
On quenching of solutions for some semilinear

parabolic equations of second order

Théodore K. Boni

1 Introduction

Let Ω be a bounded domain in Rn with boundary ∂Ω of class C2. Consider the
following boundary value problems:

∂u

∂t
= Lu + f(u) in Ω× (0, T ), (1.1)

(I) µ
∂u

∂N
+ (1− µ)u = 0 on ∂Ω× (0, T ), (1.2)

u(x, 0) = uo(x) in Ω, (1.3)

∂u

∂t
= Lu in Ω× (0, T ), (1.4)

(II)
∂u

∂N
= g(u) on ∂Ω× (0, T ), (1.5)

u(x, 0) = u∗(x) in Ω, (1.6)

where

Lu =
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
),

∂u

∂N
=

n∑
i,j=1

cos(ν, xi)aij(x)
∂u

∂xj
.

Received by the editors June 1998.
Communicated by J. Mawhin.
1991 Mathematics Subject Classification : 35 K 55, 35 B 40.
Key words and phrases : Quenching, asymptotic behavior, semilinear parabolic equation.

Bull. Belg. Math. Soc. 7 (2000), 73–95



74 T. K. Boni

Here the coefficients aij(x) ∈ C1(Ω) satisfy the inequalities

λ2|ξ|2 ≥
n∑

i,j=1

aij(x)ξiξj ≥ λ1|ξ|2

for any ξ ∈ Rn and x ∈ Ω with positive constants λi (i = 1, 2), ν is the exterior
normal unit vector on ∂Ω, µ ∈ [0, 1[ is a function of class C1 on ∂Ω. For positive
values of u, f(u), g(u) are positive and increasing functions with

f(0) > 0, lim
u→b−

f(u) =∞,

g(0) > 0, lim
u→b−

g(u) =∞,

where b is a positive number. uo(x) and u∗(x) are two nonnegative functions of class
C1(Ω) such that

M = sup
x∈Ω

uo(x) < b, M
′
= sup

x∈Ω
u∗(x) < b,

µ
∂uo
∂N

+ (1 − µ)uo = 0 on ∂Ω and
∂u∗
∂N

= g(u∗) on ∂Ω. In this note, we study the

phenomenon of quenching for the problems (1.1)− (1.3) and (1.4)− (1.6).
Definition 1.1. We say that the solution u of the problem (1.1)−(1.3) or (1.4)−(1.6)
quenches in a finite time if there exists a finite time To such that

lim
t→To

sup
x∈Ω

u(x, t) = b.

To is the quenching time of the solution u. x ∈ Ω is a quenching point of the solution
u if there exists a sequence (xn, tn) such that xn → x, tn ↑ To and lim

n→∞
u(xn, tn) = b.

The set

EQ = {x ∈ Ω such that x is a quenching point of the solution u}

is the quenching set of the solution u.
The problem of quenching has been the subject of study of many authors (see, for
instance[1,3,4,6,7,8,9,10] and others). In particular in [1], the authors have consid-
ered the problem (1.1) − (1.3) in the case where µ = 0. They have shown that if Ω
is small enough, then the solution of the problem (1.1) − (1.3) exists in Ω× (0,∞)
whereas if Ω is large enough, the solution quenches in a finite time. In this paper,
we give other characterizations of quenching for the problem (1.1)− (1.3) based on
the nature of certains stationary solutions. These characterizations will be used to
obtain the existence and nonexistence of the solution for the problem (1.1)− (1.3) in
the case where Ω is unbounded. Moreover, using some isoperimetric inequalities, we
also precise some results of Acker and Walter in [1]. Another subject of investigation
of the phenomenon of quenching is the quenching set. For the problem (1.1)− (1.3),
some results about quenching set have been given in [4]. More precisely, it is proved
that under some conditions, the solution of the problem (1.1) − (1.3) in the case
where µ = 0 quenches in a finite time and its quenching set is in a compact subset of
Ω. For the problem (1.4)− (1.6), we show that under some hypotheses the solution
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of (1.4) − (1.6) quenches in a finite time and its quenching set is on the boundary
∂Ω of the domain Ω. The paper is written in the following manner. In Section 2, we
obtain the local existence of the solution for the problem (1.1)− (1.3). In Section 3,
we characterize the quenching and global existence of the solution for the problem
(1.1) − (1.3) in terms of a certain stationary solution. In Section 4, we apply the
results of Section 3 to study the existence and nonexistence of the solution for the
problem (1.1)− (1.3) in the case where Ω is unbounded. In Section 5, we show that
the existence of the solution for the problem (1.1)− (1.3) depends on the existence
of a certain stationary solution of this problem. In Section 6, we get other quenching
conditions of the solution for the problem (1.1)− (1.3). We also give the asymptotic
behavior near the quenching time of this solution. In Sections 7 and 8, we obtain
some conditions under which the solution of the problem (1.4) − (1.6) quenches in
a finite time and estimate the quenching time of this solution. We also describe its
quenching set.

2 Local existence

In this section, we show that for small T , the solution of the problem (1.1) − (1.3)
exists in Ω × (0, T ).

Theorem 2.1. There exists a finite time T such that the solution u of the problem
(1.1)− (1.3) exists in Ω× (0, T ).

Theorem 2.2. If the solution u of the problem (1.1)− (1.3) exists in Ω× (0, T )
with

sup
(x,t)∈Ω×(0,T )

u(x, t) < b,

then there exists T
′
> T such that u exists in Ω× (0, T

′
).

Proof of Theorem 2.1. Let U(x, y, t) defined on Ω × Ω × (0,∞), be the fun-
damental solution of the equation

∂v

∂t
− Lv = 0 in Ω × (0,∞)

with the boundary condition

µ
∂v

∂N
+ (1− µ)v = 0 on ∂Ω× (0,∞).

It is well known that

U(x, y, t) > 0 in Ω× (0,∞),
∫

Ω
U(x, y, t)dy ≤ 1 (2.1)

and u is the solution of the problem (1.1)− (1.3) if and only if

u(x, t) =
∫

Ω
U(x, y, t)u(y, 0)dy

+
∫ t

0

∫
Ω

f(u(y, τ ))U(x, y, t− τ )dydτ in Ω × (0, T ). (2.2)
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Put
u1(x, t) = 0,

un+1(x, t) =
∫

Ω
U(x, y, t)u(y, 0)dy +

∫ t

0

∫
Ω

f(un(y, τ ))U(x, y, t− τ )dydτ.

