On quenching of solutions for some semilinear parabolic equations of second order

Théodore K. Boni

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^n with boundary $\partial \Omega$ of class \mathbb{C}^2 . Consider the following boundary value problems:

$$\frac{\partial u}{\partial t} = Lu + f(u) \quad \text{in} \quad \Omega \times (0, T),$$
(1.1)

(I)
$$\mu \frac{\partial u}{\partial N} + (1 - \mu)u = 0$$
 on $\partial \Omega \times (0, T),$ (1.2)

$$u(x,0) = u_o(x) \quad \text{in} \quad \Omega, \tag{1.3}$$

$$\frac{\partial u}{\partial t} = Lu$$
 in $\Omega \times (0,T),$ (1.4)

(II)
$$\frac{\partial u}{\partial N} = g(u) \quad \text{on} \quad \partial \Omega \times (0, T),$$
 (1.5)

$$u(x,0) = u_*(x) \quad \text{in} \quad \Omega, \tag{1.6}$$

where

$$Lu = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij}(x) \frac{\partial u}{\partial x_j}), \quad \frac{\partial u}{\partial N} = \sum_{i,j=1}^{n} \cos(\nu, x_i) a_{ij}(x) \frac{\partial u}{\partial x_j}.$$

Received by the editors June 1998.

Communicated by J. Mawhin.

1991 Mathematics Subject Classification : 35 K 55, 35 B 40.

Key words and phrases : Quenching, asymptotic behavior, semilinear parabolic equation.

Bull. Belg. Math. Soc. 7 (2000), 73-95

Here the coefficients $a_{ij}(x) \in C^1(\overline{\Omega})$ satisfy the inequalities

$$\lambda_2 |\xi|^2 \ge \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \ge \lambda_1 |\xi|^2$$

for any $\xi \in \mathbb{R}^n$ and $x \in \overline{\Omega}$ with positive constants λ_i (i = 1, 2), ν is the exterior normal unit vector on $\partial\Omega$, $\mu \in [0, 1]$ is a function of class C^1 on $\partial\Omega$. For positive values of u, f(u), g(u) are positive and increasing functions with

$$f(0) > 0, \quad \lim_{u \to b^{-}} f(u) = \infty,$$
$$g(0) > 0, \quad \lim_{u \to b^{-}} g(u) = \infty,$$

where b is a positive number. $u_o(x)$ and $u_*(x)$ are two nonnegative functions of class $C^1(\Omega)$ such that

$$M = \sup_{x \in \Omega} u_o(x) < b, \qquad M' = \sup_{x \in \Omega} u_*(x) < b,$$

 $\mu \frac{\partial u_o}{\partial N} + (1 - \mu)u_o = 0$ on $\partial\Omega$ and $\frac{\partial u_*}{\partial N} = g(u_*)$ on $\partial\Omega$. In this note, we study the phenomenon of quenching for the problems (1.1) - (1.3) and (1.4) - (1.6). **Definition 1.1.** We say that the solution u of the problem (1.1) - (1.3) or (1.4) - (1.6) quenches in a finite time if there exists a finite time T_o such that

$$\lim_{t \to T_o} \sup_{x \in \Omega} u(x, t) = b$$

 T_o is the quenching time of the solution u. $x \in \overline{\Omega}$ is a quenching point of the solution u if there exists a sequence (x_n, t_n) such that $x_n \to x$, $t_n \uparrow T_o$ and $\lim_{n \to \infty} u(x_n, t_n) = b$. The set

 $E_Q = \{x \in \overline{\Omega} \quad such that \quad x \text{ is a quenching point of the solution } u\}$

is the quenching set of the solution u.

The problem of quenching has been the subject of study of many authors (see, for instance [1,3,4,6,7,8,9,10] and others). In particular in [1], the authors have considered the problem (1.1) - (1.3) in the case where $\mu = 0$. They have shown that if Ω is small enough, then the solution of the problem (1.1) - (1.3) exists in $\Omega \times (0, \infty)$ whereas if Ω is large enough, the solution quenches in a finite time. In this paper, we give other characterizations of quenching for the problem (1.1) - (1.3) based on the nature of certains stationary solutions. These characterizations will be used to obtain the existence and nonexistence of the solution for the problem (1.1) - (1.3) in the case where Ω is unbounded. Moreover, using some isoperimetric inequalities, we also precise some results of Acker and Walter in [1]. Another subject of investigation of the phenomenon of quenching is the quenching set. For the problem (1.1) - (1.3), some results about quenching set have been given in [4]. More precisely, it is proved that under some conditions, the solution of the problem (1.1) - (1.3) in the case where $\mu = 0$ quenches in a finite time and its quenching set is in a compact subset of Ω . For the problem (1.4) - (1.6), we show that under some hypotheses the solution

of (1.4) - (1.6) quenches in a finite time and its quenching set is on the boundary $\partial\Omega$ of the domain Ω . The paper is written in the following manner. In Section 2, we obtain the local existence of the solution for the problem (1.1) - (1.3). In Section 3, we characterize the quenching and global existence of the solution for the problem (1.1) - (1.3) in terms of a certain stationary solution. In Section 4, we apply the results of Section 3 to study the existence and nonexistence of the solution for the problem (1.1) - (1.3) in the case where Ω is unbounded. In Section 5, we show that the existence of the solution for the problem (1.1) - (1.3) in the case where Ω is unbounded. In Section 5, we show that the existence of the solution for the problem (1.1) - (1.3) depends on the existence of a certain stationary solution of this problem. In Section 6, we get other quenching conditions of the solution for the problem (1.1) - (1.3). We also give the asymptotic behavior near the quenching time of this solution. In Sections 7 and 8, we obtain some conditions under which the solution of the problem (1.4) - (1.6) quenches in a finite time and estimate the quenching time of this solution. We also describe its quenching set.

