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Abstract
We prove a generalization of the Euler-Jacobi formula for double points.

We apply it to study the distribution of the critical points for quadratic and
cubic systems, when one of these points is double.

1 Introduction.

Consider a planar polynomial vector field X = (P,Q), with degP = n, degQ = m.
Assume that X has exactly nm simple critical points (real or complex). In this
situation the Euler-Jacobi formula gives an algebraic relation between the critical
points of X and their indices, see Section 3. In this paper we prove a generalization
of the formula, allowing X to have double points. In fact in Section 2 we give
necessary and sufficient conditions for a critical point be double and in Section 3 we
give a proof of this new Euler-Jacobi formula. The method used could be applied
to get a general formula for more degenerate critical points, but the computations
involved would increase very much. We have not made these computations here.

Finally, Section 4 deals with applications of the formula obtained to study the
distribution of the critical points of quadratic vector fields (n = m = 2) and a sub
class of cubic vector fields (n = 2, m = 3). The result obtained can be considered
as a continuation of the paper [3]. For instance Theorem 4.1 is a generalization of
the well-known Berlinskii’s Theorem, see [2, 5], and can be interpreted as the limit
case of that result.
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2 Study of double points.

Definition 2.1. Let f and g be planar analytic functions and let p be a common
zero of f and g. The multiplicity of X = (f, g) at p is defined by the formula

µp[(f, g)] = dimC
C{x, y}p

(f, g)
,

where C{x, y}p is the ring of germs at p of holomorphic functions of C2 and (f, g)
is the ideal generated by the components of f and g.

We say that p is a simple point if it has multiplicity one, and a double point if
it has multiplicity two.

The following Lemma characterizes double points.

Lemma 2.2. Let f = 0, g = 0 be two analytic curves, and p such that f(p) = g(p) =
0. Then

(i) p is a simple point if and only if J1(f(x, y), g(x, y)) 6= 0,

(ii) p is a double point if and only if

J1(f(x, y), g(x, y)) = 0,

and

M2(x, y) = {J2(f(x, y), g(x, y)), J2(f(y, x), g(y, x)),

J2(g(x, y), f(x, y)), J2(g(y, x), f(y, x))} 6= {0},

where

J1(f(x, y), g(x, y)) =

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)∣∣∣∣∣
p

,

and

J2(f(x, y), g(x, y)) =

(∂f
∂y

)2 (
∂f

∂x

∂2g

∂x2
− ∂g

∂x

∂2f

∂x2

)
−

2
∂f

∂x

∂f

∂y

(
∂f

∂x

∂2g

∂x∂y
− ∂g

∂x

∂2f

∂x∂y

)
+

(
∂f

∂x

)2 (
∂f

∂x

∂2g

∂y2
− ∂g

∂x

∂2f

∂y2

)∣∣∣∣∣∣
p

.

Proof. It is not restrictive to assume that p = (0, 0). In a neighborhood of (0, 0) the
functions f(x, y) and g(x, y) can be written as

f(x, y) = f10x+ f01y + f20x
2 + f11xy + f02y

2 + · · · ,
g(x, y) = g10x+ g01y + g20x

2 + g11xy + g02y
2 + · · ·

If f10 = f01 = g10 = g01 = 0 it is obvious that µp[(f, g)] ≥ 3 because 1, x and y are

linearly independent elements of C{x,y}p
(f,g)

. Hence, to study simple or double points we
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can assume that {f10, f01, g10, g01} 6= {0}. In this situation it is sufficient to study
the case f10 6= 0 because all the other cases can be reduced to it interchanging f
and g or x and y.

Note that if f10 6= 0, then the change of variables

(z, w) = (f(x, y), y), (1)

is well-defined in a neighborhood of (0, 0). The inverse change of variables is

(x, y) = (x10z + x01w + x20z
2 + x11zw + x02w

2 + · · · , w).