Since f is increasing and U > 0, it follows that un > 0 for all n > 1. Also by
recurrence, we easily show that un+1 ≥ un in Ω× (0, T ). Let δ be a positive number.
Suppose that uo(x) ≤ b − 2δ and un ≤ b − δ, then un+1 ≤ b− δ also provided T is
so small that

(b− 2δ) + f(b− δ)
∫ T

0

∫
Ω

U(x, y, t− τ )dydτ ≤ b− δ,

that is to say T is so small that∫ T

0

∫
Ω

U(x, y, t− τ )dydτ ≤ δ

f(b− δ)
. (2.3)

Since

lim
t→0

∫ t

0

∫
Ω

U(x, y, t− τ )dydτ = 0,

take T so small that (2.3) be satisfied. Thus the sequence (un)n≥1 is an increasing
sequence of continuous functions defined in Ω× (0, T ) and bounded above by b− δ.
By the monotone convergence theorem, limn→∞ un = u exists in Ω × (0, T ) and
satisfies the following equality

u(x, t) =
∫

Ω
U(x, y, t)u(y, 0)dy

+
∫ t

0

∫
Ω

f(u(y, τ ))U(x, y, t− τ )dydτ in Ω× (0, T ).

Then we have the result. �

Remark 2.3. Changing slightly the proof of Theorem 2.1, we easily prove The-
orem 2.2.

3 Sufficient conditions of quenching and global existence

In this section, we characterize the quenching and global existence of the solution
for the problem (1.1) − (1.3) in terms of the stationary solution described in the
following proposition:

Proposition 3.1.
There exists a unique w solution of the following problem:

Lw + 1 = 0 in Ω,

µ
∂w

∂N
+ (1− µ)w = 0 on ∂Ω.

Proof. It is a well known result (see, for instance [5]).



On quenching of solutions for semilinear parabolic equations of second order 77

Theorem 3.2. Let wo be the maximum of the solution for the following boundary
value problem:

Lw + 1 = 0 in Ω,

µ
∂w

∂N
+ (1− µ)w = 0 on ∂Ω.

(α) If wo >
∫ b

0

ds

f(s)
, then the solution u of the problem (1.1)− (1.3) quenches in a

finite time.

(β) If sup
0<s<b−M

s

f(s + M)
≥ wo, then the solution u of the problem (1.1)−(1.3) exists

in Ω× (0,∞) and
sup

(x,t)∈Ω×(0,∞)

u(x, t) ≤ s(M) + M < b

where M = sup
x∈Ω

uo(x) and

s(M) = inf{s ∈ (0, b−M) such that [ sup
0<s<b−M

s

f(s + M)
]f(s + M) = s}.

Proof.
(α) Assume at first that uo(x) = 0. Let (0, Tmax) be the maximum time interval in
which the classical solution u of the problem (1.1)−(1.3) exists. From the maximum
principle, u(x, t) ≥ 0 in Ω× (0, Tmax). Put

v(x, t) = F (u(x, t)) =
∫ u

0

ds

f(s)
. (3.1)

We obtain
∂v

∂t
− Lv =

1

f(u)
(ut − Lu) + [

n∑
i,j=1

aij(x)uxiuxj ]
f
′
(u)

f2(u)
. (3.2)

Since f(u) is an increasing function, from (1.1) we have

∂v

∂t
− Lv − 1 ≥ 0 in Ω× (0, Tmax) (3.3)

and

v(x, t) =
∫ u

0

ds

f(s)
≥ u

f(u)
. (3.4)

From (3.4) and (1.2), we also have

µ
∂v

∂N
=

1

f(u)
µ

∂u

∂N
=
−(1− µ)u

f(u)
≥ −(1− µ)v, (3.5)

that is to say

µ
∂v

∂N
+ (1− µ)v ≥ 0 on ∂Ω× (0, Tmax). (3.6)

Since wo >
∫ b

0

ds

f(s)
and u(x, t) ≤ b in Ω × (0, Tmax), from (3.1) it follows that

sup
(x,t)∈Ω×(0,Tmax)

v(x, t) < wo. (3.7)
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Let z be the solution of the following problem:

∂z

∂t
= Lz + 1 in Ω × (0,∞), (3.8)

µ
∂z

∂N
+ (1− µ)z = 0 on ∂Ω× (0,∞), (3.9)

z(x, 0) = 0 in Ω. (3.10)

¿From the maximum principle, we deduce that

v(x, t) ≥ z(x, t) in Ω× (0, Tmax). (3.11)

We also have
lim
t→∞

z(x, t) = w(x). (3.12)

Therefore from (3.7) and (3.12), there exist xo ∈ Ω and a finite to such that

z(xo, to) > sup
(x,t)∈Ω×(0,Tmax)

v(x, t), (3.13)

which implies that to ≥ Tmax. In fact, suppose that to < Tmax. From (3.11), we
have v(xo, to) ≥ z(xo, to) which contradicts (3.13). Consequently, Tmax is finite and
u quenches in a finite time.
Now, suppose that uo(x) ≥ 0. From the maximum principle

u(x, t) ≥ u1(x, t) in Ω× (0, T1) (3.14)

where u1 is the solution of the problem (1.1) − (1.2) with u1(x, 0) = 0 in Ω and
(0, T1) is the maximum time interval in which the solutions u and u1 exist. From
the above result, we know that u1 quenches in a finite time because

wo >
∫ b

0

ds

f(s)
. (3.15)

Therefore, from (3.14), u also quenches in a finite time which yields the result.