2 Local existence

In this section, we show that for small T, the solution of the problem (1.1) - (1.3) exists in $\Omega \times (0, T)$.

Theorem 2.1. There exists a finite time T such that the solution u of the problem (1.1) - (1.3) exists in $\Omega \times (0, T)$.

Theorem 2.2. If the solution u of the problem (1.1) - (1.3) exists in $\Omega \times (0,T)$ with

$$\sup_{(x,t)\in\Omega\times(0,T)} u(x,t) < b,$$

then there exists T' > T such that u exists in $\Omega \times (0, T')$.

Proof of Theorem 2.1. Let U(x, y, t) defined on $\overline{\Omega} \times \overline{\Omega} \times (0, \infty)$, be the fundamental solution of the equation

$$\frac{\partial v}{\partial t} - Lv = 0$$
 in $\Omega \times (0, \infty)$

with the boundary condition

$$\mu \frac{\partial v}{\partial N} + (1 - \mu)v = 0$$
 on $\partial \Omega \times (0, \infty)$.

It is well known that

$$U(x, y, t) > 0$$
 in $\Omega \times (0, \infty)$, $\int_{\overline{\Omega}} U(x, y, t) dy \le 1$ (2.1)

and u is the solution of the problem (1.1) - (1.3) if and only if

$$u(x,t) = \int_{\Omega} U(x,y,t)u(y,0)dy$$

+
$$\int_{0}^{t} \int_{\Omega} f(u(y,\tau))U(x,y,t-\tau)dyd\tau \quad \text{in} \quad \Omega \times (0,T).$$
(2.2)

Put

$$u_1(x,t) = 0,$$

$$u_{n+1}(x,t) = \int_{\Omega} U(x,y,t)u(y,0)dy + \int_0^t \int_{\Omega} f(u_n(y,\tau))U(x,y,t-\tau)dyd\tau.$$

Since f is increasing and U > 0, it follows that $u_n > 0$ for all n > 1. Also by recurrence, we easily show that $u_{n+1} \ge u_n$ in $\overline{\Omega \times (0,T)}$. Let δ be a positive number. Suppose that $u_o(x) \le b - 2\delta$ and $u_n \le b - \delta$, then $u_{n+1} \le b - \delta$ also provided T is so small that

$$(b-2\delta) + f(b-\delta) \int_0^T \int_\Omega U(x,y,t-\tau) dy d\tau \le b-\delta,$$

that is to say T is so small that

$$\int_0^T \int_\Omega U(x, y, t - \tau) dy d\tau \le \frac{\delta}{f(b - \delta)}.$$
(2.3)

Since

$$\lim_{t \to 0} \int_0^t \int_\Omega U(x, y, t - \tau) dy d\tau = 0,$$

take T so small that (2.3) be satisfied. Thus the sequence $(u_n)_{n\geq 1}$ is an increasing sequence of continuous functions defined in $\Omega \times (0, T)$ and bounded above by $b - \delta$. By the monotone convergence theorem, $\lim_{n\to\infty} u_n = u$ exists in $\Omega \times (0, T)$ and satisfies the following equality

$$\begin{split} u(x,t) &= \int_{\Omega} U(x,y,t) u(y,0) dy \\ &+ \int_{0}^{t} \int_{\Omega} f(u(y,\tau)) U(x,y,t-\tau) dy d\tau \quad \text{in} \quad \Omega \times (0,T). \end{split}$$

Then we have the result.

Remark 2.3. Changing slightly the proof of Theorem 2.1, we easily prove Theorem 2.2.

3 Sufficient conditions of quenching and global existence

In this section, we characterize the quenching and global existence of the solution for the problem (1.1) - (1.3) in terms of the stationary solution described in the following proposition:

Proposition 3.1.

There exists a unique w solution of the following problem:

$$Lw + 1 = 0 \quad in \quad \Omega,$$
$$\mu \frac{\partial w}{\partial N} + (1 - \mu)w = 0 \quad on \quad \partial \Omega.$$

Proof. It is a well known result (see, for instance [5]).

76

Theorem 3.2. Let w_o be the maximum of the solution for the following boundary value problem:

$$Lw + 1 = 0 \quad in \quad \Omega,$$

$$\mu \frac{\partial w}{\partial N} + (1 - \mu)w = 0 \quad on \quad \partial \Omega.$$

(α) If $w_o > \int_0^b \frac{ds}{f(s)}$, then the solution u of the problem (1.1) – (1.3) quenches in a finite time.

(β) If $\sup_{0 < s < b - M} \frac{s}{f(s + M)} \ge w_o$, then the solution u of the problem (1.1) - (1.3) exists in $\Omega \times (0, \infty)$ and

$$\sup_{t) \in \Omega \times (0,\infty)} u(x,t) \le s(M) + M < b$$

where $M = \sup_{x \in \Omega} u_o(x)$ and

$$s(M) = \inf\{s \in (0, b - M) \quad such that \quad [\sup_{0 < s < b - M} \frac{s}{f(s + M)}]f(s + M) = s\}.$$

Proof.

