (where p is the smallest prime divisor of s) is
necessarily elementary abelian; hence any such cover is in fact geometric, that
is, a congruence cover of a suitable projective geometry. We also show that
the preceding bound is essentially best possible: There exists a congruence
cover with s + p+ 1 components in a suitable non-elementary abelian group
whenever s is a proper power of a prime.

1 Introduction

Packing finite projective spaces with disjoint subspaces has for many years been a
topic of considerable interest in Galois geometries. In particular, one studies partial
t-spreads, that is, collections of pairwise disjoint t-dimensional subspaces in a space
PG(d, q). In spite of considerable effort, the fundamental question of determining
the maximal size of a partial t-spread is still not settled in general; see Hirschfeld and
Thas [12] for background. In contrast, the dual problem of t-covers, that is, minimal
collections of t-dimensional subspaces covering PG(d, q) is much better understood.
The following result is due to Beutelspacher [3] (who determined the lower bound)
and Eisfeld [7] (who gave the structural characterisation for the case of equality).

Result 1.1. Let C be a t-cover of PG(d, q), and write d = a(t + 1) + b, where
0 ≤ b ≤ t. Then

|C| ≥ qb+1(q(a−1)(t+1) + . . . + q2(t+1) + qt+1 + 1) + 1,
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and a t-cover of this size always exists. Moreover, in the case of equality, there exists
a subspace U of dimension t− b− 1 such that:

• Each point not in U is in exactly one component of C.

• Each point of U is in exactly qb+1 + 1 components of C.

(Note that the subspace U is empty if b = t; thus C is a t-spread in this case.) �

The special cases that have generated most interest are those of maximal par-
tial spreads, that is, maximal collections of pairwise skew lines of a 3-dimensional
space PG(3, q), and, dually, minimal line covers, that is, minimal collections of lines
covering PG(3, q). We refer the reader to Hirschfeld [11] for background on maxi-
mal partial spreads. Small minimal covers have been studied in the recent work of
Blokhuis et. al. [5], and large minimal covers were considered by Bruen and Drudge
[6]. A proper maximal partial spread S (that is, one that is not simultaneously a
line cover and hence a spread, consisting of exactly q2 + 1 lines) necessarily has a
rather large deficiency d:

|S| ≤ q2 + 1− d,
where the precise value of the smallest possible d is still not known, in spite of much
effort. Certainly d ≥

√
2q by a result of Blokhuis and Metsch [4]; see Metsch and

Storme [17] for important recent progress. Again, the situation is quite different for
minimal line covers: They may have excess e (that is, cardinality |S| = q2 + 1 + e)
for arbitrarily small values of e, as the following result of [5] shows.

Result 1.2. In PG(3, q), there exist minimal line covers with excess e for all e with
0 ≤ e ≤ q. �

By interpreting a partial t-spread in PG(2t + 1, q) as a collection of (t + 1)-
dimensional subspaces of the vector space V (2t + 2, q), one obtains a special type
of partial congruence partition (PCP). In general, a PCP with parameters (s, r) is a
collection of pairwise disjoint subgroups U1, . . . , Ur of order s of a group G of order
s2, that is

Ui ∩ Uj = {1} or, equivalently, UiUj = G,

whenever i 6= j (we write groups multiplicatively and denote the unit element by
1). The importance of this concept is due to the fact that PCP’s are equivalent
to “translation nets”, see Jungnickel [13] or [2] for background. The geometric
examples just discussed show that the elementary abelian groups EA(s2) always
admit a PCP with r = s + 1; it is well known that these congruence partitions in
the sense of André [1] describe translation planes. By a result of [14], a PCP in a
non- elementary abelian group necessarily has a comparatively large deficiency d:

Result 1.3. Let U be a PCP with deficiency d ≤
√
s+ 1 in a group G of order s2,

where s 6= 2, 4. Then G is necessarily an elementary abelian group. �

In other words, PCP’s with small deficiency are geometric, that is, they belong
to a partial t-spread in a suitable projective space PG(2t + 1, p). The aim of the
present note is an analogous result for covers; to this end, we introduce the notion
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of a congruence cover of excess e of a group G of square order s2: This is a collection
of subgroups U1, . . . , Ur of order s the union of which is all of G, where r = s+1+e.
We shall prove the following result which shows that congruence covers with small
excess are likewise geometric, that is, they belong to a t-cover of a suitable projective
space PG(2t + 1, p).

