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Abstract

Minimal equi-centroaffine immersions of codimension two are character-
ized as solutions of a certain variational problem. We determine the moduli
space of such immersions of R2 into R4 whose induced connection and affine
fundamental form coincide with the ones of the Clifford torus.

1 Introduction

In equi-centroaffine differential geometry, the theory of hypersurfaces has a long
history. However, relatively little has been achieved in the study of equi-centroaffine
immersions with higher codimensions. It is the purpose of this paper to study such
immersions with codimension two.

For a centroaffine immersion into the affine space, the position vector yields its
first canonical normal vector field. A standard method of choosing a second one
was proposed in 1950 by Lopšic (see Walter [7]). Recently, reorganizing geometry of
equi-centroaffine immersions of codimension two, Nomizu and Sasaki [4] proposed
another fruitful choice. Adopting the latter one, we take the prenormalized Blaschke
normal field as the second canonical normal vector field. Fixing two normal vector
fields, we can define the induced volume form and consider a variational problem
of the volume. Then we say that an equi-centroaffine immersion of codimension
two is minimal if the volume is extremal under any variation having no part in the
direction of the position vector infinitesimally. We prove that an equi-centroaffine
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immersion is minimal if and only if the trace of the affine shape operator with respect
to the prenormalized Blaschke normal field vanishes identically (Theorem 3.2).

It is also remarked that in equi-affine geometry there are methods to induce a
volume form without fixing special normal vector fields (see Dillen, Mys, Verstraelen
and Vrancken [3]) and that in centroaffine geometry, instead of equi-centroaffine
geometry, there are new approaches for immersions of codimension two (for example,
see Scharlach [6]).

In Section 4, we illustrate some examples (Examples 4.1, 4.2 and 4.4). In par-
ticular, the Clifford torus φ gives rise to a minimal equi-centroaffine immersion of

R2 into R4. We remark that the pair of its induced connection and its affine fun-
damental form is a trivial statistical structure (for example, see Amari [1]). In
fact, the affine fundamental form of φ is an indefinite flat metric on R2, and the
induced connection is its Levi-Civita connection. We then determine the set Mφ of
SL(4;R)-congruence classes of minimal equi-centroaffine immersions of R2 into R4

whose induced connection and affine fundamental form coincide with the ones of the
Clifford torus φ respectively (Theorem 4.3).

In Section 5, the duality for minimal equi-centroaffine immersions is studied. We
prove that an equi-centroaffine immersion is minimal if and only if its dual is minimal
(Proposition 5.1). We also have a representation formula of the dual immersion
for a given minimal equi-centroaffine immersion and its affine fundamental form
(Proposition 5.2).

The author wishes to express his sincere gratitude to Professor Takashi Kurose
for his useful advice. He also thanks the referee for carefully reading the manuscript
and many suggestions.

2 Preliminaries

We recall the basic equi-centroaffine geometry developed in Nomizu and Sasaki [4].
Let f be an immersion of an n(≥ 2)-dimensional manifold M intoRn+2. Throughout
this paper, we identify an Rn+2-valued function with a section of f−1TRn+2 by

C∞(M ;Rn+2) 3 ξ = t(ξ1, . . . , ξn+2) 7→
n+2∑
i=1

ξi
(

∂

∂xi

)
f

∈ f−1TRn+2.

We call ξ ∈ Γ(f−1TRn+2) a transversal vector field of f if at each point x ∈M , the
tangent space Tf(x)Rn+2 is decomposed as

Tf(x)Rn+2 = f∗TxM ⊕Rξx ⊕Rf(x).