(α) Assume at first that $u_o(x) = 0$. Let $(0, T_{max})$ be the maximum time interval in which the classical solution u of the problem (1.1) - (1.3) exists. From the maximum principle, $u(x, t) \ge 0$ in $\Omega \times (0, T_{max})$. Put

$$v(x,t) = F(u(x,t)) = \int_0^u \frac{ds}{f(s)}.$$
(3.1)

We obtain

$$\frac{\partial v}{\partial t} - Lv = \frac{1}{f(u)}(u_t - Lu) + \left[\sum_{i,j=1}^n a_{ij}(x)u_{x_i}u_{x_j}\right]\frac{f'(u)}{f^2(u)}.$$
(3.2)

Since f(u) is an increasing function, from (1.1) we have

(x,

$$\frac{\partial v}{\partial t} - Lv - 1 \ge 0 \quad \text{in} \quad \Omega \times (0, T_{max}) \tag{3.3}$$

and

$$v(x,t) = \int_0^u \frac{ds}{f(s)} \ge \frac{u}{f(u)}.$$
(3.4)

From (3.4) and (1.2), we also have

0

$$\mu \frac{\partial v}{\partial N} = \frac{1}{f(u)} \mu \frac{\partial u}{\partial N} = \frac{-(1-\mu)u}{f(u)} \ge -(1-\mu)v, \qquad (3.5)$$

that is to say

$$\mu \frac{\partial v}{\partial N} + (1 - \mu)v \ge 0 \quad \text{on} \quad \partial \Omega \times (0, T_{max}).$$
(3.6)

Since $w_o > \int_0^b \frac{ds}{f(s)}$ and $u(x,t) \le b$ in $\Omega \times (0, T_{max})$, from (3.1) it follows that

$$\sup_{(x,t)\in\Omega\times(0,T_{max})}v(x,t) < w_o.$$
(3.7)

Let z be the solution of the following problem:

$$\frac{\partial z}{\partial t} = Lz + 1 \quad \text{in} \quad \Omega \times (0, \infty), \tag{3.8}$$

$$\mu \frac{\partial z}{\partial N} + (1 - \mu)z = 0 \quad \text{on} \quad \partial \Omega \times (0, \infty), \tag{3.9}$$

$$z(x,0) = 0 \quad \text{in} \quad \Omega. \tag{3.10}$$

¿From the maximum principle, we deduce that

$$v(x,t) \ge z(x,t)$$
 in $\Omega \times (0, T_{max})$. (3.11)

We also have

$$\lim_{t \to \infty} z(x,t) = w(x). \tag{3.12}$$

Therefore from (3.7) and (3.12), there exist $x_o \in \Omega$ and a finite t_o such that

$$z(x_o, t_o) > \sup_{(x,t)\in\Omega\times(0,T_{max})} v(x,t),$$
 (3.13)

which implies that $t_o \geq T_{max}$. In fact, suppose that $t_o < T_{max}$. From (3.11), we have $v(x_o, t_o) \geq z(x_o, t_o)$ which contradicts (3.13). Consequently, T_{max} is finite and u quenches in a finite time.

Now, suppose that $u_o(x) \ge 0$. From the maximum principle

$$u(x,t) \ge u_1(x,t) \quad \text{in} \quad \Omega \times (0,T_1) \tag{3.14}$$

where u_1 is the solution of the problem (1.1) - (1.2) with $u_1(x, 0) = 0$ in Ω and $(0, T_1)$ is the maximum time interval in which the solutions u and u_1 exist. From the above result, we know that u_1 quenches in a finite time because

$$w_o > \int_0^b \frac{ds}{f(s)}.\tag{3.15}$$

Therefore, from (3.14), u also quenches in a finite time which yields the result.

(β) Assume at first that $u_o(x) = 0$. Then M = 0. Put $s(M) = s_o$ and show that for any h satisfying the following problem

$$Lh + f(s_o) = 0 \quad \text{in} \quad \Omega, \tag{3.16}$$

$$\mu \frac{\partial h}{\partial N} + (1 - \mu)h = 0 \quad \text{on} \quad \partial\Omega, \qquad (3.17)$$

we have $h \leq s_o$. In fact put $k(x) = f(s_o)w(x) - h(x)$. We obtain

$$Lk(x) = -f(s_o) - Lh(x) = 0, (3.18)$$

$$\mu \frac{\partial k(x)}{\partial N} + (1-\mu)k(x) = 0.$$
(3.19)

From the maximum principle, we deduce that

$$k(x) = f(s_o)w(x) - h(x) \ge 0 \quad \text{in} \quad \Omega,$$

that is to say

$$h(x) \le f(s_o)w(x) \le f(s_o)w_o \le s_o.$$
(3.20)

By Theorem 2.1, there exists a time T_2 such that u exists in $\Omega \times (0, T_2)$. Put z(x,t) = h(x) - u(x,t). From the maximum principle, $h(x) \ge 0$ in Ω . It follows that

$$z(x,0) \ge 0 \quad \text{in} \quad \Omega, \tag{3.21}$$

because $u_o(x) = 0$ in Ω . Since f is an increasing function, from (3.20), we also have

$$z_t - Lz = f(s_o) - f(u(x,t)) \ge f(h) - f(u) = f'(\xi)z \quad \text{in} \quad \Omega \times (0, T_2) \quad (3.22)$$

where $\xi = (1 - \theta)h + \theta u < b$ with $0 \le \theta \le 1$. Finally we have

$$\mu \frac{\partial z}{\partial N} + (1 - \mu)z = 0 \quad \text{on} \quad \partial \Omega \times (0, T_2).$$
(3.23)

From the maximum principle, we obtain $h(x) \ge u$ in $\Omega \times (0, T_2)$. Consequently

$$u(x,t) \le s_o < b \quad \text{in} \quad \Omega \times (0,T_2). \tag{3.24}$$

Owing to Theorem 2.2, there exists $T'_2 > T_2$ such that the solution u of (1.1) - (1.3) exists in $\Omega \times (0, T'_2)$. Reasoning as above, we have $u(x, t) \leq s_o < b$ in $\Omega \times (0, T'_2)$. Iterating this process, we obtain $u(x, t) \leq s_o < b$ in $\Omega \times (0, \infty)$.