(β) Assume at first that uo(x) = 0. Then M = 0. Put s(M) = so and show that
for any h satisfying the following problem

Lh + f(so) = 0 in Ω, (3.16)

µ
∂h

∂N
+ (1− µ)h = 0 on ∂Ω, (3.17)

we have h ≤ so. In fact put k(x) = f(so)w(x)− h(x). We obtain

Lk(x) = −f(so)− Lh(x) = 0, (3.18)

µ
∂k(x)

∂N
+ (1− µ)k(x) = 0. (3.19)

From the maximum principle, we deduce that

k(x) = f(so)w(x)− h(x) ≥ 0 in Ω,
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that is to say
h(x) ≤ f(so)w(x) ≤ f(so)wo ≤ so. (3.20)

By Theorem 2.1, there exists a time T2 such that u exists in Ω × (0, T2). Put
z(x, t) = h(x)−u(x, t). From the maximum principle, h(x) ≥ 0 in Ω. It follows that

z(x, 0) ≥ 0 in Ω, (3.21)

because uo(x) = 0 in Ω. Since f is an increasing function, from (3.20), we also have

zt − Lz = f(so)− f(u(x, t)) ≥ f(h)− f(u) = f
′
(ξ)z in Ω× (0, T2) (3.22)

where ξ = (1− θ)h + θu < b with 0 ≤ θ ≤ 1. Finally we have

µ
∂z

∂N
+ (1− µ)z = 0 on ∂Ω× (0, T2). (3.23)

From the maximum principle, we obtain h(x) ≥ u in Ω × (0, T2). Consequently

u(x, t) ≤ so < b in Ω × (0, T2). (3.24)

Owing to Theorem 2.2, there exists T
′
2 > T2 such that the solution u of (1.1)− (1.3)

exists in Ω × (0, T
′
2). Reasoning as above, we have u(x, t) ≤ so < b in Ω × (0, T

′
2).

Iterating this process, we obtain u(x, t) ≤ so < b in Ω× (0,∞).
Now, suppose that uo(x) ≥ 0 and let w1 be the solution of the following problem:

∂w1

∂t
= Lw1 + f(w1) in Ω × (0, T ), (3.25)

µ
∂w1

∂N
+ (1− µ)w1 = (1− µ)M on ∂Ω× (0, T ), (3.26)

w1(x, 0) = M in Ω. (3.27)

Put v1(x, t) = w1(x, t)−M . We have

∂v1

∂t
= Lv1 + f1(v1) in Ω× (0, T ), (3.28)

µ
∂v1

∂N
+ (1− µ)v1 = 0 on ∂Ω× (0, T ), (3.29)

v1(x, 0) = 0 in Ω, (3.30)

where f1(v1) = f(v1 + M). We obtain f1(0) = f(M) > 0 and lim
t→b−M

f1(t) = ∞.

From the above result, we know that v1(x, t) exists in Ω×(0,∞) and v1(x, t) ≤ s(M)
in Ω× (0,∞) because

wo ≤ sup
0<s<b−M

s

f1(s)
= sup

0<s<b−M

s

f(s + M)
. (3.31)

This implies that w1(x, t) exists in Ω × (0,∞). Therefore from (3.25) − (3.27), u
exists in Ω × (0, Tmax) and

u(x, t) ≤ w1(x, t) ≤ s(M) + M < b in Ω × (0, Tmax), (3.32)

where (0, Tmax) is the maximum time interval in which u exists. Consequently from
(3.32) and Theorem 2.2, we deduce that Tmax =∞, which yields the result. �



80 T. K. Boni

Remark 3.3. If f(s) = (b− s)−p with p > 0, we have∫ b

0

ds

f(s)
=

bp+1

p + 1
, sup

0<s<b−M

s

f(s + M)
=

(b−M)p+1pp

(p + 1)p+1
and s(M) =

b−M

p + 1
.

Corollary 3.4. Suppose that L = ∆ and Ω contains a domain Ω∗ with piecewise
analytic boundary. For x ∈ Ω∗, denote its harmonic radius by Rx(Ω∗). If

sup
x∈Ω∗

R2
x(Ω∗) > 2n

∫ b

0

ds

f(s)
,

then the solution u of the problem (1.1)− (1.3) quenches in a finite time. If f(s) =
(b− s)−p, then the result holds when

sup
x∈Ω∗

R2
x(Ω∗) >

2nbp+1

p + 1
.

Proof. Let v be the solution of the following problem:

∂v

∂t
= ∆v + f(v) in Ω∗ × (0, T ), (3.33)

v = 0 on ∂Ω∗ × (0, T ), (3.34)

v(x, 0) = uo(x) in Ω∗. (3.35)

¿From the maximum principle u ≥ v in Ω∗ × (0, Tmax) where (0, Tmax) is the max-
imum time interval in which the solutions u and v exist. Let w be the solution of
the following problem:

∆w + 1 = 0 in Ω∗, w = 0 on ∂Ω∗.

From the results in ( [2], Theorem 2.9, p.70), w(x) satisfies the inequality

w(x) ≥ R2
x(Ω∗)

2n
.

By Theorem 3.2 (α), the solution v quenches in a finite time because

wo = sup
x∈Ω∗

w(x) ≥ supx∈Ω∗ R
2
x(Ω∗)

2n
>
∫ b

0

ds

f(s)
.

This implies that u also quenches in a finite time and we have the result. The case
where f(s) = (b− s)−p is a direct consequence of Remark 3.3. �

Remark 3.5. Let Ω∗ be a bounded domain in Rn with piecewise analytic bound-
ary. For x ∈ Ω∗, denote its harmonic radius by Rx(Ω∗). Then we have Rx(Ω∗) ≥
dist(x, ∂Ω∗) (see, for instance[2]).

Corollary 3.6. Suppose that Ω contains a ball B of radius R and let L = ∆.
Then the solution u of (1.1) − (1.3) quenches in a finite time if

R2 > 2n
∫ b

0

ds

f(s)
.
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If f(s) = (b− s)−p, then the result holds when

R2 >
2nbp+1

p + 1
.

Proof. For x ∈ B, let Rx(B) be the harmonic radius of the ball B. by Remark 3.5,
we get sup

x∈B
R2
x(B) ≥ R2. The rest of the proof is a direct consequence of Corollary

3.4. �

Corollary 3.7. Let L = ∆. Suppose that

|Ω| ≤
(

2n sup
0<s<b−M

s

f(s + M)

)n
2

ωn,

where ωn denote the volume of the unit sphere in Rn. Then the solution u of the
problem (1.1) − (1.3) with µ = 0 exists in Ω× (0,∞) and

u(x, t) ≤ s(M) + M in Ω × (0,∞),

where M = sup
x∈Ω

uo(x) and

s(M) = inf{s ∈ (0, b−M) such that [ sup
0<s<b−M

s

f(s + M)
]f(s + M) = s}.