Let D denote the standard flat connection of TRn+2 and f−1TRn+2, and Det the
standard volume form of Rn+2. Associated with (f, ξ) we have the identities{

DXf∗Y = f∗∇XY + h(X, Y )ξ + T (X, Y )f,
DXξ = −f∗SX + τ (X)ξ + P (X)f, for X, Y ∈ Γ(TM)

(2.1)

and define

θ(X1, . . . , Xn) := Det(f∗X1, . . . , f∗Xn, ξx, f(x)) for Xj ∈ TxM, x ∈M.
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On M , we then have a torsion-free affine connection ∇, symmetric (0, 2)-tensor
fields h and T , a (1, 1)-tensor field S, 1-forms τ and P , and a volume form θ.
In this paper, we call S ∈ Γ(End TM) the affine shape operator of (f, ξ), and
h ∈ Γ(T ∗M ⊗ T ∗M) the affine fundamental form of (f, ξ).

Lemma 2.1 (Nomizu and Sasaki [4]). Let (f ; ξ0) : M → Rn+2 be an immersion
with a transversal vector field. If the affine fundamental form is nondegenerate, then
there exists a transversal vector field ξ of f such that

h is nondegenerate,
τ = 0,
ωh = θ,
trh{(X, Y ) 7→ T (X, Y ) + h(SX, Y )} = 0,

(2.2)

where ωh is the volume form with respect to the pseudo-Riemannian metric h. More-
over, such ξ is uniquely determined up to sign.

We then call such a transversal vector field ξ the prenormalized Blaschke normal
vector field of f . For simplicity, we call an immersion fixed with the prenormalized
Blaschke normal vector field a centroaffine immersion, and denote it by f instead
of (f, ξ). Two centroaffine immersions f1, f2 : M → Rn+2 are said to be congruent
if there exists a special linear transformation A ∈ SL(n + 2;R) such that f2 = Af1.

Remark 2.2. The second condition of (2.2) is equivalent to the condition that the
induced volume form is parallel with respect to the induced connection: ∇θ = 0.

3 A Variational-Theoretic Approach

Let f : M → Rn+2 be a centroaffine immersion. We consider a smooth variation
F : M × (−ε, ε)→ Rn+2 of f satisfying

ft := F (·, t) : M → Rn+2 is a centroaffine immersion,
f0 = f,
ft = f outside a compact set,

and
ν = 0,

(3.1)

where ν ∈ C∞(M) is defined by

F∗

(
∂

∂t

)
(x,0)

= f∗Vx + v(x)ξx + ν(x)f(x), V ∈ Γ(TM), v ∈ C∞(M).

For a variation F , we denote by θt the volume form induced by ft.

Definition 3.1. A centroaffine immersion f : M → Rn+2 is said to be minimal if
for an arbitrary variation F satisfying (3.1),

d

dt

∣∣∣∣∣
t=0

∫
M

θt = 0.
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Theorem 3.2. A centroaffine immersion f : M → Rn+2 is minimal if and only if
the trace of the affine shape operator vanishes identically: trS = 0.

In fact, the first variational formula is given by

d

dt

∣∣∣∣∣
t=0

∫
M

θt = − n

n + 2

∫
M

v trSθ. (3.2)

Proof . Let Ξ(x, t) = (ξt)x be the prenormalized Blaschke normal vector field of ft.
We define Z ∈ Γ(TM), a and α ∈ C∞(M) by

Ξ∗

(
∂

∂t

)
(x,0)

= f∗Zx + a(x)ξx + α(x)f(x).

We will prove that for Xj ∈ Γ(TM) with θ(X1, . . . , Xn) = 1,

d

dt

∣∣∣∣∣
t=0

θt(X1, . . . , Xn) = divh V − v tr S + a + ν(n + 1), (3.3)

na = 2divh V +4hv + νn− 2
d

dt

∣∣∣∣∣
t=0

θt(X1, . . . , Xn), (3.4)

where ∇h is the Levi-Civita connection of h, divh V := tr{X 7→ ∇h
XV }, and 4h is

the Laplacian with respect to h.
The equations (3.3) and (3.4) imply

d

dt

∣∣∣∣∣
t=0

θt(X1, . . . , Xn) = divh V +
1

n + 2
4hv −

n

n + 2
v trS + nν,

from which we get the first variational formula (3.2), using ν = 0 and Green’s
theorem.