Recall that the multiplicity is invariant by regular changes of coordinates, see [1,
Sec.4]. Let f̃(z, w) and g̃(z, w) be the expressions of f(x, y) and g(x, y) in the new
coordinates. We have that f̃ (z, w) = z. Hence we get that, when the multiplicity
is infinite, g̃(0, w) ≡ 0 and that, when the multiplicity is µ, g̃(z, w) is such that
g̃(0, w) = qµw

µ + · · · , with qµ 6= 0.
Therefore, to prove the lemma it is sufficient to compute the Taylor expansion

of g̃(0, w). Direct computations give x10 = 1
f10

, x01 = − f01

f10
, and

g̃(0, w) =

(
−g10f01

f10
+ g01

)
w + · · · = J1(f(x, y), g(x, y))

f10

∣∣∣∣∣
(0,0)

w + · · ·

Hence (i) follows.
If J1(f(x, y), g(x, y))|(0,0) = 0 we obtain x10 = 1

f10
, x01 = − f01

f10
, x20 = − f20

f3
10

,

x11 = 2f20f01

f3
10
− f11

f2
10

and x02 = − f20f
2
01

f3
10

+ f11f01

f2
10
− f02

f10
. A straightforward computation

shows that g̃(0, w) is(
−g10f20f

2
01

f3
10

+
g10f11f01

f2
10

− f02g10

f10
+
g20f

2
01

f2
10

− g11f01

f10
+ g02

)
w2 + · · ·

=
J2(f(x, y), g(x, y))|(0,0)

2f3
10

w2 + · · · ,

and so the lemma is proved. �

Remark 2.3. The condition J1(f(x, y), g(x, y)) 6= 0 of (i) can be written also as:

{J1(f(x, y), g(x, y)), J1(f(y, x), g(y, x)),

J1(g(x, y), f(x, y)), J1(g(y, x), f(y, x))} 6= {0},

because in the above set the four numbers have the same absolute value.

Remark 2.4. Recall that if f = 0 and g = 0 are planar polynomial curves, the
multiplicity and the intersection number of f ∩ g at a common zero coincide (see [4,
Chap.6]).
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Definition 2.5. Let f and g be planar analytic functions and let p be a common
isolated zero of f and g. The index of X = (f, g) at p, indp[X], is defined as the
degree of the map

X

‖ X ‖ : S1
ε −→ S1,

where S1
ε = {(x, y) ∈ R2 : ‖ (x, y)− p ‖= ε} and ε is sufficiently small.

The following result, proved in [6], gives a relation between index and multiplicity.

Proposition 2.6. In the notation of Definitions 2.1 and 2.5,

|indp[(P,Q)]| ≤ (µp[(P,Q)])
1
2 ,

indp[(P,Q)] ≡ µp[(P,Q)] (mod 2).

Corollary 2.7. (i) For planar analytic vector fields, simple points have index
+1 (−1) if and only if J1(f, g) > 0 (< 0).

(ii) For planar analytic vector fields, double points have index 0.

We remark that, of course, the above corollary holds for less regular vector fields.

3 The Euler-Jacobi formula for simple and double points.

Consider a system of two polynomial equations P (x, y) = Q(x, y) = 0 with degP =
n and degQ = m. If it has nm intersection points (real or complex) then for all
polynomial R with degR < n+m− 2, the Euler-Jacobi formula says:∑

p

R(p)

J(p)
= 0, (2)

where J(p) is the Jacobian of X = (P,Q) at the point p and the summation is
extended to all nm intersection points. Observe that if P and Q have one double
point p = (p1, p2), at this point J(p) = 0 and formula (2) has no sense. Our objective
in this section is to give a formula that generalizes (2) allowing double points. As

we will see, the expression that substitutes R(p)
J(p)

in (2) is very complicated and this
is the reason for which we will not deal with triple or more degenerate points.