If f(s) = (b− s)−p, then the result holds when

|Ω| ≤
(

2n
(b−M)p+1pp

(p + 1)p+1

)n
2

ωn.

Proof. From the results in ([2]), we know that

w(x) ≤ 1

2n

(
|Ω|
ωn

) 2
n

.

Then by Theorem 3.2 (β), we obtain the result. �

Corollary 3.8. Let L = ∆. Suppose that Ω ⊂⊂ (0, l)×D where D ⊂ Rn−1 is a
bounded domain and (0, l) ⊂ R1. Suppose also that

l ≤
√

8 sup
0<s<b−M

s

f(s + M)
.

Then the solution u of the problem (1.1)− (1.3) with µ = 0 exists in Ω× (0,∞) and

u(x, t) ≤ s(M) + M in Ω × (0,∞),

where M = sup
x∈Ω

uo(x) and

s(M) = inf{s ∈ (0, b−M) such that [ sup
0<s<b−M

s

f(s + M)
]f(s + M) = s}.
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Proof. Since D is a bounded domain, there exist numbers li (i = 2, ..., n) such that
Ω ⊂⊂ (0, l)×∏n

i=2[0, li] = I . Let ψ(x1, x
′
) be a function defined in I by

ψ(x1, x
′
) =

1

2
x1(l − x1),

with x1 ∈ (0, l) and x
′ ∈ ∏n

i=2[0, li]. We obtain

∆ψ(x1, x
′
) + 1 = 0 in I, ψ(x1, x

′
) ≥ 0 on ∂I.

Since ψ(x1, x
′
) > 0 in Ω, from the maximum principle, ψ ≥ w in Ω, where w(x) is

the solution of the following problem

∆w + 1 = 0 in Ω, w = 0 on ∂Ω.

Since ||ψ||L∞(I) =
l2

8
, we also have wo = ||w||L∞(Ω) ≤

l2

8
. Then, by Theorem 3.2 (β),

u exists in Ω × (0,∞) and

u(x, t) ≤ s(M) + M in Ω× (0,∞)

because

wo = ||w||L∞(Ω) ≤
l2

8
≤ sup

0<s<b−M

s

f(s + M)
.

Therefore, we obtain the result. �

4 Application

In this section, we are interested in the existence and nonexistence of the solution
for the problem (1.1) − (1.3) in the case where Ω = Rm × Ωo with 0 ≤ m < n
and Ωo ⊂ Rn−m is a bounded domain. Putting x = (xm, y), we suppose that
the coefficients aij(x) = aij(xm, y) and µ(x) = µ(xm, y) are invariant under the
translation of xm for xm ∈ Rm.

Theorem 4.1. Let wΩo be the maximum of the solution for the following bound-
ary value problem:

Lψ + 1 = 0 in Ωo,

µ
∂ψ

∂N
+ (1− µ)ψ = 0 on ∂Ωo.

(α) If wΩo >
∫ b

0

ds

f(s)
, then the solution u of the problem (1.1) − (1.3) quenches in

a finite time.

(β) If sup
0<s<b−M

s

f(s + M)
≥ wΩo , then the solution u of the problem (1.1) − (1.3)

exists in Ω× (0,∞) and

sup
(x,t)∈Ω×(0,∞)

u(x, t) ≤ s(M) + M < b
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where M = sup
x∈Ω

uo(x) and

s(M) = inf{s ∈ (0, b−M) such that [ sup
0<s<b−M

s

f(s + M)
]f(s + M) = s}.

In the proof of Theorem 4.1, the following lemma will be used.
Lemma 4.2. Suppose that Ω = Rm × Ωo, where Ωo ⊂ Rn−m is a bounded domain.
Then, the problem (1.1) − (1.3) has at most one nonnegative classical solution.
Proof. Let u1 and u2 be two nonnegative classical solutions of the problem (1.1) −
(1.3). Put w2 = u1 − u2. We obtain

∂w2

∂t
= Lw2 + f

′
(ξ)w2 in Ω× (0, T ),

µ
∂w2

∂N
+ (1− µ)w2 = 0 on ∂Ω× (0, T ),

w2(x, 0) = 0 in Ω,

where ξ = (1− θ)u1 + θu2 with θ ∈ [0, 1]. We also have

0 ≤ |w2(x, t)| < b in Ω × (0, T ),

because for i ∈ {1, 2}, 0 ≤ ui(x, t) < b in Ω × (0, T ). Since f
′
(ξ) is bounded

for t < T , the result follows from the Phragmèn-Lindelöf principle (see, for instance
[12]). �

Proof of Theorem 4.1.
(α) Consider the following problem:

∂v

∂t
= Lv + f(v) in Ω× (0, T ), (4.1)

µ
∂v

∂N
+ (1− µ)v = 0 on ∂Ω× (0, T ), (4.2)

v(x, 0) = 0 in Ω. (4.3)

Put x = (xm, y) where xm ∈ Rm and y ∈ Ωo. Let v(x, t) = v(xm, y, t) be a
nonnegative classical solution of the problem (4.1) − (4.3). Since the operators
∂

∂t
− L,

∂

∂N
, the domain Ω and the function µ are invariant under the translation

of xm, for any h ∈ Rm, v1(x, t) = v(xm+h, y, t) is also a nonnegative solution of the
problem (4.1)−(4.3). From the uniqueness of the solution, we have v1(x, t) ≡ v(x, t).
Therefore v(x, t) = v(xm, y, t) depends only on y and t. This implies that the
problem (4.1)− (4.3) can be reduced to the following form:

∂v

∂t
= Ln−mv + f(v) in Ωo × (0, T ), (4.4)

µ
∂v

∂Nn−m
+ (1− µ)v = 0 on ∂Ωo × (0, T ), (4.5)

v(x, 0) = 0 in Ωo, (4.6)
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where

Ln−mv =
n∑

i,j=m+1

∂

∂xi
(aij(x)

∂v

∂xj
),

∂v

∂Nn−m
=

n∑
i,j=m+1

cos(ν, xi)aij(x)
∂v

∂xj
.

