On quenching of solutions for some semilinear
parabolic equations of second order

Théodore K. Boni

1 Introduction

Let © be a bounded domain in R® with boundary 9 of class C?. Consider the
following boundary value problems:
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Here the coefficients a;;(x) € C1() satisfy the inequalities

n

Ao|€? > Z ai; ()&& > M€

ij=1

for any £ € R" and o € Q with positive constants )\; (i = 1,2), v is the exterior
normal unit vector on 9Q, u € [0,1[ is a function of class C* on 9Q. For positive
values of u, f(u), g(u) are positive and increasing functions with

f(0)>0,  lim f(u) = oo,

u—b—

9(0) >0,  lim g(u) = oo,

u—b—

where b is a positive number. u,(x) and u.(z) are two nonnegative functions of class
C(2) such that

M =supuy(z) <b, M =supu,(z)<b,
xeQ z€eN

,ugflj\; + (1 — p)u, = 0 on 02 and % = g(us) on 0N. In this note, we study the

phenomenon of quenching for the problems (1.1) — (1.3) and (1.4) — (1.6).
Definition 1.1. We say that the solution u of the problem (1.1)—(1.3) or (1.4)—(1.6)
quenches in a finite time if there exists a finite time T, such that

,}H% ilelgu(l', t) =b.

T, is the quenching time of the solution u. x € §) is a quenching point of the solution
w if there exists a sequence (x,,t,) such that x, — x, t, T T, and nh_)rglo w(zp,ty,) = b.
The set

Eq={x€Q suchthat xis a quenching point of the solution u}

is the quenching set of the solution u.

The problem of quenching has been the subject of study of many authors (see, for
instance[1,3,4,6,7,8,9,10] and others). In particular in [1], the authors have consid-
ered the problem (1.1) — (1.3) in the case where p = 0. They have shown that if
is small enough, then the solution of the problem (1.1) — (1.3) exists in £ x (0, 00)
whereas if {2 is large enough, the solution quenches in a finite time. In this paper,
we give other characterizations of quenching for the problem (1.1) — (1.3) based on
the nature of certains stationary solutions. These characterizations will be used to
obtain the existence and nonexistence of the solution for the problem (1.1) —(1.3) in
the case where €2 is unbounded. Moreover, using some isoperimetric inequalities, we
also precise some results of Acker and Walter in [1]. Another subject of investigation
of the phenomenon of quenching is the quenching set. For the problem (1.1) — (1.3),
some results about quenching set have been given in [4]. More precisely, it is proved
that under some conditions, the solution of the problem (1.1) — (1.3) in the case
where 1 = 0 quenches in a finite time and its quenching set is in a compact subset of
2. For the problem (1.4) — (1.6), we show that under some hypotheses the solution
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of (1.4) — (1.6) quenches in a finite time and its quenching set is on the boundary
0N of the domain €2. The paper is written in the following manner. In Section 2, we
obtain the local existence of the solution for the problem (1.1) — (1.3). In Section 3,
we characterize the quenching and global existence of the solution for the problem
(1.1) — (1.3) in terms of a certain stationary solution. In Section 4, we apply the
results of Section 3 to study the existence and nonexistence of the solution for the
problem (1.1) — (1.3) in the case where €2 is unbounded. In Section 5, we show that
the existence of the solution for the problem (1.1) — (1.3) depends on the existence
of a certain stationary solution of this problem. In Section 6, we get other quenching
conditions of the solution for the problem (1.1) — (1.3). We also give the asymptotic
behavior near the quenching time of this solution. In Sections 7 and 8, we obtain
some conditions under which the solution of the problem (1.4) — (1.6) quenches in
a finite time and estimate the quenching time of this solution. We also describe its
quenching set.

2 Local existence

In this section, we show that for small 7', the solution of the problem (1.1) — (1.3)
exists in 2 x (0, 7).

Theorem 2.1. There exists a finite time'l’ such that the solution u of the problem
(1.1) — (1.3) exists in Q2 x (0,T).

Theorem 2.2. If the solution u of the problem (1.1) — (1.3) exists in Q x (0,7T)
with

sup  u(z,t) <b,
(2,)€Qx(0,T)

then there exists T' > T such that u exists in Q x (0,T").

Proof of Theorem 2.1. Let U(x,y,t) defined on  x Q x (0,00), be the fun-
damental solution of the equation

9,
a—j—L’u:O in 2 x(0,00)

with the boundary condition

u%+(1—ﬂ)v:0 on 092 x (0,00).
It is well known that
U(z,y,t) >0 in Qx (0,00), /_U(x,y,t)dy <1 (2.1)
Q

and u is the solution of the problem (1.1) — (1.3) if and only if

u(z,t) = QU(x,y,t)U(y,O)dy

+/Ot/9f(u(y,7'))U(x,y’t_ T)dydr in  Qx(0,7). (2.2)
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Put

uy(z,t) =0,

Upi1(w,t) = /U(x y, t)u(y,0 dy+/ /f un(y, 7))U (2, y,t — 7)dydr.