First we recall how to prove (2). Consider the three polynomial given above,
P,Q and R. Following [7, chap. 5 ], define

Resp

(
R(x, y)

P (x, y)Q(x, y)
dx ∧ dy

)

=
(

1

2πi

)2 ∫
Γ

R(x− p1, y − p2)

P (x− p1, y − p2)Q(x− p1, y − p2)
dx ∧ dy,

where ε is small enough, and the set Γ = {|P (x − p1, y − p2)| = ε, |Q(x − p1, y −
p2)| = ε} is oriented in such a way that d(arg P ) ∧ d(argQ) ≥ 0. Hence, since
degR < n+m− 2 the Global Residue Theorem asserts that∑

p

Resp

(
R(x, y)

P (x, y)Q(x, y)
dx ∧ dy

)
= 0,
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when we assume that P and Q have nm intersection points (real or complex, taking
into account their multiplicity) and the summation is extended to all the intersection
points.

Hence to get a generalization of the Euler-Jacobi formula for simple and double
points it suffices to have an expression of the residue at these points. The next
lemma solves this problem.

Lemma 3.1. Let P,Q and R be planar polynomials. Let p be a common zero of P
and Q. Then in the notation of Lemma 2.2 we have:

(i) If J1(P (x, y), Q(x, y)) 6= 0 then

Resp

(
R(x, y)

P (x, y)Q(x, y)
dx ∧ dy

)
=

R(p)

J1(P,Q)
.

(ii) Assume that p = (0, 0) has multiplicity 2, (then J1(P,Q)(0, 0) = 0 and M2(0, 0) 6=
{0}).

(ii.a) Suppose, for instance, that J2 = J2(P (x, y), Q(x, y))|(0,0) 6= 0. Then,
writing P , Q and R as
P (x, y) = P10x+ P01y + P20x

2 + P11xy + P02y
2 + · · · ,

Q(x, y) = Q10x+Q01y +Q20x
2 +Q11xy +Q02y

2 + · · · ,
R(x, y) = R00 +R10x+R01y+R20x

2 +R11xy+R02y
2 + · · · , we have that

Res(0,0)

(
R(x, y)

P (x, y)Q(x, y)
dx ∧ dy

)

=

[
4P10R00N

(J2)2
+

2P10(P10R01 − P01R10)

J2

]
,

where N = P 3
10(Q10P03−P10Q03)−P 2

10P01(Q10P12−P10Q12)+P10P
2
01(Q10P21−

P10Q21)−P 3
01(Q10P30−P10Q30)+P

3
10(Q11P02−P11Q02)−2P 2

10P01(Q20P02−
P20Q02) + P10P

2
01(Q20P11 − P20Q11).

(ii.b) If J2(P (x, y), Q(x, y))|(0,0) = 0, then one of the other three elements of
M2(0, 0) is not zero. Interchanging either P and Q or x and y, we can
obtain the expression of the residue using (ii.a).

Proof. (i) This result is proved in [7, p. 671] to deduce the Euler-Jacobi formula.

(ii) If J2(P (x, y), Q(x, y))|(0,0) 6= 0 we have that P10 6= 0. Hence we can consider

the local change of variables (1). Denote by P̃ (z, w), Q̃(z, w) and R̃(z, w) the expres-
sions of P (x, y), Q(x, y) and R(x, y) in these new coordinates. Hence, P̃ (z, w) = z
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and Q̃(0, w) = q2w
2 + · · · Then

Res(0,0)

(
R(x, y)

P (x, y)Q(x, y)
dx ∧ dy

)

=
(

1

2πi

)2 ∫
|P(x,y)|=ε
|Q(x,y)|=ε

R(x, y)

P (x, y)Q(x, y)
dx ∧ dy

=

 z = P (x, y) dz = ∂P
∂x
dx+ ∂P

∂y
dy dz ∧ dw = ∂P

∂x
dx ∧ dy

w = y dw = dy dx ∧ dy =
(
∂P
∂x

)−1
dz ∧ dw


=
(

1

2πi

)2 ∫
|z|=ε

|Q̃(z,w)|=ε

R̃(z, w)

zQ̃(z, w)
(
∂P
∂x

)∣∣∣
(z,w)

dz ∧ dw

=
(

1

2πi

)2 ∫
|z|=ε

1

z

∫
|Q̃(z,w)|=ε

R̃(z, w)

Q̃(z, w)
(
∂P
∂x

)∣∣∣
(z,w)

dw

 dz.
This last expression, using the Cauchy integral formula, is equal to

(
1

2πi

) ∫
|Q̃|=ε

R̃(0, w)

Q̃(0, w)
(
∂P
∂x

)∣∣∣
(0,w)

dw.