By Theorem 3.2 (α), we know that v quenches in a finite time because

wΩo >
∫ b

0

ds

f(s)
. (4.7)

From the maximum principle, we have

u(x, t) ≥ v(x, t) in Rm ×Ωo × (0, Tmax)

where (0, Tmax) is the maximum time interval in which u and v exist. This implies
that u also quenches in a finite time.
(β) Now consider the following problem:

∂w

∂t
= Lw + f(w) in Ω× (0, T ), (4.8)

µ
∂w

∂N
+ (1− µ)w = (1− µ)M on ∂Ω× (0, T ), (4.9)

w(x, 0) = M in Ω, (4.10)

where M = sup
x∈Ω

uo(x) < b. Put w∗(x, t) = w(x, t)−M . We obtain

∂w∗
∂t

= Lw∗ + f∗(w∗) in Ω × (0, T ), (4.11)

µ
∂w∗
∂N

+ (1− µ)w∗ = 0 on ∂Ω× (0, T ), (4.12)

w∗(x, 0) = 0 in Ω, (4.13)

where f∗(w∗) = f(w∗ + M). We also have f∗(0) = f(M) > 0 and lim
t→b−M

f∗(t) =∞.

As above, we know that w∗(x, t) = w∗(xm, y, t) depends only on y and t. Moreover
(4.11)− (4.13) may be written in the following form

∂w∗
∂t

= Ln−mw∗ + f∗(w∗) in Ωo × (0, T ), (4.14)

µ
∂w∗

∂Nn−m
+ (1− µ)w∗ = 0 on ∂Ωo × (0, T ), (4.15)

w∗(x, 0) = 0 in Ωo. (4.16)

Therefore by Theorem 3.2 (β), w∗(x, t) exists in Rm × Ωo × (0,∞) and is bounded
above by s(M) ∈]0, b−M [ because

wΩo ≤ sup
0<s<b−M

s

f∗(s)
= sup

0<s<b−M

s

f(s + M)
. (4.17)

Consequently w(x, t) exists in Rm × Ωo × (0,∞) and is bounded above by s(M) +
M ∈]0, b[. Therefore from (4.8) − (4.10) and the maximum principle, u exists in
Rm ×Ωo × (0, Tmax) and

u(x, t) ≤ w(x, t) ≤ s(M) + M in Rm × Ωo × (0, Tmax) (4.18)

where (0, Tmax) is the maximum time interval in which the solution u exists. Since
s(M) + M < b, from (4.18) and Theorem 2.2, Tmax =∞ and we have the result. �
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Corollary 4.3. Let L = ∆ and suppose that Ω = Rm × Ωo where 0 ≤ m ≤ n
and Ωo ⊂ Rn−m is a bounded domain.
(i) First case: If m = n, then the solution u of the problem (1.1) − (1.3) quenches
in a finite time.
(ii) Second case: If 0 ≤ m < n and Ωo contains a domain Ω∗ with piecewise analytic
boundary such that

sup
x∈Ω∗

R2
x(Ω∗) > 2n

∫ b

0

ds

f(s)
,

then the solution u of the problem (1.1) − (1.3) quenches in a finite time.
If µ = 0 and Ωo ⊂⊂ (0, l)×Do with

l ≤
√

8 sup
0<s<b−M

s

f(s + M)
,

then the solution u of the problem (1.1) − (1.3) exists in Ω × (0,∞) and

sup
(x,t)∈Ω×(0,∞)

u(x, t) ≤ s(M) + M < b

where M = sup
x∈Ω

uo(x) and

s(M) = inf{s ∈ (0, b−M) such that [ sup
0<s<b−M

s

f(s + M)
]f(s + M) = s}.

Proof (i) n = m. The proof is an easy consequence of Corollary 3.6. In fact, since
the Green’s function of the heat equation is positive, we have u ≥ 0 in Rn × (0, T ).
Let B be a ball of radius R such that

R2 > 2n
∫ b

0

ds

f(s)
.

From the maximum principle, we have u ≥ v in B × (0, Tmax) where v is a solution
of the problem (1.1) − (1.2) with v(x, 0) = 0 in the case where Ω = B, µ = 0 and
(0, Tmax) is the maximum time interval in which the solutions u and v exist. Then,
by Corollary 3.6, v quenches in a finite time because

R2 > 2n
∫ b

0

ds

f(s)
.

This implies that u also quenches in a finite time, which yields the result.
(ii) Let v be the solution of the following problem:

∂v

∂t
= ∆v + f(v) in Ωp × (0, T ), (4.19)

v = 0 on ∂Ωp × (0, T ), (4.20)

v(x, 0) = uo(x) in Ωp, (4.21)

where Ωp = Ω∗× (0, T ). ¿From the maximum principle u ≥ v in Rm×Ω∗× (0, Tmax)
where (0, Tmax) is the maximum time interval in which the solutions u and v exist.
Let wΩ∗ be the maximum of the solution for the following problem:

∆w + 1 = 0 in Ω∗, w = 0 on ∂Ω∗.
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From the results in ( [2], Theorem 2.9, p.70), w(x) satisfies the inequality

w(x) ≥ R2
x(Ω∗)

2n
.

By Theorem 4.1 (α), the solution v quenches in a finite time because

wΩ∗ = sup
x∈Ω∗

w(x) ≥ supx∈Ω∗ R
2
x(Ω∗)

2n
>
∫ b

0

ds

f(s)
.

This implies that u also quenches in a finite time and we obtain the first result.
Now let wΩo be the maximum of the solution for the following problem:

∆w + 1 = 0 in Ωo, w = 0 on ∂Ωo.

To prove the second part of our theorem, by Theorem 4.1 (β), it is sufficient to show
that

wΩo = ||w||L∞(Ωo) ≤
l2

8
≤ sup

0<s<b−M

s

f(s + M)
.

But, this follows from the proof of Corollary 3.8. �

5 Another characterization of quenching

In this section, we show that the global existence of the solution for the problem
(1.1)−(1.3) depends on the existence of a certain stationary solution of this problem.