Since f is increasing and U > 0, it follows that w, > 0 for all n > 1. Also by
recurrence, we easily show that w,1 > u, in Q x (0,7). Let ¢ be a positive number.
Suppose that u,(x) < b — 26 and u, < b— 9, then u,1 < b— 9§ also provided T is
so small that

(b—20)+ f(b—4d // (2,y,t — T)dydr < b— 3,

that is to say 7' is so small that

)
x,y,t — 7)dydr < ———. 2.3
/ / Yot = Tyl < S (2:3)
Since
%iHOI/ / x,y,t — 7)dydr =0,

take 7" so small that (2.3) be satisfied. Thus the sequence (uy,),>1 is an increasing
sequence of continuous functions defined in 2 x (0,7") and bounded above by b — ¢.
By the monotone convergence theorem, lim, . u, = w exists in Q x (0,7") and
satisfies the following equality

u(a,t) = [ Ula,y,)uly. 0)dy

[ Sty Uyt = ndydr @ (0.T).

Then we have the result. n

Remark 2.3. Changing slightly the proof of Theorem 2.1, we easily prove The-
orem 2.2.

3 Sufficient conditions of quenching and global existence

In this section, we characterize the quenching and global existence of the solution
for the problem (1.1) — (1.3) in terms of the stationary solution described in the
following proposition:

Proposition 3.1.

There exists a unique w solution of the following problem:
Lw+1=0 in €,

ow

Hon

Proof. 1t is a well known result (see, for instance [5]).

+(1=—pww=0 on N
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Theorem 3.2. Let w, be the mazximum of the solution for the following boundary

value problem:
Lw+1=0 in €,

— 4+ (1 - = Q.
,uaN—i—( ww=0 on 0

b d
() If w, > / ﬁi)’ then the solution w of the problem (1.1) — (1.3) quenches in a
0

finite time.

(8) [f0<§B£M f(s+M)

in 2 x (0,00) and

> w,, then the solution u of the problem (1.1)—(1.3) exists

sup  u(z,t) <s(M)+M<b
(z,t)€02x(0,00)

where M = sup u,(z) and
€

s(M) =inf{s € (0,b — M)  such that [ sup

0<s<b—M f(S + M)]f(s * M) - S}.

Proof.

() Assume at first that u,(x) = 0. Let (0, Tinq,) be the maximum time interval in
which the classical solution u of the problem (1.1) —(1.3) exists. From the maximum
principle, u(x,t) > 0 in X (0, Ti4.). Put

v ds
v(x,t) = F(u(x,t)) = —. 3.1
(,8) = Flu(z,t)) = | 70s) (3.1)
We obtain )
ov 1 " f(u
— —Lv=——(u; — Lu) + Qi (T ) U, Uy ; . 3.2
Since f(u) is an increasing function, from (1.1) we have
% —Lv—1>0 in Qx(0,Tha) (3.3)
and p
u (s u
vx,t:/—z—. 3.4
=0 T = T o
From (3.4) and (1.2), we also have
ov 1 Ou —(1—pu
- y—— =7 > _(1 - .
that is to say
ov
— — > . .
byt (1—pwo>0 on 92 x (0, ) (3.6)
b
Since w, > % and u(x,t) < bin Q x (0, Tynez), from (3.1) it follows that
o f(s
sup v(x,t) < w,. (3.7)

(z,t) €% (0,Tmaz)
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Let z be the solution of the following problem:

0z

—=Lz+1 in Qx(0,00), (3.8)
ot
9% 1 p)r=o0 99 x (0, ) (3.9)
M@N M)z = on y ), '
2(z,00=0 in Q. (3.10)

JFrom the maximum principle, we deduce that

v(x,t) > z(z,t) in Qx (0, Thae)- (3.11)
We also have
Jim z(x,t) = w(z). (3.12)

Therefore from (3.7) and (3.12), there exist z, € Q and a finite ¢, such that

2(To, to) > sup v(x,t), (3.13)
(2,£)€Q% (0, Trmaz)
which implies that t, > T... In fact, suppose that t, < Te.. From (3.11), we
have v(z,,t,) > z(x,,t,) which contradicts (3.13). Consequently, T}, is finite and
u quenches in a finite time.
Now, suppose that u,(x) > 0. From the maximum principle

u(z,t) > ui(x,t) in Qx(0,71) (3.14)

where u; is the solution of the problem (1.1) — (1.2) with u;(z,0) = 0 in 2 and
(0,71) is the maximum time interval in which the solutions u and u; exist. From
the above result, we know that u; quenches in a finite time because

b ds
w, > 0 T0s)° (3.15)

Therefore, from (3.14), u also quenches in a finite time which yields the result.

(8) Assume at first that u,(z) = 0. Then M = 0. Put s(M) = s, and show that
for any h satisfying the following problem

Lh+f(s)) =0 in € (3.16)
pon (1—p)h=0 on 09, (3.17)
we have h < s,. In fact put k(x) = f(s,)w(z) — h(z). We obtain
Lk(z) = —f(so) — Lh(x) = 0, (3.18)
ua§§$> + (1 —pk(x)=0. (3.19)

From the maximum principle, we deduce that

k(x) = f(so)w(x) —h(x) >0 in €,
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that is to say
h(z) < f(so)w(z) < f(so)we < Sp. (3.20)

By Theorem 2.1, there exists a time 75 such that u exists in  x (0,73). Put
z(x,t) = h(z) —u(z,t). From the maximum principle, h(z) > 0 in Q. It follows that

2(x,0) >0 in €, (3.21)

because u,(z) = 0in €. Since f is an increasing function, from (3.20), we also have

/

z— Lz = f(so) — f(u(z,t)) > f(h) — fu) = [(§)z in Qx(0,Tn) (3.22)
where £ = (1 —0)h 4+ fu < b with 0 < 6 < 1. Finally we have

0z

From the maximum principle, we obtain h(z) > u in Q x (0,7%). Consequently
u(z,t) <s, <b in  Qx(0,T7). (3.24)

Owing to Theorem 2.2, there exists T, > Ty such that the solution u of (1.1) — (1.3)
exists in Q x (0,7,). Reasoning as above, we have u(z,t) < s, < bin Q x (0,T}).
[terating this process, we obtain u(x,t) < s, < bin Q x (0, c0).