We obtain (3.3) as follows:

d

dt

∣∣∣∣∣
t=0

θt(X1, . . . , Xn)

=
d

dt

∣∣∣∣∣
t=0

Det(ft∗X1, . . . , ft∗Xn, ξt, ft)

=
∑
i

Det(f∗X1, . . . , f∗[∇XiV − vSXi + νXi], . . . , f∗Xn, ξ, f)

+Det(f∗X1, . . . , f∗Xn, aξ, f) + Det(f∗X1, . . . , f∗Xn, ξ, νf)

=
∑
i

θ(X1, . . . ,∇XiV, . . . , Xn) − v
∑
i

θ(X1, . . . , SXi, . . . , Xn)

+νn + a + ν

= divh V − v trS + a + ν(n + 1).

Here we have used the following identity (see [5, p.65]): For Xi ∈ TpM with
θ(X1, . . . , Xn) = 1 and V ∈ Γ(TM),

divh V = div∇ V :=
n∑
i=1

θ(X1, . . . ,∇XiV, . . . , Xn). (3.5)
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To get (3.4), we compute the ξ-components of DXDY F∗(∂/∂t) and D(∂/∂t)DXF∗Y
at t = 0, where X and Y are vector fields on M . It follows that{

DXDY F∗
∂

∂t

∣∣∣∣∣
t=0

}ξ
(3.6)

= {DXDY [f∗V + vξ + νf ]}ξ

= {DX [f∗(∇Y V − vSY + νY ) + (h(Y, V ) + Y v)ξ

+(T (Y, V ) + vP (Y ) + Y ν)f ]}ξ

= h(X,∇Y V )− vh(X, SY ) + νh(X, Y ) + Xh(Y, V ) + XY v,

and {
D ∂

∂t
DXF∗Y

∣∣∣
t=0

}ξ
(3.7)

=
{
D ∂

∂t (x,0)

[
F∗∇t

XY + ht(X, Y )Ξ + Tt(X, Y )F
]}ξ

=

{
D∇XY F∗

∂

∂t (x,0)
+

d

dt

∣∣∣∣∣
t=0

ht(X, Y )ξ

+h(X, Y )(f∗Z + aξ + αf)

+
d

dt

∣∣∣∣∣
t=0

Tt(X, Y )f + T (X, Y )(f∗V + vξ + νf)

}ξ
= h(∇XY, V ) +∇XY v

+
d

dt

∣∣∣∣∣
t=0

ht(X, Y ) + ah(X, Y ) + vT (X, Y ),

where {U}ξ denotes the ξ-component of U ∈ Γ(f−1T Rn+2).
Since [X, ∂/∂t] = 0 for any X ∈ Γ(TM) and D is flat, we get DXDY F∗(∂/∂t) =

D(∂/∂t)DXF∗Y , from which (3.6) and (3.7) imply that

ah(X, Y ) = {h(X,∇Y V ) + h(Y,∇XV ) + (∇Xh)(Y, V )}
−v {h(X, SY ) + T (X, Y )}+ {Hessh v(X, Y )−KXY v}

+νh(X, Y )− d

dt

∣∣∣∣∣
t=0

ht(X, Y ),

where Hessh v denotes the Hessian of v with respect to h: Hessh v(X, Y ) := ∇h
Xv∗Y −

v∗∇h
XY, and KXY := K(X, Y ) := ∇XY −∇h

XY . We take the trace of the equation
above with respect to h, noting the following identity (see [5, p. 145]):

d

dt

∣∣∣∣∣
t=0

θt(X1, . . . , Xn) =
1

2
trh

d

dt

∣∣∣∣∣
t=0

ht.