Theorem 5.1.
Consider the following problem:

Lv + f(v) = 0 in Ω, (P1)

µ
∂v

∂N
+ (1− µ)v = 0 on ∂Ω. (P2)

First case: If the solution v of the problem (P1)−(P2) exists with vo = sup
x∈Ω

v(x) < b,

then the solution u of the problem (1.1)− (1.3) exists in Ω× (0,∞) for uo(x) ≤ v(x)
in Ω. Moreover

u(x, t) ≤ vo in Ω× (0,∞).

Second case: If the solution v of the problem (P1) − (P2) does not exist, then the
solution u of the problem (1.1)− (1.3) quenches in a finite time.
The following lemma will be used in the proof of Theorem 5.1.
Lemma 5.2. Suppose that l(s) is a bounded and increasing function in (0,∞). Then
we have

lim
t→∞

l
′
(t) = 0.

Proof. We get ∫ t

0
l
′
(s)ds = l(t)− l(0) ≤ C <∞.

It follows that
∫∞

0 l
′
(s)ds <∞, which leads to the result. �
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Proof of Theorem 5.1.
First case:
Since u is the solution of the problem (1.1) − (1.3), owing to Theorem 2.1, there is
a finite time T such that u(x, t) exists in Ω× (0, T ). From the maximum principle,
it follows that u(x, t) ≤ v(x) < b in Ω × (0, T ) because uo(x) ≤ v(x). By Theorem
2.2, there exists T

′
> T such that u(x, t) exists in Ω× (0, T

′
). Reasoning as above,

we have u(x, t) ≤ vo < b in Ω× (0, T
′
). Iterating this process, we obtain the result.

Second case:
Suppose that sup

x∈Ω
u(x, t) < b for all t ≥ 0. Assume at first that u(x, 0) = 0. Let

G(x, y) be the Green’s function of −L with the following boundary condition :

µ
∂G(x, y)

∂Nx
+ (1− µ)G(x, y) = 0.

Put
w(x, t) =

∫
Ω

G(x, y)u(y, t)dy. (5.1)

We obtain
wt(x, t) =

∫
Ω

G(x, y)ut(y, t)dy. (5.2)

From (1.1) and (5.2), we also have

wt(x, t) = −u(x, t) +
∫

Ω
G(x, y)f(u(y, t))dy. (5.3)

From the maximum principle

ut ≥ 0 in Ω× (0, T ) (5.4)

because Lu(x, 0) + f(u(x, 0)) ≥ 0. Therefore

lim
t→∞

u(x, t) := z(x) (5.5)

exists because u is a bounded and increasing function. Consequently, from (5.3),
(5.4), (5.5) and the monotone convergence theorem, we have

lim
t→∞

wt(x, t) = −z(x) +
∫

Ω
G(x, y)f(z(y))dy. (5.6)

Since
G(x, y) ≥ 0 and sup

x∈Ω

∫
Ω

G(x, y)dy <∞,

from (5.1), (5.2) and (5.4), it follows that wt(x, t) ≥ 0 and w is bounded. Then
Lemma 5.2 implies that lim

t→∞
wt(x, t) = 0 for all x ∈ Ω. Therefore from (5.6), we

obtain
z(x) =

∫
Ω

G(x, y)f(z(y))dy.

Consequently we have
Lz + f(z) = 0 in Ω,

µ
∂z

∂N
+ (1− µ)z = 0 on ∂Ω,
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which is a contradiction to our hypothesis. Therefore, u quenches in a finite time.
Now suppose that u(x, 0) = uo(x) ≥ 0. From the maximum principle,

u(x, t) ≥ v(x, t) in Ω× (0, Tmax) (5.7)

where v is the solution of the problem (1.1)− (1.2) with v(x, 0) = 0 and (0, Tmax) is
the maximum time interval in which u and v exist. From the above result, we know
that v quenches in a finite time. Then from (5.7), u also quenches in a finite time,
which yields the result. �

6 Asymptotic behavior near the quenching time

In this section, we obtain some conditions under which the solution of the problem
(1.1) − (1.3) quenches in a finite time and we describe the asymptotic behavior of
this solution near its quenching time.

Theorem 6.1.
Suppose that the function f(s) is positive, increasing, convex for positive values of

s, Luo(x) + f(uo(x)) ≥ 0 in Ω and
∫ b

0

ds

f(s)
< ∞. Finally suppose that there is a

constant A < b close to b such that

sf
′
(s) ≥ f(s) for s ≥ A.

Then the solution u of the problem (1.1) − (1.3) quenches in a finite time T and
there exist two constants c1 and c2 such that

Hf (c2(T − t)) ≤ sup
x∈Ω

u(x, t) ≤ Hf (c1(T − t))

where Hf (s) is the inverse function of F (s) =
∫ b

s

ds

f(s)
.

Corollary 6.2. Suppose that f(u) = (b−u)−p with p > 0 and Luo(x)+f(uo(x)) ≥
0 in Ω. Then the solution u of the problem (1.1)− (1.3) quenches in a finite time T
and there exist two constants C1 and C2 such that

b− C2(T − t)
1
p+1 ≤ sup

x∈Ω

u(x, t) ≤ b− C1(T − t)
1
p+1 .

Proof of Theorem 6.1.
Let (0, T ) be the maximum time interval in which the solution u of the problem
(1.1) − (1.3) exists. Since uo(x) ≥ 0, from the maximum principle, we have u ≥ 0

in Ω× (0, T ). Put w =
∂u

∂t
. We obtain

∂w

∂t
= Lw + f

′
(u)w in Ω× (0, T ), (6.1)

µ
∂w

∂N
+ (1− µ)w = 0 on ∂Ω× (0, T ), (6.2)
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w(x, 0) ≥ 0 in Ω. (6.3)

From the maximum principle, it follows that

∂u

∂t
≥ c > 0 in Ω× (εo, T ) (6.4)

for εo > 0. Put J(x, t) = ut− δf(u) where δ is a constant which will be determined
later. We have

∂J

∂t
− LJ =

∂

∂t
(ut − Lu)− δf

′
(u)(ut − Lu) + f

′′
(u)[

n∑
i,j=1

aij(x)uxiuxj ]

≥ f
′
(u)ut − δf

′
(u)f(u) = f

′
(u)J in Ω× (0, T )

because f is convex and ut − Lu = f(u). We also have

J(x, εo) = ut(x, εo)− δf(u(x, εo)) in Ω.