Now, suppose that $u_o(x) \ge 0$ and let w_1 be the solution of the following problem:

$$\frac{\partial w_1}{\partial t} = Lw_1 + f(w_1) \quad \text{in} \quad \Omega \times (0, T), \tag{3.25}$$

$$\mu \frac{\partial w_1}{\partial N} + (1-\mu)w_1 = (1-\mu)M \quad \text{on} \quad \partial \Omega \times (0,T), \tag{3.26}$$

$$w_1(x,0) = M \quad \text{in} \quad \Omega. \tag{3.27}$$

Put $v_1(x,t) = w_1(x,t) - M$. We have

$$\frac{\partial v_1}{\partial t} = Lv_1 + f_1(v_1) \quad \text{in} \quad \Omega \times (0, T), \tag{3.28}$$

$$\mu \frac{\partial v_1}{\partial N} + (1 - \mu) v_1 = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \tag{3.29}$$

$$v_1(x,0) = 0 \quad \text{in} \quad \Omega, \tag{3.30}$$

where $f_1(v_1) = f(v_1 + M)$. We obtain $f_1(0) = f(M) > 0$ and $\lim_{t \to b-M} f_1(t) = \infty$. From the above result, we know that $v_1(x,t)$ exists in $\Omega \times (0,\infty)$ and $v_1(x,t) \leq s(M)$ in $\Omega \times (0,\infty)$ because

$$w_o \le \sup_{0 < s < b - M} \frac{s}{f_1(s)} = \sup_{0 < s < b - M} \frac{s}{f(s + M)}.$$
(3.31)

This implies that $w_1(x,t)$ exists in $\Omega \times (0,\infty)$. Therefore from (3.25) - (3.27), u exists in $\Omega \times (0, T_{max})$ and

$$u(x,t) \le w_1(x,t) \le s(M) + M < b$$
 in $\Omega \times (0, T_{max}),$ (3.32)

where $(0, T_{max})$ is the maximum time interval in which u exists. Consequently from (3.32) and Theorem 2.2, we deduce that $T_{max} = \infty$, which yields the result.

Remark 3.3. If $f(s) = (b - s)^{-p}$ with p > 0, we have

$$\int_0^b \frac{ds}{f(s)} = \frac{b^{p+1}}{p+1}, \quad \sup_{0 < s < b-M} \frac{s}{f(s+M)} = \frac{(b-M)^{p+1}p^p}{(p+1)^{p+1}} \quad \text{and} \quad s(M) = \frac{b-M}{p+1}.$$

Corollary 3.4. Suppose that $L = \Delta$ and Ω contains a domain Ω_* with piecewise analytic boundary. For $x \in \Omega_*$, denote its harmonic radius by $R_x(\Omega_*)$. If

$$\sup_{x\in\Omega_*} R_x^2(\Omega_*) > 2n \int_0^b \frac{ds}{f(s)},$$

then the solution u of the problem (1.1) - (1.3) quenches in a finite time. If $f(s) = (b-s)^{-p}$, then the result holds when

$$\sup_{x\in\Omega_*} R_x^2(\Omega_*) > \frac{2nb^{p+1}}{p+1}.$$

Proof. Let v be the solution of the following problem:

$$\frac{\partial v}{\partial t} = \Delta v + f(v) \quad \text{in} \quad \Omega_* \times (0, T), \tag{3.33}$$

$$v = 0$$
 on $\partial \Omega_* \times (0, T),$ (3.34)

$$v(x,0) = u_o(x) \quad \text{in} \quad \Omega_*. \tag{3.35}$$

¿From the maximum principle $u \ge v$ in $\Omega_* \times (0, T_{max})$ where $(0, T_{max})$ is the maximum time interval in which the solutions u and v exist. Let w be the solution of the following problem:

$$\Delta w + 1 = 0 \quad \text{in} \quad \Omega_*, \quad w = 0 \quad \text{on} \quad \partial \Omega_*$$

From the results in ([2], Theorem 2.9, p.70), w(x) satisfies the inequality

$$w(x) \ge \frac{R_x^2(\Omega_*)}{2n}$$

By Theorem 3.2 (α), the solution v quenches in a finite time because

$$w_o = \sup_{x \in \Omega_*} w(x) \ge \frac{\sup_{x \in \Omega_*} R_x^2(\Omega_*)}{2n} > \int_0^b \frac{ds}{f(s)}$$

This implies that u also quenches in a finite time and we have the result. The case where $f(s) = (b - s)^{-p}$ is a direct consequence of Remark 3.3.