Then Res(0,0)

(
R(x,y)

P (x,y)Q(x,y)
dx ∧ dy

)
is the coefficient of 1

w
of the Laurent’s serie of

R̃(0,w)

Q̃(0,w)(∂P∂x )|
(0,w)

.

If R̃(0, w) = r0 + r1w + r2w
2 + · · · , Q̃(0, w) = q2w

2 + q3w
3 + · · · and

∂P
∂x

∣∣∣
(0,w)

= p0 + p1w + · · · , then

R̃(0, w)

Q̃(0, w)
(
∂P
∂x

)∣∣∣
|(0,w)

=
1

w2

r0 + r1w + r2w
2 + · · ·

(q2w2 + q3w3 + · · · ) (p0 + p1w + · · · )

=
1

w2p0q2

(
r0 + r1w + r2w

2 + · · ·
)(

1− q3

q2
w + · · ·

)(
1− p1

p0
w + · · ·

)
,

and the expression of the residue is

r1

p0q2
− r0

p0q2

(
q3

q2
+
p1

p0

)
.

If we replace in the above formula the values of r0, r1, p0, p1, q2 and q3 by their expres-
sion in terms of the Taylor’s expansion of P,Q and R, tedious but straightforward
computations give the proof of (ii.b). �

Theorem 3.2 (Generalized Euler-Jacobi formula). Consider a system of two
polynomial equations of degrees n, m in two complex unknowns P (x, y) = Q(x, y) =
0. Assume that the set of roots A of the system has nm elements (real or complex,
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taking into account their multiplicities), and that all them are either simple AS ⊂ A,
or double AD ⊂ A. Then, for every polynomial R of degree less than n+m− 2, we
have that ∑

a∈AS

R(a)

J(a)
+

∑
a∈AD

S(a) = 0,

where J(a) is the Jacobian of (P,Q) at a and S(a) has to be computed in the way
showed in (ii) of Lemma 3.1.

4 Distribution of critical points.

Consider a quadratic vector field X = (P,Q), that is a vector field on the plane with
polynomial components P (x, y) and Q(x, y) with deg(P 2+Q2) = 4. The Berlinskii’s
Theorem gives a relation between the distribution of its critical points (when there
are four) and their indices, see [2, 5]. Here we prove a generalization of this relation
when the vector field X only has three real critical points. Our proof will use the
generalized Euler-Jacobi formula, stated in Section 3. Another different approach
to the problem would be to consider it as a limit situation of the case in which X
has four critical points.

Theorem 4.1 ( Generalized Berlinskii’s Theorem ). Let (P,Q) be a
quadratic vector field with a double point at (0, 0) and two simple real points.

(i) Consider the straight line through the origin

L = DP (0, 0)

(
x

y

)
= P10x+ P01y = 0,

or

L = DQ(0, 0)

(
x

y

)
= Q10x+Q01y = 0,

if L ≡ 0. Then the two simple points are in different connected components of
R2 \ L if and only if their indices coincide.

(ii) ind(0,0)[(P,Q)] = 0.

Remark 4.2. (i) Observe that if L 6≡ 0 and L 6≡ 0, then L = L, because
J1(0, 0) = 0.

(ii) When the double point of X = X0 comes from two real simple points of a
quadratic vector field Xε, L can be interpreted as the limit (when ε goes to
zero) of the line joining these two simple points.

Proof. (i) We are going to prove the theorem in the case P10 6= 0. The other cases
can be reduced to it.