Theorem 1.4. Any group of square order s2 which admits a congruence cover of
excess at most p − 2, where p is the smallest prime divisor of s, is necessarily
elementary abelian.

The preceding theorem proves that small congruence covers are necessarily ge-
ometric. We emphasise that one cannot expect a group theoretic characterisation
of this type for small line covers of PG(3, q), unless q is a prime: Given any line
cover C of PG(3, q), where q is a proper power of a prime, say q = pm with m ≥ 2,
it is possible to construct a congruence cover of the same excess which is not a line
cover. It suffices to view the lines of PG(3, q) as (2m − 1)-dimensional subspaces
of Π = PG(4m − 1, p) and to apply a collineation of Π to C which moves some
component U into a (2m − 1)-dimensional subspace of Π that does not correspond
to a line of C.

The proof of Theorem 1.4 will proceed via a reduction to known bounds on
the size of PCP’s. We will also show that the bound given there is essentially
best possible; indeed, we will exhibit a congruence cover of excess p in a suitable
non-elementary abelian group whenever s is a proper prime power. We also briefly
address the general problem of covering a group by subgroups of a specified order,
since we will require some information about this for constructing the examples
just mentioned. A more detailed study of this interesting general problem will be
postponed to a forthcoming paper [16].

2 Covering groups by subgroups

In this section, we collect some basic results concerning the general problem of
covering a given group by subgroups of specified order. We begin with the following
simple observation on the existence of such a cover.

Proposition 2.1. Let G be a group of order v, and let s be a divisor of v. If G can
be covered by subgroups of order s, then expG divides s. Moreover, this necessary
condition is also sufficient if G is nilpotent.

Proof. The condition stated above is obviously necessary, as an element of an order
not dividing s cannot be contained in a subgroup of order s. Conversely, assume
that this condition is satisfied; hence every element g ∈ G generates a subgroup Hg

of some order dividing s. If G is a p-group, then Hg lies in a subgroup Ug of order s,
by elementary results on p-groups, see e.g. Hall [10]. Then the Ug form the desired
cover of G. Note that this argument carries over to arbitrary nilpotent groups, as
these are the direct products of their Sylow p-subgroups. �

We note that Proposition 2.1 does not hold for arbitrary groups. To mention a
trivial example, the symmetric group Sn cannot be covered by subgroups of order
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(n!)/2. It would be an interesting (though probably difficult) problem to characterise
all groups G which admit covers by subgroups of all orders s divisible by expG,
provided that at least one such subgroup exists.

Given a group G which admits a cover by subgroups of order s, we will denote
the smallest cardinality of such a cover by c(G, s). In this notation, the smallest

size of a congruence cover of a group G of square order is c(G,
√
|G|). In the present

note, we will not address the general problem of determining the covering numbers
c(G, s); this will be the subject of a forthcoming paper [16]. Let us just note that
Result 1.1 solves this problem for the class of elementary abelian groups. As we will
require this as an auxiliary tool later, we shall now give the translation of Result
1.1 into the notation just introduced.

Theorem 2.2. Let G be the elementary abelian group EA(pd) of order pd, and write
d = at+ b, where 1 ≤ b ≤ t. Then

c(G, pt) = pb(p(a−1)t + . . .+ p2t + pt + 1) + 1. (1)

Moreover, if C is a cover of G by c(G, pt) subgroups of order pt, then there exists a
subgroup U of order pt−b such that:

• Each element not in U is in exactly one component of C.

• Each element 6= 1 of U is in exactly pb + 1 components of C. �

3 General lower bounds for congruence covers

Let G be a group of order s2, and let C be a congruence cover of G with excess e.
Given any g ∈ G with g 6= 1, the multiplicity µg of g is defined as the number of
components of C containing g. Moreover, σg := µg− 1 is called the surplus of g, and
the quantity

σ(C) :=
∑

g∈G\{1}
σg

is the total surplus of C. Trivially,

σ(C) = e(s− 1). (2)