Now, suppose that u,(x) > 0 and let w; be the solution of the following problem:

% = Lwi + f(w) in Qx(0,T), (3.25)
8w1
PN +(1—pwr=1—p)M on 0Qx(0,T), (3.26)
wi(xz,0)=M in Q. (3.27)
Put vy (z,t) = wy(z,t) — M. We have

% = Lo, + fitv1) in Qx(0,T), (3.28)

O =@ =0 on 90 x (0,T) (3.29)

Pan vy = 0 1), :
v1(z,0) =0 in €, (3.30)

Q.

where fi(vi) = f(vy + M). We obtain f1(0) = f(M) > 0 and . lime fi(t) =
From the above result, we know that vy (x,t) exists in 2 x (0, 00) and vy (z,t) < s(M)
in © x (0, 00) because

w, < sup ° (3.31)

—_— = su P E——
0<s<b—M fl(S) 0<s<£M f(S + M)

This implies that wy(z,t) exists in ©Q x (0,00). Therefore from (3.25) — (3.27), u
exists in © X (0, Thnqz) and

u(z,t) <w (z,t) <s(M)+M<b in Qx(0,Thea), (3.32)

where (0, Tynqz) is the maximum time interval in which u exists. Consequently from
(3.32) and Theorem 2.2, we deduce that T, = 00, which yields the result. n



80 T. K. Boni

Remark 3.3. If f(s) = (b — s)? with p > 0, we have

Pds T su i _ o= My and S(M)_b_M
o f(s) p+1 0<s<lng(S+M)_ (p+ 1)pt1 - :

Corollary 3.4. Suppose that L = A and ) contains a domain $2,. with piecewise
analytic boundary. For x € (., denote its harmonic radius by R, (S2). If
b ds
sup R2(Q,) > 2n | ——,
o Tl = 20 J 56
then the solution u of the problem (1.1) — (1.3) quenches in a finite time. If f(s) =
(b — s)7P, then the result holds when

2nbPt!
sup R%(9.) > )
a:efli m( ) p+1

Proof. Let v be the solution of the following problem:
v

5 = Av+ f(v) in Q. x(0,7), (3.33)
v=0 on 00 x(0,T), (3.34)
v(z,0) =uo(z) in Q.. (3.35)

;From the maximum principle u > v in €, X (0, T)n4z) where (0, Tynaz) is the max-
imum time interval in which the solutions v and v exist. Let w be the solution of
the following problem:

Aw+1=0 in €Q,, w=0 on 09,.
From the results in ( [2], Theorem 2.9, p.70), w(x) satisfies the inequality

R()
w(x) > —om

By Theorem 3.2 («), the solution v quenches in a finite time because

Sup,cq. R2(L) b ds

w, = sup w(x) > > —_—.

megli (z) 2n o f(s)
This implies that u also quenches in a finite time and we have the result. The case
where f(s) = (b — s)7? is a direct consequence of Remark 3.3. ]

Remark 3.5. Let €2, be a bounded domain in R™ with piecewise analytic bound-
ary. For z € ), denote its harmonic radius by R,(£2.). Then we have R,(€) >
dist(z, 0€2,) (see, for instance[2]).

Corollary 3.6. Suppose that ) contains a ball B of radius R and let L = A.
Then the solution u of (1.1) — (1.3) quenches in a finite time if
b d
R*>2n el

o f(s)
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If f(s) = (b—s)7P, then the result holds when

2nbP Tt

R? > .
p+1

Proof. For x € B, let R,(B) be the harmonic radius of the ball B. by Remark 3.5,
we get sup R2(B) > R?. The rest of the proof is a direct consequence of Corollary
zeB

3.4. [
Corollary 3.7. Let L = A. Suppose that
0] < (2 s\
n o sup —————— | Wy,
o 0<s<bp—M f(S + M)

where w, denote the volume of the unit sphere in R". Then the solution u of the
problem (1.1) — (1.3) with p = 0 exists in 2 x (0,00) and

u(z,t) < s(M)+ M in Qx(0,00),

where M = sup u,(z) and
€

s(M) =inf{s € (0,b — M)  such that [ sup

0<s<b—M f(S + M)]f(s * M) - S}.

If f(s) = (b—s)7P, then the result holds when

(b— Myr+ipr®

Proof. From the results in ([2]), we know that

w(e) < 5 (Lﬁ'>_

Then by Theorem 3.2 (3), we obtain the result. ]

Corollary 3.8. Let L = A. Suppose that  CC (0,1) x D where D C R"! is a
bounded domain and (0,1) C R'. Suppose also that

s
1< ,/8 sup ————.
o \/ 0<s<bp—M f(S + M)
Then the solution u of the problem (1.1) — (1.3) with p = 0 exists in Q x (0,00) and
u(z,t) < s(M)+M in £ x(0,00),

where M = sup u,(z) and
€

s(M) =inf{s € (0,b — M)  such that | sup

o<s<b—m f(s+ M)]f(s + M) = s}
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Proof. Since D is a bounded domain, there exist numbers [; (i = 2, ...,n) such that
QCcC(0,1) x [T5[0,1,] = I. Let (z1,2") be a function defined in I by

/

Y(zy,2) = %xl(l — 1),

with o, € (0,1) and z" € T]",[0,1;]. We obtain

/

AY(z1,2)+1=0 in I, o(z1,2)>0 on dl.