Let (x0, y0), (x1, y1) be the two simple points. Take the straight line through the
origin and the point (x0, y0), R(x, y) = y0x− x0y = 0. By Theorem 3.2 we get:

y0x1 − x0y1

J1(x1, y1)
+

2P10(−P10x0 − P01y0)

J2
= 0,
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because in this case R00 = 0.
Taking (x1, y1) instead of (x0, y0) we have

y1x0 − x1y0

J1(x0, y0)
+

2P10(−P10x1 − P01y1)

J2
= 0,

where the denominator J2 is the same in both expressions.
Thus, we have

−(y0x1 − x0y1)J2 = 2P10(−P10x0 − P01y0)J1(x1, y1),

−(y1x0 − x1y0)J2 = 2P10(−P10x1 − P01y1)J1(x0, y0),

and therefore,
L(x1, y1)

L(x0, y0)
=
P10x1 + P01y1

P10x0 + P01y0
= −J1(x1, y1)

J1(x0, y0)
,

by definition of L. Then (i) follows.
(ii) Follows from Corollary 2.7. �

Now we study the configuration of critical points for vector fields X = (P,Q)
with degP = 2, degQ = 3. We consider the definition of configuration used in
[3]. Given a finite subset of R2, A, we denote by Â its convex hull and by ∂A
its boundary. We will say that the set A has configuration (K0; · · · ;Kp) if Ki are
the natural positive numbers defined by Ki = #(Ai ∩ ∂Âi), where A0 = A and
Ai = Ai−1 − (Ai−1 ∩ ∂Âi−1). If we want to be more precise, we substitute Ki by
the indices of the points of Ai ∩ ∂Âi, K

1
i , K

2
i , . . . , K

li
i , where Kj

i ∈ {+,−, 0}. When
Ai∩∂Âi is a polygon, these symbols are taken following the polygon counterclockwise
from a certain start point.

Proposition 4.3. Let X = (P,Q) be a polynomial vector field such that the degrees
of P and Q are 3 and 2 respectively. Assume that X has a double point and four
simples points. Then, the only possible configurations are:

(i) (5) = (0,+,−,+,−) or (0,−,+,−,+),

(ii) (4; 1) = (0,+,+,−;−) or (0,−,−,+; +) or (+,+,−,−; 0),

(iii) (3; 2) = (0,+,−; +,−) or (+,+,−;−, 0) or (−,−,+; +, 0).

Furthermore there are vector fields X with the above configurations.

Proof. We have that X has five critical points. Then, they can present only three
configurations: (5), (4; 1) and (3; 2). Assume that they have configuration (5).
We only consider the non degenerate case in which three critical points are never
aligned, because this is the most difficult one. The degenerate case follows by similar
arguments.

Put x0 for the double point and x1, x2, x3, x4 for the simple points. Let Li be the
straight lines through x0 and xi for i = 1, . . . , 4, see Figure 1.
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rx0

rx1

r
x2
r
x3

rx4

Q
Q
Q
Q
Q
Q
Q
QQ

�
�

�
�

�
�

�
��

L1L4

Figure 1: Distribution (5).

It is not restrictive to assume that x0 = (0, 0). From Corollary 2.7, x0 has index
0, and the other critical points have index ±1.

Now we will apply Theorem 3.2 for R = L1L4. Since R00 = R10 = R01 = 0 we
get

R(x2, y2)

J1(x2, y2)
+
R(x3, y3)

J1(x3, y3)
= 0,

and hence x2 and x3 have opposite indices since they are in the same connected
component of R2 \ R. Using R = L2L4 (L1L3), we get that the indices of x1 and
x3 (x2 and x4) coincide. Then, the configuration of the critical points are either
(0,+,−,+,−) or (0,−,+,−,+).

The cases (4; 1) and (3; 2) follow doing a similar study.
Examples showing the configurations given are not difficult to construct. �



346 A. Gasull – J. Torregrosa

References

[1] V. I. Arnol’d, A. Varchenko, and S. Goussein-Zadé. Singularités des applications
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