Now assume σ(C) 6= 0. We then select any element g ∈ G with positive surplus
and remove some component U of C containing g, so that the surplus of g is reduced
by 1 in the resulting collection C′ := C\{U} of subgroups of order s. (We may use
the notion of surplus not only for congruence covers but for arbitrary collections
of subgroups of order s, as long as we apply it only to elements covered by some
component.) Note that every element h 6= 1 in the subgroup 〈g〉 generated by g also
has positive surplus σh ≥ σg in C, and that its surplus has likewise been reduced by
1 in C′. As 〈g〉 has order at least p, where p is the smallest prime divisor of s, the
total surplus of C′ satisfies

σ(C ′) ≤ σ(C)− (p− 1).
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By continuing in the same manner, we will eventually reduce the surplus of every
g ∈ G to 0 and hence produce a PCP in G; in view of equation (2), this process
requires removing at most e(s − 1)/(p − 1) components of C. If we denote the
maximum size of a PCP in G by π(G), we obtain the inequality

s+ 1 + e− e(s− 1)

p− 1
≤ π(G).

Rearranging terms gives the following useful result.

Lemma 3.1. Let G be a group of square order s2 which admits a congruence cover
of excess e, let p be the smallest prime divisor of s, and denote the maximum size
of a PCP in G by π(G). Then

e ≥ (p− 1)(s+ 1− π(G))

s− p . �

In order to apply the preceding Lemma, we require the following bounds on π(G)
due to the author [13, 15]. (There are stronger, considerably more involved bounds
due to Hachenberger [8, 9]; however, in conjunction with Lemma 3.1, these bounds
do not lead to stronger results on congruence covers.)

Result 3.2. Let G be a group of square order s2 which is not elementary abelian.
Then the following bounds on the maximum size π(G) of a PCP in G hold:

1. If s is a prime power, say s = pd, then π(G) ≤ pd−1 + . . .+ p2 + p+ 1.

2. If s is not a prime power, say s = q1 . . . qn, where the qi are powers of pairwise
distinct primes pi, then

π(G) ≤ min {π(Si) : i = 1, . . . , n} ≤ min{qi + 1: i = 1, . . . , n},

where Si denotes a Sylow pi-subgroup of G. �

We can now prove the following restatement of Theorem 1.4:

Theorem 3.3. Let G be a group of square order s2 which is not elementary abelian,
and let C be any congruence cover of G. Then C has excess e ≥ p − 1, where p is
the smallest prime divisor of s.

Proof. First assume that s is a prime power, say s = pd. By Lemma 3.1 and Result
3.2, we obtain

e ≥ (p− 1)(pd + 1) − (pd − 1)

pd − p =
pd − 2pd−1 + 1

pd−1 − 1
.

This gives e ≥ p−1, as e is an integer. Now let s = q1 . . . qn, where n ≥ 2 and where
the qi are powers of pairwise distinct primes pi. Put q := min {qi : i = 1, . . . , n},
and write q = pd. Again using Lemma 3.1 and Result 3.2, we obtain

e ≥ (p− 1)(s− pd)
s− p =

sp− s− pd+1 + pd

s− p >
sp− 2s− p2 + 2p

s− p = p− 2,

as s ≥ qq′ > pd+1 > pd+1 − pd − p2 + 2p, where q′ is a term 6= q in the prime power
factorisation of s. Again,this implies e ≥ p− 1. �
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In Section 4, we will show that the bound of Theorem 3.3 is essentially best
possible for p-groups. However, in the general case, this bound is probably not all
that strong. We now give a stronger bound for the particularly important special
case of nilpotent groups; again, we will show that this bound is best possible in
Section 4.

Theorem 3.4. Let C be a congruence cover of a group G of square order s2, where
s = q1 . . . qn with n ≥ 2 and where the qi are powers of pairwise distinct primes pi.
If G is nilpotent, then

|C| ≥ (q1 + 1) . . . (qn + 1).

Proof. For i = 1, . . . , n, let Si denote the Sylow pi-subgroup of G, so that G =
S1 × . . . × Sn. Note that each component of C is of the form U = U1 × . . . × Un,
where Ui is a subgroup of Si of order qi (for i = 1, . . . , n). Hence each component
of C contains exactly (q1 − 1) . . . (qn − 1) elements of the form g = (g1, . . . , gn) with
gi 6= 1 for all i; as there are altogether (q2

1 − 1) . . . (q2
n− 1) such elements, we obtain

the assertion. �

4 Some examples of small congruence covers

In this section, we will provide some constructions for congruence covers with mod-
erate excess. We will also determine the exact cardinality κ(G) of a smallest congru-
ence cover for some abelian groups G of square order. As our examples will indicate,
solving this problem for arbitrary nilpotent groups seems to be difficult, even in the
special case of abelian p-groups. Anyway, our examples will at least demonstrate
that the bounds given in the preceding section are essentially best possible. The
following simple construction shows this to be true for the bound of Theorem 3.4.