Remark 3.5. Let Ω_* be a bounded domain in \mathbb{R}^n with piecewise analytic boundary. For $x \in \Omega_*$, denote its harmonic radius by $\mathbb{R}_x(\Omega_*)$. Then we have $\mathbb{R}_x(\Omega_*) \geq \text{dist}(x, \partial\Omega_*)$ (see, for instance[2]).

Corollary 3.6. Suppose that Ω contains a ball B of radius R and let $L = \Delta$. Then the solution u of (1.1) - (1.3) quenches in a finite time if

$$R^2 > 2n \int_0^b \frac{ds}{f(s)}$$

If $f(s) = (b - s)^{-p}$, then the result holds when

$$R^2 > \frac{2nb^{p+1}}{p+1}.$$

Proof. For $x \in B$, let $R_x(B)$ be the harmonic radius of the ball B. by Remark 3.5, we get $\sup_{x \in B} R_x^2(B) \ge R^2$. The rest of the proof is a direct consequence of Corollary 3.4.

Corollary 3.7. Let $L = \Delta$. Suppose that

$$|\Omega| \le \left(2n \sup_{0 < s < b-M} \frac{s}{f(s+M)}\right)^{\frac{n}{2}} \omega_n,$$

where ω_n denote the volume of the unit sphere in \mathbb{R}^n . Then the solution u of the problem (1.1) - (1.3) with $\mu = 0$ exists in $\Omega \times (0, \infty)$ and

$$u(x,t) \le s(M) + M$$
 in $\Omega \times (0,\infty)$,

where $M = \sup_{x \in \Omega} u_o(x)$ and

$$s(M) = \inf\{s \in (0, b - M) \quad such that \quad [\sup_{0 < s < b - M} \frac{s}{f(s + M)}]f(s + M) = s\}.$$

If $f(s) = (b - s)^{-p}$, then the result holds when

$$|\Omega| \le \left(2n \frac{(b-M)^{p+1} p^p}{(p+1)^{p+1}}\right)^{\frac{n}{2}} \omega_n.$$

Proof. From the results in ([2]), we know that

$$w(x) \le \frac{1}{2n} \left(\frac{|\Omega|}{\omega_n}\right)^{\frac{2}{n}}.$$

Then by Theorem 3.2 (β) , we obtain the result.

Corollary 3.8. Let $L = \Delta$. Suppose that $\Omega \subset \subset (0, l) \times D$ where $D \subset \mathbb{R}^{n-1}$ is a bounded domain and $(0, l) \subset \mathbb{R}^1$. Suppose also that

$$l \le \sqrt{8 \sup_{0 < s < b - M} \frac{s}{f(s + M)}}.$$

Then the solution u of the problem (1.1) - (1.3) with $\mu = 0$ exists in $\Omega \times (0, \infty)$ and

$$u(x,t) \le s(M) + M$$
 in $\Omega \times (0,\infty)$,

where $M = \sup_{x \in \Omega} u_o(x)$ and

$$s(M) = \inf\{s \in (0, b - M) \quad such that \quad [\sup_{0 < s < b - M} \frac{s}{f(s + M)}]f(s + M) = s\}.$$

Proof. Since D is a bounded domain, there exist numbers l_i (i = 2, ..., n) such that $\Omega \subset \subset (0, l) \times \prod_{i=2}^{n} [0, l_i] = I$. Let $\psi(x_1, x')$ be a function defined in I by

$$\psi(x_1, x') = \frac{1}{2}x_1(l - x_1),$$

with $x_1 \in (0, l)$ and $x' \in \prod_{i=2}^n [0, l_i]$. We obtain

$$\Delta \psi(x_1, x') + 1 = 0 \quad \text{in} \quad I, \quad \psi(x_1, x') \ge 0 \quad \text{on} \quad \partial I.$$

Since $\psi(x_1, x') > 0$ in $\overline{\Omega}$, from the maximum principle, $\psi \ge w$ in Ω , where w(x) is the solution of the following problem

$$\Delta w + 1 = 0$$
 in Ω , $w = 0$ on $\partial \Omega$.

Since $||\psi||_{L^{\infty}(I)} = \frac{l^2}{8}$, we also have $w_o = ||w||_{L^{\infty}(\Omega)} \leq \frac{l^2}{8}$. Then, by Theorem 3.2 (β), u exists in $\Omega \times (0, \infty)$ and

$$u(x,t) \le s(M) + M$$
 in $\Omega \times (0,\infty)$

because

$$w_o = ||w||_{L^{\infty}(\Omega)} \le \frac{l^2}{8} \le \sup_{0 < s < b - M} \frac{s}{f(s+M)}$$

Therefore, we obtain the result.

4 Application

In this section, we are interested in the existence and nonexistence of the solution for the problem (1.1) - (1.3) in the case where $\Omega = R^m \times \Omega_o$ with $0 \le m < n$ and $\Omega_o \subset R^{n-m}$ is a bounded domain. Putting $x = (x_m, y)$, we suppose that the coefficients $a_{ij}(x) = a_{ij}(x_m, y)$ and $\mu(x) = \mu(x_m, y)$ are invariant under the translation of x_m for $x_m \in R^m$.

Theorem 4.1. Let w_{Ω_o} be the maximum of the solution for the following boundary value problem:

$$L\psi + 1 = 0 \quad in \quad \Omega_o,$$
$$\mu \frac{\partial \psi}{\partial N} + (1 - \mu)\psi = 0 \quad on \quad \partial \Omega_o.$$

(a) If $w_{\Omega_o} > \int_0^b \frac{ds}{f(s)}$, then the solution u of the problem (1.1) – (1.3) quenches in a finite time.

