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The main “ingredient” in Devaney’s definition of chaos is transitivity (see [3]).
Banks, Brooks, Cairns, Davis and Stacey [1] demonstrated the redundancy of sen-
sitive dependence on initial conditions (the most popularly understood hypothesis
of Devaney). They showed as a consequence that chaos is a topological property
(not metric, as one could think about the original definition). Moreover, transitiv-
ity implies chaos for continuous functions on intervals (we refer to [4] for a simple
proof). We recall that a map f : M → M is transitive if for any pair of non-empty
open sets U and V in M , there is some k > 0 with fk(U)∩ V 6= ∅. Here M denotes
a metric space and fk is f composed with itself k times. Transitivity can be seen,
in words of Banks et al., as an irreducibility condition. It is worth mentioning that
other alternatives to transitivity had been provided by A. Crannell [2], which can
be regarded as more intuitive properties.

For Baire separable metric spacesM (which is usually the case) and continuous f ,
transitivity implies the existence of a point x ∈M whose orbit is dense in M . Let us
notice that separability of M is obviously necessary to get the existence of a dense
orbit. The phenomenon of dense orbit is much more intuitive than transitivity.
On the other hand there are discontinuous maps which are interesting from the
point of view of discrete dynamical systems (e.g., Baker’s function B(x) := 2x for
0 ≤ x ≤ 1/2, B(x) := 2x−1 for 1/2 < x ≤ 1). But Baire’s Theorem is not applicable
in general for discontinuous functions. This leads us to the following question: For
which type of discontinuous functions are transitivity and existence of dense orbits
equivalent?
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We will show that this is the case for functions f : M → M on a Baire separable
metric space M which have at most one point of discontinuity, but it is false in
general if f has more than one point of discontinuity.

Proposition 1. Let M be a Baire separable metric space and let f : M → M be a
transitive map with (only) one point of discontinuity a ∈ M . Then there is x ∈ M
such that {fn(x)}n∈N is dense in M .

Proof. If {fn(a)}n∈N is dense in M , there is nothing to prove. Thus we assume that
the orbit of a is not dense in M .

We first show that {fn(a)}n∈N is rare. If this is not the case, we can find open
sets U and V in M such that

U ⊂ {fn(a)}n∈N and V ∩ {fn(a)}n∈N = ∅.

By the transitivity of f we select m ∈ N and u ∈ U such that fm(u) ∈ V . Now fm is
continuous at u, since fm(u) 6= fn(a) for each n ∈ N. Then there is an open subset
Ũ of U with fm(Ũ) ⊂ V . But, taking k ∈ N with fk(a) ∈ Ũ , we get fm+k(a) ∈ V ,
which is a contradiction.

Now we select a countable basis {Vn}n∈N of open sets in M \ {fn(a)}n∈N and
define

Gn := {x ∈M / ∃m : fm(x) ∈ Vn}, n ∈ N.
We will show that {Gn}n∈N is a sequence of dense open subsets of M . To see this,
we fix n ∈ N. If x ∈ Gn, there is m ∈ N such that fm(x) ∈ Vn and fm is continuous
at x, by the selection of Vn. This implies the existence of an open neighbourhood U
of x with fm(U) ⊂ Vn. Therefore Gn is open. On the other hand, given an arbitrary
open set W in M , by the transitivity of f we find m ∈ N and w ∈ W satisfying
fm(w) ∈ Vn. Thus w ∈ Gn and Gn is dense.

Finally, since M is a Baire space, G :=
⋂
n∈NGn is dense in M , and we conclude

that {fm(x)}m∈N is dense in M for every x ∈ G. �

The following example shows that the proposition above is optimal in the sense
that a transitive map with two points of discontinuity does not have, in general, a
dense orbit.
Example: Let T : [0, 1] −→ [0, 1] be the tent map