Proposition 4.1. Let G := EA(q2
1)× . . .× EA(q2

n), where n ≥ 2 and where the qi
are powers of pairwise distinct primes pi. Then

κ(G) = (q1 + 1) . . . (qn + 1).

Proof. In view of Theorem 3.4, it suffices to construct a congruence cover of G of
cardinality (q1 + 1) . . . (qn + 1). Now each factor EA(q2

i ) has a congruence cover Ci
of cardinality qi + 1. Then the set of all subgroups of G of the form

U = U1 × . . .× Un with Ui ∈ Ci
is the desired congruence cover of G. �

It seems likely that equality in Theorem 3.4 is realised only by the group G
considered in Proposition 4.1, but we have at present no proof for this assertion.

Proposition 4.2. Let G := Zpd ×Zpd, where p is a prime. Then κ(G) = pd + pd−1.

Proof. Trivially, any element g of order pd is in a unique subgroup of this order,
which therefore has to be included in any congruence cover C of G. Hence

κ(G) ≥ p2d − p2d−2

pd − pd−1
= pd + pd−1.

On the other hand, it is easily seen that the pd + pd−1 cyclic subgroups of order pd

of G cover all of G. �
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The case d = 2 of Proposition 4.2 shows that the bound given in Theorem 3.3
can be sharp, even though it supplies only a single example for this phenomenon.
The next result proves that the bound in question is essentially best possible for all
prime powers s: It can be off by at most 1.

Proposition 4.3. Let G := Zp2×Z2d−2
p , where p is a prime. Then κ(G) = pd+p+1.

Proof. Write G = H ×K, where H ∼= Zp2. Note that we need at least

p2d − p2d−1

pd − pd−1
= pd

subgroups with order pd and exponent p2 to cover the elements of order p2 of G,
and that any two such subgroups intersect in the cyclic subgroup P of order p of H.
Hence pd such subgroups cover at most pd(pd−1−p)+p−1 distinct elements of order
p. This leaves at least pd+1− p elements of order p not yet covered; combinatorially,
it might just be possible to cover these elements by p further subgroups of order pd.
We show now that this case is in fact impossible for structural reasons. Otherwise,
we could select any two of these further subgroups, say U and V . Since U and V
would have to be disjoint and consist of elements of order p only, we would obtain
G = U × V ∼= EA(p2d), a contradiction. Hence indeed κ(G) ≥ pd + p + 1.

We shall now construct a congruence cover of G of cardinality pd + p + 1. Note
that G has an elementary abelian factor group Ḡ of order p2d−1; by Theorem 2.2, Ḡ
admits a cover C̄ with pd + p + 1 subgroups of order pd−1. It is easily checked that
the pre-image of C̄ under the natural epimorphism from G onto Ḡ is the desired
congruence cover C of G. �

The construction given in the proof of Proposition 4.3 works because of the large
elementary abelian factor of G, that is, because of the small Frattini subgroup Φ(G)
of G. (Recall that Φ(G) is the smallest normal subgroup of G for which G/Φ(G)
is elementary abelian, see e.g. Hall [10].) This observation allows us to prove the
following general existence result.

Theorem 4.4. Let G be a group of order s2, where s = pd for some prime p.
Assume that G is not elementary abelian, and write |Φ(G)| = pf . If f ≤ d/2, then

κ(G) ≤ pd + pf + 1.