(β) If $\sup_{0 < s < b - M} \frac{s}{f(s + M)} \ge w_{\Omega_o}$, then the solution u of the problem (1.1) – (1.3) exists in $\Omega \times (0, \infty)$ and

$$\sup_{(x,t)\in\Omega\times(0,\infty)} u(x,t) \le s(M) + M < b$$

I

where
$$M = \sup_{x \in \Omega} u_o(x)$$
 and
 $s(M) = \inf\{s \in (0, b - M) \text{ such that } [\sup_{0 < s < b - M} \frac{s}{f(s + M)}]f(s + M) = s\}.$

In the proof of Theorem 4.1, the following lemma will be used. **Lemma 4.2.** Suppose that $\Omega = \mathbb{R}^m \times \Omega_o$, where $\Omega_o \subset \mathbb{R}^{n-m}$ is a bounded domain. Then, the problem (1.1) - (1.3) has at most one nonnegative classical solution. Proof. Let u_1 and u_2 be two nonnegative classical solutions of the problem (1.1) - (1.3). Put $w_2 = u_1 - u_2$. We obtain

$$\frac{\partial w_2}{\partial t} = Lw_2 + f'(\xi)w_2 \quad \text{in} \quad \Omega \times (0,T),$$
$$\mu \frac{\partial w_2}{\partial N} + (1-\mu)w_2 = 0 \quad \text{on} \quad \partial\Omega \times (0,T),$$
$$w_2(x,0) = 0 \quad \text{in} \quad \Omega,$$

where $\xi = (1 - \theta)u_1 + \theta u_2$ with $\theta \in [0, 1]$. We also have

$$0 \le |w_2(x,t)| < b \quad \text{in} \quad \Omega \times (0,T),$$

because for $i \in \{1, 2\}$, $0 \le u_i(x, t) < b$ in $\Omega \times (0, T)$. Since $f'(\xi)$ is bounded for t < T, the result follows from the Phragmèn-Lindelöf principle (see, for instance [12]).

Proof of Theorem 4.1.

(α) Consider the following problem:

$$\frac{\partial v}{\partial t} = Lv + f(v) \quad \text{in} \quad \Omega \times (0, T),$$

$$(4.1)$$

$$\mu \frac{\partial v}{\partial N} + (1 - \mu)v = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \tag{4.2}$$

$$v(x,0) = 0 \quad \text{in} \quad \Omega. \tag{4.3}$$

Put $x = (x_m, y)$ where $x_m \in \mathbb{R}^m$ and $y \in \Omega_o$. Let $v(x, t) = v(x_m, y, t)$ be a nonnegative classical solution of the problem (4.1) - (4.3). Since the operators $\frac{\partial}{\partial t} - L$, $\frac{\partial}{\partial N}$, the domain Ω and the function μ are invariant under the translation of x_m , for any $h \in \mathbb{R}^m$, $v_1(x, t) = v(x_m + h, y, t)$ is also a nonnegative solution of the problem (4.1) - (4.3). From the uniqueness of the solution, we have $v_1(x, t) \equiv v(x, t)$. Therefore $v(x, t) = v(x_m, y, t)$ depends only on y and t. This implies that the problem (4.1) - (4.3) can be reduced to the following form:

$$\frac{\partial v}{\partial t} = L_{n-m}v + f(v) \quad \text{in} \quad \Omega_o \times (0,T), \tag{4.4}$$

$$\mu \frac{\partial v}{\partial N_{n-m}} + (1-\mu)v = 0 \quad \text{on} \quad \partial \Omega_o \times (0,T), \tag{4.5}$$

$$v(x,0) = 0 \quad \text{in} \quad \Omega_o, \tag{4.6}$$

where

$$L_{n-m}v = \sum_{i,j=m+1}^{n} \frac{\partial}{\partial x_i} (a_{ij}(x)\frac{\partial v}{\partial x_j}), \quad \frac{\partial v}{\partial N_{n-m}} = \sum_{i,j=m+1}^{n} \cos(\nu, x_i) a_{ij}(x)\frac{\partial v}{\partial x_j}.$$

By Theorem 3.2 (α), we know that v quenches in a finite time because

$$w_{\Omega_o} > \int_0^b \frac{ds}{f(s)}.$$
(4.7)

From the maximum principle, we have

$$u(x,t) \ge v(x,t)$$
 in $R^m \times \Omega_o \times (0, T_{max})$

where $(0, T_{max})$ is the maximum time interval in which u and v exist. This implies that u also quenches in a finite time.

 (β) Now consider the following problem:

$$\frac{\partial w}{\partial t} = Lw + f(w) \quad \text{in} \quad \Omega \times (0, T),$$
(4.8)

$$\mu \frac{\partial w}{\partial N} + (1 - \mu)w = (1 - \mu)M \quad \text{on} \quad \partial \Omega \times (0, T),$$
(4.9)

$$w(x,0) = M \quad \text{in} \quad \Omega, \tag{4.10}$$

where $M = \sup_{x \in \Omega} u_o(x) < b$. Put $w_*(x,t) = w(x,t) - M$. We obtain

$$\frac{\partial w_*}{\partial t} = Lw_* + f_*(w_*) \quad \text{in} \quad \Omega \times (0, T), \tag{4.11}$$

$$\mu \frac{\partial w_*}{\partial N} + (1 - \mu)w_* = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \tag{4.12}$$