We then obtain (3.4) by using (2.2), the Codazzi equation (4.4) and the following
identity (see [5, p. 50, 53]):

trKX = −1

2
trh(∇Xh) = h(trh K, X) = 0. (3.8)

This completes the proof of Theorem 3.2. �
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4 Examples

In this section, we illustrate some basic examples of minimal centroaffine immersions
of codimension two.

Example 4.1. For M := R2 3 x = (x1, x2), we set f(x) := (x1, x2, (1/2){(x1)2 −
(x2)2}, 1). Then f(M) lies in a hyperplane and the prenormalized Blaschke normal
vector field is given by ξ(x) := (0, 0, 1, 0), which implies that the affine shape op-
erator vanishes at each point, in particular, f : M → R4 is a minimal centroaffine
immersion.

Example 4.2. The Clifford torus φ(x1, x2) = 1/
√

2(cos
√

2x1, sin
√

2x1, cos
√

2x2,
sin
√

2x2) gives rise to a minimal centroaffine immersion into R4, as well as a com-
pact flat minimal surface in the unit 3-sphere, regarded as an object in Euclidean
differential geometry (see [2, p. 87]). We remark that the affine shape operator of φ
does not vanish.

We can calculate the prenormalized Blaschke normal vector field and ∇, h, T ,
S, P of the Clifford torus φ : For ∂i := ∂/∂xi,

ξ =
1√
2
(− cos

√
2x1,− sin

√
2x1, cos

√
2x2, sin

√
2x2),

∇φ
∂i
∂j = 0, hφ = (dx1)2 − (dx2)2, (4.1)

T φ = −
{
(dx1)2 + (dx2)2

}
, Sφ = dx1 ⊗ ∂1 − dx2 ⊗ ∂2,

P φ = 0.

Let Mφ be the set of congruence classes of minimal centroaffine immersions of R2

into R4 whose induced connection ∇ and affine fundamental form h coincide with
the ones of the Clifford torus φ respectively:

∇ = ∇φ, h = hφ.

We can determine the moduli space Mφ as follows:

Theorem 4.3. The set Mφ is parameterized by the set of pairs (λ, µ) of smooth
functions on R2 satisfying

∂λ

∂x1
=

∂µ

∂x2
,

∂λ

∂x2
=

∂µ

∂x1
. (4.2)

Proof . Step 1. First, we recall the Gauss, Codazzi and Ricci equations in a general
setting. Let f : M → Rn+2 be a centroaffine immersion. Then the following hold:
For any X, Y, Z ∈ Γ(TM),

R(X, Y )Z = h(Y, Z)SX − h(X, Z)SY − T (Y, Z)X + T (X, Z)Y, (4.3)

(∇Xh)(Y, Z) = (∇Y h)(X, Z), (4.4)

(∇XT )(Y, Z) + h(Y, Z)P (X) = (∇Y T )(X, Z) + h(X, Z)P (Y ), (4.5)

(∇XS)Y + P (X)Y = (∇Y S)X + P (Y )X, (4.6)

h(X, SY ) = h(Y, SX), (4.7)

T (X, SY )− T (Y, SX) = dP (X, Y ), (4.8)
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where R denotes the curvature tensor field of the induced connection ∇.
Conversely, if a torsion-free affine connection ∇, symmetric (0, 2)-tensor fields

h and T , a (1, 1)-tensor field S and a 1-form P on a simply-connected manifold
M satisfy the equations above, then there exists an immersion with a transversal
vector field (f, ξ) : M → Rn+2 such that ∇, h, T , S, P coincide with the geometric
quantities induced as in (2.1) with τ = 0. Moreover, (f, ξ) is uniquely determined
up to GL(n + 2;R)-motion.
Step 2. For any centroaffine immersion f ∈Mφ, we set

T = Tijdxidxj, S = Sj
i dxi ⊗ ∂j, P = Pidxi.

It follows from (4.1) and the Gauss equation (4.3) that

S1
1 = −T22, S1

2 = −T21, S2
1 = T12, S2

2 = T11.