Since ¥(x1, ) > 0 in ©Q, from the maximum principle, ¢» > w in Q, where w(z) is
the solution of the following problem

Aw+1=0 in Q  w=0 on N

12 12
Since ||| o1y = 5 e also have w, = ||w||f~@) < 5 Then, by Theorem 3.2 (53),

u exists in 2 x (0, 00) and

u(z,t) <s(M)+ M in Qx(0,00)

because
olime < & < :
W = ||| < =< sup —m—.
L@ 8 0<s<£M f(S + M)
Therefore, we obtain the result. [
4 Application

In this section, we are interested in the existence and nonexistence of the solution
for the problem (1.1) — (1.3) in the case where @ = R™ x Q, with 0 < m < n
and Q, C R"™ is a bounded domain. Putting z = (z,,,y), we suppose that
the coefficients a;j(x) = aij(zm,y) and p(r) = p(zm,,y) are invariant under the
translation of x,, for x,, € R™.

Theorem 4.1. Let wq, be the maximum of the solution for the following bound-
ary value problem:

Ly+1=0 in Q.

— 4+ (1—=pwy=0 on 09,

b
() If wg, > / %, then the solution u of the problem (1.1) — (1.3) quenches in
o f(s

a finite time.

If sup ———
(ﬁ) / 0<s<IP—M f(S + M)
ezists in £ x (0,00) and

> wgq,, then the solution u of the problem (1.1) — (1.3)

sup  u(z,t) <s(M)+M<b
(z,t)€02x(0,00)
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where M = sup u,(z) and
€

s(M) =inf{s € (0,b — M such that su yA——
( ) { ( ) [0<s<IP—M f(S + M)

1f(s+ M) = s}.

In the proof of Theorem 4.1, the following lemma will be used.
Lemma 4.2. Suppose that 2 = R™ x Q,, where 0, C R"™™ 1is a bounded domain.
Then, the problem (1.1) — (1.3) has at most one nonnegative classical solution.
Proof. Let u; and us be two nonnegative classical solutions of the problem (1.1) —
(1.3). Put wy = w3 — uz. We obtain

% = Lws+ f(ws in Qx(0,T),
Q02 (1= s = 0 o0 % (0,T)
M@N w2 = on ) ’

wy(z,0) =0 in Q,
where & = (1 — 0)u; + Qus with 6 € [0, 1]. We also have

0 < |wy(x,t)]<b in Qx(0,T),

because for i € {1,2}, 0 < w(w,t) < b in  Qx (0,7). Since f(£) is bounded
for t < T, the result follows from the Phragmen-Lindeldf principle (see, for instance
[12]). n

Proof of Theorem 4.1.
() Consider the following problem:

ov

5 = Lv+ f(v) in Qx(0,7), (4.1)
u% +(1—pwov=0 on 9Qx(0,T), (4.2)
v(z,0)=0 in . (4.3)

Put = (2,,y) where z,, € R™ and y € Q,. Let v(z,t) = v(xm,y,t) be a
nonnegative classical solution of the problem (4.1) — (4.3). Since the operators

0 0

ETh L, N the domain 2 and the function p are invariant under the translation

of ,,, for any h € R™, v1(x,t) = v(x;, + h,y,t) is also a nonnegative solution of the
problem (4.1) —(4.3). From the uniqueness of the solution, we have vy(x,t) = v(x,t).
Therefore v(z,t) = v(xy,,y,t) depends only on y and ¢. This implies that the
problem (4.1) — (4.3) can be reduced to the following form:

% =Lp_mv+ f(v) in Q,x(0,7T), (4.4)
W =0 99, x (0,7) (4.5)
,uaNn_m IMOES on o ,T), .

v(z,0)=0 in Q,, (4.6)
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where
- 0 ov ov - ov
Ly_mv = —(a;j(x) =), = cos(v, x;)a;(x) =—.
i,jzm+1 Oz; " 7 Ox; ONn—m i,jzm-i—l 7 O
By Theorem 3.2 («), we know that v quenches in a finite time because
b ds
wq, > —_—. 4.7
o 76) 0

From the maximum principle, we have
u(z,t) >v(z,t) in R™ xQ X (0, Tha)
where (0, Tpnaz) is the maximum time interval in which v and v exist. This implies

that u also quenches in a finite time.
(8) Now consider the following problem:

aa—/f =Lw+ f(w) in Qx(0,7T), (4.8)
ow
P +(1-—pw=1—-p)M on 09Q2x(0,T), (4.9)
w(z,0) =M in € (4.10)
where M = sup u,(x) < b. Put w,(z,t) = w(z,t) — M. We obtain
€

Ow, .

5 = Lw, + f(w,) in Qx(0,T), (4.11)
Ow,

FoN +(1—pw,=0 on 0902 x(0,7), (4.12)
wi(xz,0) =0 in € (4.13)

where f.(w,) = f(w, + M). We also have f.(0) = f(M) > 0 and t—l>ibIElM f«(t) = 0.