From (6.4), choose δ <
c

f(A)
small enough that

J(x, εo) > 0 in Ω. (6.5)

Show that J(x, t) ≥ 0 in Ω × (εo, T ). In fact suppose that J admits a negative
minimum in (xo, to) in Ω × (εo, T ). From the maximum principle, (xo, to) ∈ ∂Ω ×
(εo, T ).
If u(xo, to) < A < b, from (6.4), we have

J(xo, to) = ut(xo, to)− δf(u(xo, to)) ≥ c− δf(A)

because f is an increasing function. Since δ <
c

f(A)
, we obtain J(xo, to) > 0 which

is a contradiction.

If u(xo, to) > A, then we have µ
∂J

∂N
(xo, to) + (1− µ)J(xo, to) < 0, which implies

that
u(xo, to)f

′
(u(xo, to)) < f(u(xo, to)).

Therefore, we have again a contradiction because by hypothesis uf
′
(u) ≥ f(u) for

u ≥ A. We deduce that ut(x, t) ≥ f(u) in Ω × (εo, T ) that is

−(F (u))t ≥ δ. (6.6)

Integrating (6.6) over (εo, T ), it follows that

∞ > F (u(x, εo)) ≥ F (u(x, εo))− F (u(x, T )) ≥ δ(T − εo). (6.7)

Therefore, T is finite and u quenches in a finite time. Integrating again (6.6) over
(t, T ), we have

F (u(x, t)) ≥ F (u(x, t))− F (u(x, T )) ≥ δ(T − t). (6.8)
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Since Hf is a decreasing function, from (6.8) we obtain

sup
x∈Ω

u(x, t) ≤ Hf (δ(T − t)).

Now put U(t) = sup
x∈Ω

u(x, t). Since Ω is compact, there exist xi ∈ Ω (i = 1, 2) such

that U(ti) = u(xi, ti) for ti ≥ 0. Let h = t2 − t1. We also have

U(t2)− U(t1) ≤ u(x2, t2)− u(x2, t1) = hut(x2, t2) + 0(h).

Consequently
U(t2)− U(t1)

t2 − t1
≤ ut(x2, t2) + 0(1). (6.9)

Since Lu(x2, t2) ≤ 0, we obtain

ut(x2, t2) ≤ f(u(x2, t2)) = f(U(t2)). (6.10)

In the fact that

lim
t1→t2

U(t2)− U(t1)

t2 − t1
= U

′
(t2),

from (6.9) and (6.10), we deduce that U
′
(t2) ≤ f(U(t2)). Therefore

sup
x∈Ω

u(x, t) ≥ Hf (T − t),

which gives the result. �

7 Quenching time.

In this section, we give some conditions under which the solution of the problem
(1.4)− (1.6) quenches in a finite time and estimate its quenching time.

Theorem 7.1. Suppose that
∫ b

0

ds

g(s)
< ∞ and for positive values of s, g(s) is

positive and increasing. Then the solution u of the problem (1.4) − (1.6) quenches
in a finite time T and

T ≤ |Ω||∂Ω|

∫ b

m

ds

g(s)
,

where m = inf
x∈Ω

u∗(x).

Proof. Let (0, T ) be the maximum time interval in which the solution u of the
problem (1.4) − (1.6) exists. Our aim is to show that T is finite and satisfies the
above inequality. Since u∗(x) ≥ 0 in Ω, from the maximum principle u(x, t) ≥ 0 in

Ω× (0, T ). Multiplying (1.4) by
1

g(u)
, we have after integration over Ω

− d

dt

∫
Ω

G(u(x, t))dx =
∫
∂Ω

ds +
∫

Ω

g
′
(u)

g2(u)

n∑
i,j=1

aij(x)
∂u

∂xi

∂u

∂xj
dx, (7.1)
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where G(s) =
∫ b

s

dz

g(z)
. Since g is an increasing function, from (7.1) we obtain

− d

dt

∫
Ω

G(u(x, t))dx ≥ |∂Ω|. (7.2)

Integrating (7.2) over (0, T ) and using the fact that G(u(x, T )) ≥ 0, we have

∞ > |Ω|
∫ b

m

ds

g(s)
≥
∫

Ω

∫ b

u∗(x)

ds

g(s)
dx ≥ T |∂Ω|. (7.3)

Then the solution u of the problem (1.4)− (1.6) quenches in a finite time T and we
obtain the result. �

8 Quenching set.

In this section, we describe the quenching set of the solution for the problem (1.4)−
(1.6). More precisely, we show that under some conditions, the solution of the
problem (1.4) − (1.6) quenches in a finite time and its quenching set is on the
boundary ∂Ω of the domain Ω.

Theorem 8.1.

Suppose that
∫ b

0

dz

g(z)
< +∞, Lu∗(x) ≥ 0 and for positive values of s, g(s) is positive,

increasing and convex. Then the solution u of the problem (1.4)− (1.6) quenches in
a finite time T and there is a constant δ > 0 such that the following estimate holds:

sup
x∈Ω

u(x, t) ≤ Hg(δ(T − t))

where Hg(s) is the inverse function of G(s) =
∫ b

s

dz

g(z)
.

Theorem 8.2. Suppose that the hypotheses of Theorem 8.1 are satisfied. Suppose
also that there is a positive constant Co such that

sg
′
(Hg(s)) ≤ Co for s > 0.

Then the solution u of the problem (1.4) − (1.6) quenches in a finite time T and
EQ ⊂ ∂Ω, where EQ is the quenching set of the solution u.

Remark 8.3. If g(s) = (b− s)−p, then we may take Co =
p

p + 1
.