$$w_*(x,0) = 0$$
 in Ω , (4.13)

where $f_*(w_*) = f(w_* + M)$. We also have $f_*(0) = f(M) > 0$ and $\lim_{t \to b-M} f_*(t) = \infty$. As above, we know that $w_*(x,t) = w_*(x_m, y, t)$ depends only on y and t. Moreover (4.11) - (4.13) may be written in the following form

$$\frac{\partial w_*}{\partial t} = L_{n-m}w_* + f_*(w_*) \quad \text{in} \quad \Omega_o \times (0,T), \tag{4.14}$$

$$\mu \frac{\partial w_*}{\partial N_{n-m}} + (1-\mu)w_* = 0 \quad \text{on} \quad \partial \Omega_o \times (0,T), \tag{4.15}$$

$$w_*(x,0) = 0$$
 in Ω_o . (4.16)

Therefore by Theorem 3.2 (β), $w_*(x,t)$ exists in $\mathbb{R}^m \times \Omega_o \times (0,\infty)$ and is bounded above by $s(M) \in]0, b - M[$ because

$$w_{\Omega_o} \le \sup_{0 < s < b - M} \frac{s}{f_*(s)} = \sup_{0 < s < b - M} \frac{s}{f(s + M)}.$$
(4.17)

Consequently w(x,t) exists in $\mathbb{R}^m \times \Omega_o \times (0,\infty)$ and is bounded above by $s(M) + M \in]0, b[$. Therefore from (4.8) – (4.10) and the maximum principle, u exists in $\mathbb{R}^m \times \Omega_o \times (0, T_{max})$ and

$$u(x,t) \le w(x,t) \le s(M) + M \quad \text{in} \quad R^m \times \Omega_o \times (0,T_{max})$$
(4.18)

where $(0, T_{max})$ is the maximum time interval in which the solution u exists. Since s(M) + M < b, from (4.18) and Theorem 2.2, $T_{max} = \infty$ and we have the result.

Corollary 4.3. Let $L = \Delta$ and suppose that $\Omega = R^m \times \Omega_o$ where $0 \le m \le n$ and $\Omega_o \subset R^{n-m}$ is a bounded domain.

(i) First case: If m = n, then the solution u of the problem (1.1) - (1.3) quenches in a finite time.

(ii) Second case: If $0 \le m < n$ and Ω_o contains a domain Ω_* with piecewise analytic boundary such that

$$\sup_{x \in \Omega_*} R_x^2(\Omega_*) > 2n \int_0^b \frac{ds}{f(s)}$$

then the solution u of the problem (1.1) - (1.3) quenches in a finite time. If $\mu = 0$ and $\Omega_o \subset \subset (0, l) \times D_o$ with

$$l \le \sqrt{8 \sup_{0 < s < b - M} \frac{s}{f(s + M)}},$$

then the solution u of the problem (1.1) - (1.3) exists in $\Omega \times (0, \infty)$ and

$$\sup_{(x,t)\in\Omega\times(0,\infty)} u(x,t) \le s(M) + M < b$$

where $M = \sup_{x \in \Omega} u_o(x)$ and

$$s(M) = \inf\{s \in (0, b - M) \quad such that \quad [\sup_{0 < s < b - M} \frac{s}{f(s + M)}]f(s + M) = s\}.$$

Proof (i) n = m. The proof is an easy consequence of Corollary 3.6. In fact, since the Green's function of the heat equation is positive, we have $u \ge 0$ in $\mathbb{R}^n \times (0, T)$. Let B be a ball of radius R such that

$$R^2 > 2n \int_0^b \frac{ds}{f(s)}.$$

From the maximum principle, we have $u \ge v$ in $B \times (0, T_{max})$ where v is a solution of the problem (1.1) - (1.2) with v(x, 0) = 0 in the case where $\Omega = B$, $\mu = 0$ and $(0, T_{max})$ is the maximum time interval in which the solutions u and v exist. Then, by Corollary 3.6, v quenches in a finite time because

$$R^2 > 2n \int_0^b \frac{ds}{f(s)}.$$

This implies that u also quenches in a finite time, which yields the result. (ii) Let v be the solution of the following problem:

$$\frac{\partial v}{\partial t} = \Delta v + f(v) \quad \text{in} \quad \Omega_p \times (0, T),$$
(4.19)

$$v = 0$$
 on $\partial \Omega_p \times (0, T),$ (4.20)

$$v(x,0) = u_o(x) \quad \text{in} \quad \Omega_p, \tag{4.21}$$

where $\Omega_p = \Omega_* \times (0, T)$. From the maximum principle $u \ge v$ in $\mathbb{R}^m \times \Omega_* \times (0, T_{max})$ where $(0, T_{max})$ is the maximum time interval in which the solutions u and v exist. Let w_{Ω_*} be the maximum of the solution for the following problem:

$$\Delta w + 1 = 0$$
 in Ω_* , $w = 0$ on $\partial \Omega_*$.

From the results in ([2], Theorem 2.9, p.70), w(x) satisfies the inequality

$$w(x) \ge \frac{R_x^2(\Omega_*)}{2n}.$$

By Theorem 4.1 (α), the solution v quenches in a finite time because

$$w_{\Omega_*} = \sup_{x \in \Omega_*} w(x) \ge \frac{\sup_{x \in \Omega_*} R_x^2(\Omega_*)}{2n} > \int_0^b \frac{ds}{f(s)}.$$

This implies that u also quenches in a finite time and we obtain the first result. Now let w_{Ω_o} be the maximum of the solution for the following problem:

 $\Delta w + 1 = 0$ in Ω_o , w = 0 on $\partial \Omega_o$.