As above, we know that w,(x,t) = w.(xm,y,t) depends only on y and ¢. Moreover
(4.11) — (4.13) may be written in the following form

ow,

5 — Ly_pmws+ fi(ws) in  Q,x(0,7), (4.14)
O (1= . =0 99, x (0,7) (4.15)

HaN pw, =0 on 0 1), :
wie(x,0) =0 in €. (4.16)

Therefore by Theorem 3.2 (), w.(x,t) exists in R™ x , x (0,00) and is bounded
above by s(M) €]0,b — M| because

sup SR i (4.17)

su —_—.
0<s<b—M f*(S) 0<s<IP—M f(S + M)

Consequently w(z, t) exists in R™ x £, x (0,00) and is bounded above by s(M) +
M €]0,b]. Therefore from (4.8) — (4.10) and the maximum principle, u exists in
R™ x Q, % (0, Tynaz) and

u(z,t) <w(z,t) <s(M)+ M in R™xQ, % (0, Thaz) (4.18)

waq, <

where (0, Tynaz) is the maximum time interval in which the solution u exists. Since
s(M)+ M < b, from (4.18) and Theorem 2.2, T,,,, = 0o and we have the result. m
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Corollary 4.3. Let L = A and suppose that 2 = R™ x Q, where 0 < m < n
and 0, C R™™ s a bounded domain.
(1) First case: If m = n, then the solution u of the problem (1.1) — (1.3) quenches
n a finite time.
(17) Second case: If 0 < m < n and Q, contains a domain . with piecewise analytic

boundary such that
b ds
sup R2(Q) >2n [ ——,
) =20 ) 3G
then the solution u of the problem (1.1) — (1.3) quenches in a finite time.

If =20 and Q, CC (0,1) x D, with

S
[<,/8 sup ——m—,
o \/ 0<s<bp—M f(S +M)

then the solution u of the problem (1.1) — (1.3) exists in 2 x (0,00) and

sup  u(z,t) <s(M)+M<b
(z,t)€0x(0,00)

where M = sup u,(z) and
€

S
s(M) =inf{s € (0,b — M such that su —_
(M) {s e ) [O<S<£M )

1f(s+ M) = s}.
Proof (i) n = m. The proof is an easy consequence of Corollary 3.6. In fact, since
the Green’s function of the heat equation is positive, we have u > 0 in R™ x (0,7).
Let B be a ball of radius R such that

b d
R>om [ 2
o f(s)
From the maximum principle, we have u > v in B X (0, T},4,) where v is a solution
of the problem (1.1) — (1.2) with v(z,0) = 0 in the case where Q2 = B, u = 0 and
(0, Trnaz) is the maximum time interval in which the solutions u and v exist. Then,
by Corollary 3.6, v quenches in a finite time because
b d
R*>2n ey
o f(s)
This implies that u also quenches in a finite time, which yields the result.
(ii) Let v be the solution of the following problem:

% =Av+ f(v) in Q,x(0,7), (4.19)
v=0 on 09Q,x(0,T), (4.20)
v(x,0) =uo(z) in Q,, (4.21)

where Q, = Q, x (0,7"). jFrom the maximum principle u > v in R™ x Q, X (0, Trnaz)
where (0, Tpnar) is the maximum time interval in which the solutions u and v exist.
Let wq, be the maximum of the solution for the following problem:

Aw+1=0 in Q, w=0 on 0Jf,.



86 T. K. Boni

From the results in ( [2], Theorem 2.9, p.70), w(x) satisfies the inequality

R()
w(z) > o

By Theorem 4.1 (), the solution v quenches in a finite time because

SUp,cq. R2(%) b ds
> —.
o f(s)
This implies that u also quenches in a finite time and we obtain the first result.
Now let wq, be the maximum of the solution for the following problem:

Wq, = sup w(x) >
Q. a:efIZ)* (z) > o

Aw+1=0 in €, w=0 on 0.

To prove the second part of our theorem, by Theorem 4.1 (), it is sufficient to show

that
2

S
wq, = ||W||Le < =< su Ty E——
o || ||L (o) = 8 — 0<s<IP—M f(S+M)
But, this follows from the proof of Corollary 3.8. [

5 Another characterization of quenching

In this section, we show that the global existence of the solution for the problem
(1.1)—(1.3) depends on the existence of a certain stationary solution of this problem.

Theorem 5.1.
Consider the following problem:

Lo+ f(v)=0 in £, (P1)
9 1= =0 90 (P2)
PN W = on :
First case: If the solution v of the problem (P1)—(P2) ezists with v, = sup v(z) < b,
z€Q

then the solution u of the problem (1.1) — (1.3) exists in  x (0,00) for u,(z) < v(x)
in Q. Moreover
u(z,t) <wv, in 2 x(0,00).

Second case: If the solution v of the problem (P1) — (P2) does not exist, then the
solution u of the problem (1.1) — (1.3) quenches in a finite time.
The following lemma will be used in the proof of Theorem 5.1.
Lemma 5.2. Suppose that l(s) is a bounded and increasing function in (0,00). Then
we have

lim I'(t) = 0.

Proof. We get
t /
/ ['(s)ds = I(t) — 1(0) < C < .
0

It follows that [;°1'(s)ds < oo, which leads to the result. ]
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Proof of Theorem 5.1.