Using the assumption 0 = trS = S1
1 + S2

2 , we then determine S and T in the form

S =

[
−λ −µ
µ λ

]
, T = λ

{
(dx1)2 + (dx2)2

}
+ 2µdx1dx2. (4.9)

By the Codazzi equations (4.5) and (4.6), we have{
∂1T22 − ∂2T12 = P1 = −∂1S

2
2 + ∂2S

2
1 ,

∂1T21 − ∂2T11 = P2 = ∂1S
1
2 − ∂2S

1
1 ,

which implies (4.2) and
P = 0. (4.10)

In consequence, we obtain a correspondence of f ∈Mφ to (λ, µ).
Step 3. We now show that the correspondence above is bijective. For a given pair
(λ, µ) of smooth functions satisfying (4.2), we define a torsion-free affine connection
∇, symmetric (0, 2)-tensor fields h and T , a (1, 1)-tensor field S and a 1-form P on

R2 by (4.1), (4.9) and (4.10). It can be checked that they satisfy the Gauss, Codazzi
and Ricci equations (4.3) – (4.8), and consequently, there exists a corresponding
immersion with a transversal vector field (f0, ξ0) : R2 → R4.

The pair (f0, ξ0) satisfies the conditions in (2.2) at least except the third equation:
ωh = θ. We then choose a constant r so that (rf0, rξ0) satisfies that condition at
the origin o of R2. It should be remarked that (rf0, rξ0) and (f0, ξ0) are GL(4;R)-
congruent, and hence induce the same geometric quantities∇, h, T , S, τ , P . Remark
2.2 concludes that (rf0, rξ0) satisfies the third equation of (2.2) at each point as well
as the other conditions. Setting (f, ξ) := (rf0, rξ0), we obtain a minimal centroaffine
immersion f with prenormalized Blaschke normal vector field ξ corresponding to
(λ, µ). This completes the proof of Theorem 4.3. �

We remark that the Clifford torus φ corresponds to the pair (−1, 0) of constant
functions. The set of two smooth functions on R2 satisfying (4.2) is so large that
we have many minimal centroaffine immersions whose induced connection and affine
fundamental form are given by (4.1). It contrasts with the higher dimensional cases:
Nomizu and Sasaki [4] proved that two centroaffine immersions are congruent if the
induced connections and the affine fundamental forms respectively coincide, and if
the dimension n of the source manifold is greater than two.
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Example 4.4. A holomorphic curve f(z) = (z, z2/2) gives rise to a minimal cen-
troaffine immersion of D = {z ∈ C;<z > 0,=z > 0} into C2 = R4. The prenormal-
ized Blaschke normal vector is given by ξ(z) =

√
2
√
−1|z|−3(z, 2z2).

5 Duality

We first recall the duality for centroaffine immersions of codimension two, which is
introduced by Nomizu and Sasaki [4]. Let Rn+2 denote the dual space of Rn+2. For
a given centroaffine immersion f : M → Rn+2, we define maps v, w : M → Rn+2 by

v(x)(ξx) = 1,
v(x)(f(x)) = 0,
v(x)(f∗X) = 0,


w(x)(ξx) = 0,
w(x)(f(x)) = 1,
w(x)(f∗X) = 0,

(5.1)

for each x ∈ M and X ∈ TxM . These maps are well-defined, since {ξx, f(x),
f∗X1, . . . , f∗Xn} is a basis of Rn+2.

Proposition 5.1. (i) For a given centroaffine immersion f : M → Rn+2, the map
v : M → Rn+2, defined as above, is a centroaffine immersion with prenormalized
Blaschke normal vector field w, which is called the dual immersion of f .
(ii) If the affine shape operator of f vanishes identically, the image of v lies on a
hyperplane of Rn+2.
(iii) The centroaffine immersion f is minimal if and only if so is v.