T (x) :=

{
2x, x ∈ [0, 1/2[
2− 2x, x ∈ [1/2, 1]

which is a continuous transitive map (thus has a dense orbit). Fix y1 ∈]0, 1[ such
that {T n(y1)}n∈N is dense in [0, 1], set y0 := y1 + 1 and define f : [0, 2] −→ [0, 2] by

f(x) :=


T (x), x ∈ [0, 1[
y0, x = 1
1 + T (x− 1), x ∈]1, 2[
y1, x = 2

(see figure).
We are going to prove that f is a transitive map without a dense orbit.
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Figure 1:

Proof.
(i) {fn(y1)}n∈N and {fn(y0)}n∈N are dense in ]0, 1[ and ]1, 2[, respectively:

First of all {fn(y1)}n∈N = {T n(y1)}n∈N is dense in ]0, 1[. On the other hand this
sequence coincides with {T n(y0 − 1)}n∈N. Hence {xn}n∈N := {1 + T n(y0 − 1)}n∈N is
dense in ]1, 2[. Moreover,

f(y0) = 1 + T (y0 − 1) = x1, f(x1) = 1 + T (x1 − 1) = 1 + T 2(y0 − 1) = x2.

And, proceeding by induction, we get xn+1 = f(xn), n ∈ N, and we conclude that
{fn(y0)}n∈N is dense in ]1, 2[.

(ii) If x = k/2n, k, n ∈ N, then there is m ∈ N such that fm(x) = y0 if x ∈]0, 1] and
fm(x) = y1 if x ∈]1, 2]. Indeed, by the definition of T we easily have T (1/2) = 1,
T 2(1/4) = T 2(3/4) = 1, . . ., T n(k/2n) = 1, for every irreducible fraction k/2n ∈]0, 1[.
Hence, if x = k/2n ∈]0, 1[, there is m ∈ N such that fm(x) = f(Tm−1(x)) = f(1) =
y0.

If x ∈]1, 2[, f(x) > 1, then either f(x) = 2 and we conclude f2(x) = y1, or
f(x) ∈]1, 2[. In the second case we continue with the iteration of f until we reach
m ∈ N with Tm(x− 1) = 1. On account that f l(x) = 1 +T l(x− 1) if 1 ≤ l ≤ m, we
would have fm+1(x) = y1.

(iii) f is transitive. To see this, we take open subsets U and V of ]0, 2[. We consider
four cases:

Case 1: U∩]0, 1[ 6= ∅ and V ∩]0, 1[ 6= ∅. Since {fn(y1)}n∈N is dense in ]0, 1[,
there are n1 < n2 such that u := fn1(y1) ∈ U and fn2(y1) ∈ V . For m := n2 − n1 it
follows fm(u) ∈ fm(U) ∩ V .

Case 2: U∩]1, 2[ 6= ∅ and V ∩]1, 2[ 6= ∅. This case is analogous because
{fn(y0)}n∈N is dense in ]1, 2[.

Case 3: U∩]0, 1[ 6= ∅ and V ∩]1, 2[ 6= ∅. We find k, n,m ∈ N such that
u := k/2n ∈ U∩]0, 1[ and fm(u) = y0. The conclusion follows if we take m′ > m
with fm

′
(u) ∈ V .

Case 4: U∩]1, 2[ 6= ∅ and V ∩]0, 1[ 6= ∅. Similarly as in case 3, there are
k, n,m,m′ ∈ N such that u := k/2n ∈ U∩]1, 2[, fm(u) = y1 and fm

′
(u) ∈ V .
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(iv) If x ∈ [0, 2], then {fn(x)}n∈N is not dense in [0, 2]:
If x ∈ [0, 1], either x 6= k/2n, ∀k, n ∈ N, which implies fn(x) = T n(x) ∈ [0, 1[,

for all n ∈ N; or x = k/2n for some n ∈ N, 1 ≤ k ≤ 2n, which implies the existence
of m ∈ N with fm(x) = y0 and then fm

′
(x) ∈]1, 2[, ∀m′ ≥ m.

If x ∈]1, 2], we have either x 6= k/2n, for all k, n ∈ N, which implies fn(x) ∈]1, 2[,
∀n ∈ N; or there is m with fm(x) = y1 and we thus get fm

′
(x) ∈]0, 1[, ∀m′ ≥ m. �
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