Proof of Theorem 8.1. Let (0, T ) be the maximum time interval in which the
solution u of the problem (1.4)− (1.6) exists and put w = ut. Since Lu∗(x) ≥ 0, we
have

∂w

∂t
− Lw = 0 in Ω× (0, T ),

∂w

∂N
= g

′
(u)w on ∂Ω× (0, T ),

w(x, 0) ≥ 0 in Ω.
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¿From the maximum principle

w(x, t) ≥ c > 0 in Ω × (εo, T ), (8.1)

for εo > 0. Consider the following function: J(x, t) = ut − δg(u). From (8.1), take
δ small enough that

J(x, εo) = ut(x, εo)− δg(u(x, εo)) > 0. (8.2)

We also have

∂J

∂N
= g

′
(u)(ut − δg(u)) = g

′
(u)J on ∂Ω× (εo, T ). (8.3)

Finally we have

∂J

∂t
− LJ =

∂

∂t
(ut − Lu)− δg

′
(u)(ut − Lu) + g

′′
(u)[

n∑
i,j=1

aij(x)uxiuxj ].

Since g is a convex function, from (1.4) we obtain

Jt − LJ ≥ 0 in Ω × (εo, T ). (8.4)

From the maximum principle, we deduce that

J(x, t) ≥ 0 in Ω× (εo, T ),

that is to say

ut ≥ δg(u) in Ω× (εo, T ). (8.5)

Since
∫ b

0

dz

g(z)
< +∞, then the function G(s) =

∫ b

s

dz

g(z)
is well defined. Therefore

from (8.5), it follows that

−(G(u))t ≥ δ in Ω× (εo, T ). (8.6)

Integrating (8.6) over (εo, T ), we have

∞ > G(u(x, εo)) ≥ G(u(x, εo))−G(u(x, T )) ≥ δ(T − εo).

This implies that T is finite and u quenches in a finite time. On the other hand,
integrating (8.6) over (t, T ), we also have

G(u(x, t)) ≥ G(u(x, t))−G(u(x, T )) ≥ δ(T − t).

Since G is a decreasing function, so is Hg and we obtain

sup
x∈Ω

u(x, t) ≤ Hg(δ(T − t)).

Therefore, the theorem is proved. �
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Proof of Theorem 8.2.
By Theorem 8.1, we know that u quenches in a finite time T . Then our aim is to
show that EQ ⊂ ∂Ω. Let d(x) =dist(x, ∂Ω) and v(x) = d2(x) for x ∈ Nε(∂Ω) where

Nε(∂Ω) = {x ∈ Ω such that d(x) < ε}.

Since ∂Ω is of class C2, then the function v(x) ∈ C2(Nε(∂Ω)) if ε is sufficiently
small. On ∂Ω, we have

Lv − Co

v

n∑
i,j=1

aij(x)vxivxj

=
n∑
i=1

aii(x)vxixi +
n∑
i=1

(
n∑
j=1

∂aij(x)

∂xj
)vxi −

Co

v

n∑
i,j=1

aij(x)vxivxj

= 2
n∑
i=1

aii(x) + 2d
n∑
i=1

(
n∑
j=1

∂aij(x)

∂xj
)dxi − 4Co

n∑
i,j=1

aij(x)dxidxj

≥ −2
n∑
i=1

|aii(x)| − 2d
′
n∑
i=1

|
n∑
j=1

∂aij(x)

∂xj
||∇d| − 4Coλ2|∇d|2

where d
′
= sup

x∈Ω,y∈Ω

||x− y||. Therefore, there exists a positive constant C1 such that

Lv − Co

v

n∑
i,j=1

aij(x)vxivxj ≥ −C1 on ∂Ω.

Since v ∈ C2(Nε(∂Ω)) for ε sufficiently small, let εo be so small that

Lv − Co

v

n∑
i,j=1

aij(x)vxivxj ≥ −2C1 in Nεo(∂Ω).

We extend v to a function on Ω such that v ∈ C2(Ω) and v ≥ C∗o > 0 in Ω−Nεo(∂Ω).
Then we have

Lv − Co

v

n∑
i,j=1

aij(x)vxivxj ≥ −C∗ in Ω (8.7)

for some C∗ > 0. Since Hg(0) = b, multiplying (8.7) by ε small enough, we may
assume without loss of generality that C∗ and v are sufficiently small so that

Hg(δ(v(x) + C∗(T − εo))) > u(x, εo). (8.8)

Put w(x, t) = Hg(τ ) where τ = δ(v(x) + C∗(T − t)) . From (8.8), we obtain

w(x, εo) > u(x, εo) in Ω.

We also have

wt − Lw = −δH
′

g(τ )[C∗+ Lv + δ
H
′′
g (τ )

H ′
g(τ )

n∑
i,j=1

aij(x)vxivxj ]. (8.9)
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Since Hg(s) is the inverse function of G(s), we have H
′
g(s) = −g(Hg(s)) and H

′′
g (s) =

−H
′
g(s)g

′
(Hg(s)). Consequently

wt − Lw = δg(Hg(s))[C
∗+ Lv − δg

′
(Hg(τ ))

n∑
i,j=1

aij(x)vxivxj ]. (8.10)

Since sg
′
(Hg(s)) ≤ Co for s > 0, using the fact that g

′
(Hg(s)) is a decreasing

function (g
′
is increasing and Hg is decreasing), we have

wt − lw ≥ δg(Hg(τ ))[C∗ + Lv − Co

v

n∑
i,j=1

aij(x)vxivxj ]. (8.11)

From (8.7) and (8.11), we deduce that

wt − Lw ≥ 0 in Ω × (εo, T ). (8.12)

We also have

w(x, t) = Hg(δC
∗(T − t)) > Hg(δ(T − t)) on ∂Ω× (εo, T ) (8.13)

because C∗ < 1, which implies that

w(x, t) > u(x, t) on ∂Ω× (εo, T ). (8.14)

Consequently, from the maximum principle, it follows that

u(x, t) < w(x, t) in Ω× (εo, T ). (8.15)

Since Hg is decreasing, we obtain

u(x, t) ≤ Hg(δ(v(x) + C∗(T − t))) ≤ Hg(δv(x)). (8.16)

Then if Ω
′ ⊂⊂ Ω, from (8.16) we have

sup
x∈Ω′ ,t∈[εo,T )

u(x, t) ≤ sup
x∈Ω′

Hg(δv(x)) < b,

which yields the result. �
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