Proof. Put Ḡ := G/Φ(G), so that Ḡ ∼= EA(p2d−f ). Note 2d − f = 2(d − f) +
f and 1 ≤ f ≤ d − f . By Theorem 2.2, Ḡ admits a cover C̄ by subgroups of
order pd−f with cardinality |C̄| = pf (pd−f + 1) + 1. Hence one obtains the desired
congruence cover C of G as the pre-image of C̄ under the natural epimorphism from
G onto Ḡ. �

Of course, a similar construction is also possible if the size of the Frattini sub-
group is larger than

√
s. The argument is slightly more involved than in the proof

of Theorem 4.4, since it depends on the relation between f and d− f . In any case,
the construction yields congruence covers with an excess in the order of magnitude
of pf . The precise result is as follows:
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Theorem 4.5. Let G be a group of order s2, where s = pd, p a prime, which is
not elementary abelian, and assume |Φ(G)| = pf , where f < d. Write 2d − f =
a(d− f) + b, where 1 ≤ b ≤ d− f . Then

κ(G) ≤ pb(p(a−1)(d−f) + . . .+ p2(d−f) + pd−f + 1) + 1

= pd + pf + p2f−d + . . .+ pb+d−f + 1. �

5 Conclusion

In this note, we have characterised the elementary abelian groups of square order by
the existence of small congruence covers. In other words, sufficiently small congru-
ence covers are necessarily geometric. We have also demonstrated that our bounds
are essentially best possible. Similar results for the general problem of covering a
given group by subgroups of specified order will be discussed in a forthcoming paper
[16].

The bounds and constructions presented in the present note suggest some ques-
tions. In particular, we mention the following open problems:

1. Does the bound of Theorem 3.4 carry over to arbitrary (or at least to solvable)
groups?

2. Can Theorem 3.4 be strengthened to give the following bound for nilpotent
groups:

κ(G) ≥
n∏
i=1

κ(Si),

where Si denotes the Sylow pi-subgroup of G? Should the answer to this
question be positive, the construction presented in the proof of Proposition
4.1 would reduce the determination of κ(G) for nilpotent groups to the same
problem for p-groups.

3. Let G be a p-group of square order. Our examples indicate that κ(G) should
depend on the exponent of G and on the order of the Frattini subgroup Φ(G).
Are the constructions given in Theorems 4.4 and 4.5 essentially best possible?

4. What is the precise value of κ(G) for abelian groups G?
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[1] J. André: Über nichtdesarguessche Ebenen mit transitiver Translationsgruppe.
Math. Z. 60 (1954), 156–186.



On Small Congruence Covers 421

[2] T. Beth, D. Jungnickel and H. Lenz: Design Theory (2nd edition). Cambridge
University Press (1998).

[3] A. Beutelspacher: On t-covers in finite projective spaces. J. Geom. 12 (1979),
10–16.

[4] A. Blokhuis and K. Metsch: On the size of a maximal partial spread. Designs,
Codes and Cryptography 3 (1991), 187–191.

[5] A. Blokhuis, C.M. O’Keefe, S.E. Payne, L. Storme and H. Wilbrink: Covers of
PG(3, q) and of finite generalized quadrangles. Simon Stevin, to appear.

[6] A.A. Bruen and K. Drudge: Large minimal covers of PG(3, q). Manuscript

[7] J. Eisfeld: On smallest covers of finite projective spaces. Archiv Math. 68
(1997), 77–80.

[8] D. Hachenberger: On the existence of translation nets. J. Algebra 152 (1992),
207–229.

[9] D. Hachenberger: On a combinatorial problem in group theory. J. Comb. Th.
(A) 64 (1992), 79–101.

[10] M. Hall, Jr.: The theory of groups. MacMillan, New York (1959).

[11] J.W.P. Hirschfeld: Finite Projective Spaces of Three Dimensions. Oxford Uni-
versity Press (1985).

[12] J.W.P. Hirschfeld and J.A. Thas: General Galois Geometries. Oxford Univer-
sity Press (1991).

[13] D. Jungnickel: Existence results for translation nets. In: Finite geometries and
designs (Eds. P.J. Cameron, J.W.P. Hirschfeld and D.R. Hughes). Cambridge
University Press (1981), pp. 172–196.

[14] D. Jungnickel: Maximal partial spreads and translation nets of small deficiency.
J. Algebra 90 (1984), 119–132.

[15] D. Jungnickel: Existence results for translation nets II. J. Algebra 122 (1989),
288–298.

[16] D. Jungnickel and L. Storme: Packing and covering groups with subgroups. In
preparation.

[17] K. Metsch and L. Storme: Partial spreads in PG(3, q), q square. Manuscript.

Lehrstuhl für Diskrete Mathematik, Optimierung
und Operations Research
Universität Augsburg
D–86135 Augsburg, Germany