First case:

Since u is the solution of the problem (1.1) — (1.3), owing to Theorem 2.1, there is
a finite time 7" such that u(z,t) exists in  x (0,7"). From the maximum principle,
it follows that u(x,t) < v(z) < bin Q x (0,7") because u,(x) < v(z). By Theorem
2.2, there exists 7" > T such that u(x,t) exists in Q x (0,T"). Reasoning as above,
we have u(z,t) < v, < bin Q x (0,7"). Iterating this process, we obtain the result.
Second case:

Suppose that supu(x,t) < b for all ¢ > 0. Assume at first that u(z,0) = 0. Let
€S
G(z,y) be the Green’s function of —L with the following boundary condition :

pES 4 (1 - )Gy = 0.
Put
w(x,t) :/QG(x,y)u(y,t)dy. (5.1)
We obtain
we(x, 1) :/QG(:c,y)ut(y,t)dy. (5.2)

From (1.1) and (5.2), we also have

wi(,t) = —u(w.t)+ [ Gla,y)f(uly,)dy. (5.3)
From the maximum principle
uw >0 in Qx(0,7) (5.4)
because Lu(z,0) + f(u(x,0)) > 0. Therefore

lim u(x,t) := z(x) (5.5)

t—o00

exists because u is a bounded and increasing function. Consequently, from (5.3),
(5.4), (5.5) and the monotone convergence theorem, we have

Jim w(e,t) = —2(2) + [ Gla.y) (2())dy. (56)

Since

G(z,y) >0 and sup [ G(z,y)dy < oo,
e /O

from (5.1), (5.2) and (5.4), it follows that wy(z,t) > 0 and w is bounded. Then
Lemma 5.2 implies that lim wy(z,t) = 0 for all z € Q. Therefore from (5.6), we

obtain

Consequently we have
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which is a contradiction to our hypothesis. Therefore, u quenches in a finite time.
Now suppose that u(z,0) = u,(z) > 0. From the maximum principle,

u(z,t) > ov(z,t) in Qx (0, Thaz) (5.7)

where v is the solution of the problem (1.1) — (1.2) with v(z,0) = 0 and (0, T}qz) is
the maximum time interval in which u and v exist. From the above result, we know
that v quenches in a finite time. Then from (5.7), u also quenches in a finite time,
which yields the result. [

6 Asymptotic behavior near the quenching time

In this section, we obtain some conditions under which the solution of the problem
(1.1) — (1.3) quenches in a finite time and we describe the asymptotic behavior of
this solution near its quenching time.

Theorem 6.1.
Suppose that the function f(s) is positive, increasing, convex for positive values of

b d
s, Luo(z) + f(uo(z)) > 0 in Q and / ﬁi) < 0o. Finally suppose that there is a
0

constant A < b close to b such that
sfi(s)> f(s) for s> A

Then the solution u of the problem (1.1) — (1.3) quenches in a finite time T' and
there exist two constants ¢; and co such that

Hi(eo(T —1)) < sugu(:c,t) < Hi(er(T —1t))

b d
where Hy(s) is the inverse function of F(s) = o5

s f(s)
Corollary 6.2. Suppose that f(u) = (b—u) P withp > 0 and Lu,(x)+ f(uo(x)) >
0 in Q. Then the solution u of the problem (1.1) — (1.3) quenches in a finite time T
and there exist two constants Cy and Cy such that

b— Co(T — )77 < supu(z,t) <b— Cy(T — )7,
zeQ
Proof of Theorem 6.1.
Let (0,7") be the maximum time interval in which the solution u of the problem
(1.1) — (1.3) exists. Since u,(x) > 0, from the maximum principle, we have u > 0

in Qx (0,7). Put w= % We obtain

%f —Lw+ fww i Qx(0,T), (6.1)

ow
Pon T (1—pww=0 on 092x(0,T), (6.2)
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w(z,0) >0 in Q. (6.3)

From the maximum principle, it follows that

% >c¢>0 in Qx(,T) (6.4)

for €, > 0. Put J(x,t) = uy — 0 f(u) where § is a constant which will be determined
later. We have

0 0 , " n
2L LT = (e~ L) — 5 ()~ L) + ] (13 o5 (e

> f(wug—6f (u)f(u) = f(u)] in 2x(0,T)

because f is convex and u; — Lu = f(u). We also have
J(x,e,) = ut(x,6,) — 0 f(u(x,e,)) in €.

From (6.4), choose § <

small enough that

f(A)
J(x,e,) >0 in . (6.5)

Show that J(z,t) > 0 in Q x (,,T). In fact suppose that J admits a negative
minimum in (z,,%,) in £ X (&,,7"). From the maximum principle, (z,,t,) € 02 x
(€0, T).

If w(z,,t,) < A < b, from (6.4), we have

J(xo,to) = ut(xo, to) — 0 f(u(xo, tp)) > ¢ — 0 f(A)

because f is an increasing function. Since § < , we obtain J(z,,t,) > 0 which

c
' o f(A)
is a contradiction.

If u(z,,t,) > A, then we have u%(mm to) + (1 — p)J (o, t,) < 0, which implies
that
u(o, o) f (u(to, to)) < f(u(zo,t0)).

Therefore, we have again a contradiction because by hypothesis wf (u) > f(u) for
u > A. We deduce that u¢(x,t) > f(u) in Q x (g,,T) that is

—(F(u)): > 9. (6.6)
Integrating (6.6) over (&,,7), it follows that
oo > Fl(u(x,e,)) > Fu(z,eg,)) — Fu(x,T)) > 6(T —&,). (6.7)

Therefore, T is finite and u quenches in a finite time. Integrating again (6.6) over
(t,T), we have

F(u(z,t)) > F(u(z,t)) — Fu(z,T)) > 6(T — ). (6.8)



90 T. K. Boni

Since Hy is a decreasing function, from (6.8) we obtain

supu(z,t) < He(6(T —t)).