Proof . The proposition is essentially proved in [4]. We denote the geometric quan-
tities associated with f by ∇, h, T, S, τ = 0, P , and those associated with (v, w) by
∇∗, h∗, T ∗, S∗, τ ∗, P ∗. By definition, we get the following (see Lemmas 3.1 - 3.3, [4]):

v∗X(ξx) = 0,
v∗X(f(x)) = 0,
v∗X(f∗Y ) = −h(X, Y ).


w∗X(ξx) = −P (X),
w∗X(f(x)) = 0,
w∗X(f∗Y ) = −T (X, Y ).

(5.2)

h∗ = h, (5.3)

T ∗(X, Y ) = −h(SX, Y ),

Z (h(X, Y )) = h(∇ZX, Y ) + h(X,∇∗ZY ),

P ∗ = −P,

τ ∗ = 0,

h∗(S∗X, Y ) = −T (X, Y ). (5.4)

We omit the proof of (i) and (ii). To get (iii), we only have to remark that

tr S = − trh T = − trh∗ T = tr S∗, (5.5)

which follows from the fourth condition of (2.2), (5.3) and (5.4). �

Proposition 5.1 (iii) means that there exists a natural correspondence between
two minimal centroaffine immersions. In the following proposition, we demonstrate
the correspondence for a given immersion f together with affine fundamental form
h. To this end, we define e1 ∧ · · · ∧ en+1 ∈ Rn+2 for ej ∈ Rn+2 by

e1 ∧ · · · ∧ en+1(η) := Det(η, e1, . . . , en+1) for η ∈ Rn+2.
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Proposition 5.2. Let f : M → Rn+2 be a minimal centroaffine immersion with
affine fundamental form h. Then the dual immersion v and the prenormalized
Blaschke normal vector field w are given by

v(x) =
n

Det(4hf, f, e1, . . . , en)
f ∧ e1 ∧ · · · ∧ en(x), (5.6)

w(x) =
−1

Det(4hf, f, e1, . . . , en)
4hf ∧ e1 ∧ · · · ∧ en(x), (5.7)

where X1, . . . , Xn are local frame fields on M and ej := f∗Xj .

Proof . Step 1. Let ξ be the prenormalized Blaschke normal vector field of f . First,
we prove that

v(x) =
1

Det(ξ, f, e1, . . . , en)
f ∧ e1 ∧ · · · ∧ en(x), (5.8)

w(x) =
−1

Det(ξ, f, e1, . . . , en)
ξ ∧ e1 ∧ · · · ∧ en(x). (5.9)

Indeed, we can easily check by (5.1) and (5.2) that the right hand side ṽ(x) of (5.8)
satisfies

f(ṽ) = 0, f∗Xj(ṽ) = 0, ξ(ṽ) = 1,

from which we conclude ṽ = v. In the same fashion, we can prove (5.9).

Step 2. We show that

ξ =
1

n
[trSf +4hf ]. (5.10)

Indeed, by (5.3) and (5.4) we calculate

Hessh f(X, Y ) = DXf∗Y − f∗∇h
XY

= f∗∇XY + h(X, Y )ξ + T (X, Y )f − f∗∇h
XY

= f∗KXY + h(X, Y )ξ + T (X, Y )f,

which implies by (2.2)

4hf = trhHessh f = f∗ trhK + nξ − trSf.

Therefore, we obtain (5.10) by (3.8) and (5.5).

Step 3. By (5.10),we have ξ = (1/n)4hf , from which (5.8) and (5.9) imply (5.6)
and (5.7). �

Remark 5.3. Let f : R2 → R4 be a minimal centroaffine immersion whose induced
connection and affine fundamental form coincide with the ones of the Clifford torus
φ respectively: f ∈Mφ. Then we can check that f is self-dual, that is, by definition,
the geometric quantities ∇, h, T , S, τ and P associated with f and those associated
with its dual immersion coincide respectively.
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