€
Now put U(t) = supu(z,t). Since  is compact, there exist z; € Q (i = 1,2) such
zeQ
that U(t;) = u(xy,t;) for t; > 0. Let h =ty — t;. We also have

U(tg) — U(tl) S U(l‘g,tg) — U(l‘g,tl) = hut(l'g,tg) + O(h)

Consequently
Ulty) = U(t
Ults) = Ut) e(22, t2) + 0(1). (6.9)
to — 11
Since Lu(zs,ty) < 0, we obtain
u(w2,12) < flu(@e, t2)) = f(U(t2)). (6.10)

In the fact that
U(ty) — Ul(t)

11m
t1—to t2 — tl

from (6.9) and (6.10), we deduce that U'(ty) < f(U(ty)). Therefore

= U/ (t2>7

supu(x,t) > He(T — 1),
z€Q

which gives the result. [

7 Quenching time.

In this section, we give some conditions under which the solution of the problem
(1.4) — (1.6) quenches in a finite time and estimate its quenching time.

b d
Theorem 7.1. Suppose that/ (—S < oo and for positive values of s, g(s) is
0 g(s

positive and increasing. Then the solution u of the problem (1.4) — (1.6) quenches
n a finite time T and
Q] b ds
Sl o
|092] Jm g(s)

where m = ;gsfz ().

Proof. Let (0,T) be the maximum time interval in which the solution u of the
problem (1.4) — (1.6) exists. Our aim is to show that 7" is finite and satisfies the
above inequality. Since u.(xz) > 0 in €, from the maximum principle u(z,t) > 0 in

1
Q2 x (0,7). Multiplying (1.4) by —, we have after integration over €

g(u)

d g (u) & ou Ou
—— — . el 1
= /Q G(u(x,1))dz /8 5 e idzlazj(x) 5o gn e (D)
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b d
where G(s) = / % Since ¢ is an increasing function, from (7.1) we obtain

s 9(2)
& [ Glutr ) > o0 (7.2)

Integrating (7.2) over (0,7") and using the fact that G(u(z,T)) > 0, we have

b d b d
0 > |Q|/ T > // B4 > 769 (7.3)
m g(s) ~ JaJu.@) g(s)
Then the solution u of the problem (1.4) — (1.6) quenches in a finite time 7" and we
obtain the result. n

8 Quenching set.

In this section, we describe the quenching set of the solution for the problem (1.4) —
(1.6). More precisely, we show that under some conditions, the solution of the
problem (1.4) — (1.6) quenches in a finite time and its quenching set is on the
boundary 92 of the domain ).

Theorem %.1.
z

Suppose that/ ﬁ < 400, Lu.(x) > 0 and for positive values of s, g(s) is positive,
0o g(z

increasing and convex. Then the solution u of the problem (1.4) — (1.6) quenches in
a finite time T and there is a constant 6 > 0 such that the following estimate holds:

supu(z,t) < Hy(0(T —t))

€S

b d
where H,(s) is the inverse function of G(s) = / (_z)
s g\z2
Theorem 8.2. Suppose that the hypotheses of Theorem 8.1 are satisfied. Suppose
also that there is a positive constant C, such that

sg (Hy(s) < C, for s>0.

Then the solution u of the problem (1.4) — (1.6) quenches in a finite time T and
Eq C 082, where Eq is the quenching set of the solution u.
p

Remark 8.3. If g(s) = (b — s)~?, then we may take C, = T
p

Proof of Theorem 8.1. Let (0,7") be the maximum time interval in which the
solution u of the problem (1.4) — (1.6) exists and put w = u;. Since Lu,(x) > 0, we
have

%_Lw:o in Qx(0,7),
v _ n o 90 x (0,7)
a]\/v_g u)w (@) ) )

w(xz,0) >0 in Q.
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JFrom the maximum principle
w(z,t)>ec>0 in Qx(g,T), (8.1)

for e, > 0. Consider the following function: J(z,t) = u; — dg(u). From (8.1), take
0 small enough that

J(x,e,) = us(x,,) — dg(u(zx,e,)) > 0. (8.2)
We also have
aJ / /
AN = g (u)(us —og(u)) =g (w)J on 92X (&,T). (8.3)
Finally we have
aJ a / 1" n
Frie LJ = a(ut — Lu) — g (u)(us — Lu) + g (u)[ Z i (T)Ug, Ug, ).
ij=1

Since ¢ is a convex function, from (1.4) we obtain
Jo—LJ >0 in Qx(g,T). (8.4)
From the maximum principle, we deduce that
J(x, ) >0 in QX (&,T),

that is to say

up > 0g(u) in QX (g, 7T). (8.5)
. b dz . bodz .
Since / —— < 400, then the function G(s) = / —— is well defined. Therefore
o g(2) s 9(2)
from (8.5), it follows that
—(G(u))y>d in Qx(g,T). (8.6)

Integrating (8.6) over (&,,7), we have
oo > G(u(x,e,)) > G(u(x,e,)) — Glu(x,T)) > 6(T — &,).

This implies that 7" is finite and u quenches in a finite time. On the other hand,
integrating (8.6) over (¢,7T), we also have

Glu(z,t)) = Gu(z,1)) = Glu(z,T)) = §(T = 1).
Since G is a decreasing function, so is H, and we obtain

supu(x,t) < Hy(0(T —t)).

J:Eﬁ

Therefore, the theorem is proved. [
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Proof of Theorem 8.2.
By Theorem 8.1, we know that u quenches in a finite time 7. Then our aim is to
show that Eg C 99Q. Let d(z) =dist(z,0Q) and v(z) = d?*(x) for z € N.(0S2) where

N(0Q) ={x € Q such that d(z)<e}.

Since 9N is of class C?, then the function v(x) € C?*(N.(09)) if € is sufficiently
small. On 02, we have

Lv—— Z G’ZJ ’Umi’Um].
i,7=1

n n aazj )

Umlml + Z Z Oz i Z aZj /UJ?Z'/UJ?]'
J

i=1 j=1 4,j=1

Il
M:

.
I
—

= Z —|—2dz Z a(gj ) J»‘i —400 Z aij(x)d d
i=1 i=1 j=1 9%j ig=1
n n aaw

> zzm —2d 3> = ) |1vd| = 4,0V
J

i=1 j=1

where d = sup ||z —y||. Therefore, there exists a positive constant C such that
meﬁ,yeﬁ

C n
—70 > aij(@)vg,v0, > —C1 on 99
inj=1

Since v € C?(N.(09)) for ¢ sufficiently small, let €, be so small that

Ly — — Z aij(2)Ve Ve, > —2C7  in N, (092).

i,7=1

We extend v to a function on Q such that v € C?*(Q) and v > C* > 01in Q — N, (99).
Then we have

Lv— — Z @ij(2)Ug, vy, > —C* in Q (8.7)

i,7=1

for some C* > 0. Since H,(0) = b, multiplying (8.7) by € small enough, we may
assume without loss of generality that C* and v are sufficiently small so that

H,(0(v(z) 4+ C*(T —&,))) > u(z, ). (8.8)
Put w(x,t) = Hy(7) where 7 = §(v(z) + C*(T —t)) . From (8.8), we obtain
w(x,e,) > u(zr,6,) in .

We also have

//

,7_

— Lw = —0H,(7)[C" + Lv + 5 Z )V Vs ) (8.9)

,7_
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Since H,(s) is the inverse function of G(s), we have H;(s) = —g(Hy(s)) and H; (s) =
—H;(s)g/(Hg(s)). Consequently

wy — Lw = 6g(Hy(s))[C* + Lv — dg (H,(7)) fj i () g0, (8.10)

1,j=1

Since sg'(H,(s)) < C, for s > 0, using the fact that g (H,(s)) is a decreasing
function (¢ is increasing and H, is decreasing), we have

wy — lw > §g(Hy(1))[C* + Lv — % zn: i (T)Vz,Vz, ). (8.11)

ij=1
From (8.7) and (8.11), we deduce that
wy—Lw >0 in Qx(e,T). (8.12)
We also have
w(x,t) = Hy(0C*(T —t)) > Hy(6(T'—1t)) on 02 x (g,,7) (8.13)
because C* < 1, which implies that
w(z,t) >u(x,t) on 9N X (g,,T). (8.14)
Consequently, from the maximum principle, it follows that
u(z,t) <w(z,t) in Qx(e,T). (8.15)
Since H, is decreasing, we obtain
u(z,t) < Hy(d(v(z) + C*(T —t))) < Hy(ov(x)). (8.16)
Then if Q" cC Q, from (8.16) we have

sup  u(x,t) < sup Hy(dv(z)) < b,
zeQ t€[eo,T) zeQ

which yields the result. [



On quenching of solutions for semilinear parabolic equations of second order 95

References

[1] Acker A.,Walter W., The quenching problem for nonlinear parabolic equations,
Lecture Notes in Mathematics, 564, Springer-Verlag, New York, 1976.

S

Bandle C., Isoperimetric inequalities and applications, Pitman, London, 1980.

=)

Dai Q., Gu Y., A short note on quenching Phenomena for semilinear Parabolic
equations, Jour. of Diff. Equat. 137 (1997), pp. 240-250.

[4] Deng K., Levine H. A., On the blow up of u; at quenching, Proc. of Amer.
Math. Soc. Vol. 106, 4 (1989), pp. 1049-1056.

[5] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second or-
der, Springer-Verlag 1977.

1

(6] Kawarada H., On solutions of initial boundary value problem for u; = up,+ 1=,

RIMS Kyoto Univ., 10 (1975), pp. 729 — 736.

[7] Levine H.A., The quenching of solutions of linear hyperbolic and parabolic with
nonlinear boundary conditions, STAM J. Math. Anal., 14 (1983), pp. 1139 —
1153.

[8] Levine H.A., Lieberman G.M.,Quenching of solutions of parabolic equations
with nonlinear boundary conditions in several dimensions, J. Reine Ang. Math.,
345 (1983), pp. 23 — 38.

9] Levine H.A., Montgomery J.T., Quenching of solutions of some nonlinear
parabolic problems, SIAM J. Math. Anal., 11 (1980), pp. 842 — 847.

[10] Levine H.A., Quenching, nonquenching, and beyond quenching for solution of
some parabolic equations, Annali di Matematica pura ed applicata (IV), Vol.
CLV (1989), pp. 243 — 260.

[11] Matano H., Asymptotic behavior and stability of solutions of semilinear diffu-
sion equations. Publ. R.I.M.S. Vol. 15, 2 (1979), pp. 401-454.

[12] Protter M.H., Weinberger H.F., Mazimum Principles in Differential Equations,
Prentice Hall, Englewood Cliffs, NJ, 1967.

[13] Walter W., Differential- und Integral-Ungleichungen, Springer, Berlin, 1964.

Université Paul Sabatier,

UFR-MIG, MIP, 118 route de Narbonne,
31062 Toulouse, France.

E-mail: boni@mip.ups-tlse.fr