To prove the second part of our theorem, by Theorem 4.1 (β), it is sufficient to show that

$$w_{\Omega_o} = ||w||_{L^{\infty}(\Omega_o)} \le \frac{l^2}{8} \le \sup_{0 < s < b - M} \frac{s}{f(s+M)}$$

But, this follows from the proof of Corollary 3.8.

5 Another characterization of quenching

In this section, we show that the global existence of the solution for the problem (1.1)-(1.3) depends on the existence of a certain stationary solution of this problem.

Theorem 5.1.

Consider the following problem:

$$Lv + f(v) = 0 \quad \text{in} \quad \Omega, \tag{P1}$$

$$\mu \frac{\partial v}{\partial N} + (1 - \mu)v = 0 \quad \text{on} \quad \partial \Omega.$$
 (P2)

First case: If the solution v of the problem (P1) - (P2) exists with $v_o = \sup_{\overline{a}} v(x) < b$,

then the solution u of the problem (1.1) - (1.3) exists in $\Omega \times (0, \infty)$ for $u_o(x) \le v(x)$ in Ω . Moreover

 $u(x,t) \le v_o$ in $\Omega \times (0,\infty)$.

Second case: If the solution v of the problem (P1) - (P2) does not exist, then the solution u of the problem (1.1) - (1.3) quenches in a finite time.

The following lemma will be used in the proof of Theorem 5.1.

Lemma 5.2. Suppose that l(s) is a bounded and increasing function in $(0, \infty)$. Then we have

$$\lim_{t \to \infty} l'(t) = 0.$$

Proof. We get

$$\int_{0}^{t} l'(s) ds = l(t) - l(0) \le C < \infty.$$

It follows that $\int_0^\infty l'(s)ds < \infty$, which leads to the result.

Proof of Theorem 5.1.

First case:

Since u is the solution of the problem (1.1) - (1.3), owing to Theorem 2.1, there is a finite time T such that u(x,t) exists in $\Omega \times (0,T)$. From the maximum principle, it follows that $u(x,t) \leq v(x) < b$ in $\Omega \times (0,T)$ because $u_o(x) \leq v(x)$. By Theorem 2.2, there exists T' > T such that u(x,t) exists in $\Omega \times (0,T')$. Reasoning as above, we have $u(x,t) \leq v_o < b$ in $\Omega \times (0,T')$. Iterating this process, we obtain the result. Second case:

Suppose that $\sup_{x \in \Omega} u(x,t) < b$ for all $t \ge 0$. Assume at first that u(x,0) = 0. Let G(x,y) be the Green's function of -L with the following boundary condition :

$$\mu \frac{\partial G(x,y)}{\partial N_x} + (1-\mu)G(x,y) = 0$$

Put

$$w(x,t) = \int_{\Omega} G(x,y)u(y,t)dy.$$
(5.1)

We obtain

$$w_t(x,t) = \int_{\Omega} G(x,y) u_t(y,t) dy.$$
(5.2)

From (1.1) and (5.2), we also have

$$w_t(x,t) = -u(x,t) + \int_{\Omega} G(x,y) f(u(y,t)) dy.$$
 (5.3)

From the maximum principle

$$u_t \ge 0 \quad \text{in} \quad \Omega \times (0, T) \tag{5.4}$$

because $Lu(x, 0) + f(u(x, 0)) \ge 0$. Therefore

$$\lim_{t \to \infty} u(x,t) := z(x) \tag{5.5}$$

exists because u is a bounded and increasing function. Consequently, from (5.3), (5.4), (5.5) and the monotone convergence theorem, we have

$$\lim_{t \to \infty} w_t(x,t) = -z(x) + \int_{\Omega} G(x,y) f(z(y)) dy.$$
(5.6)

Since

$$G(x,y) \ge 0$$
 and $\sup_{x \in \Omega} \int_{\Omega} G(x,y) dy < \infty$,

from (5.1), (5.2) and (5.4), it follows that $w_t(x,t) \ge 0$ and w is bounded. Then Lemma 5.2 implies that $\lim_{t\to\infty} w_t(x,t) = 0$ for all $x \in \Omega$. Therefore from (5.6), we obtain

$$z(x) = \int_{\Omega} G(x, y) f(z(y)) dy.$$

Consequently we have

$$Lz + f(z) = 0$$
 in Ω ,
 $\mu \frac{\partial z}{\partial N} + (1 - \mu)z = 0$ on $\partial \Omega$,

which is a contradiction to our hypothesis. Therefore, u quenches in a finite time. Now suppose that $u(x, 0) = u_o(x) \ge 0$. From the maximum principle,

$$u(x,t) \ge v(x,t) \quad \text{in} \quad \Omega \times (0,T_{max}) \tag{5.7}$$

where v is the solution of the problem (1.1) - (1.2) with v(x, 0) = 0 and $(0, T_{max})$ is the maximum time interval in which u and v exist. From the above result, we know that v quenches in a finite time. Then from (5.7), u also quenches in a finite time, which yields the result.

6 Asymptotic behavior near the quenching time

In this section, we obtain some conditions under which the solution of the problem (1.1) - (1.3) quenches in a finite time and we describe the asymptotic behavior of this solution near its quenching time.

Theorem 6.1.

Suppose that the function f(s) is positive, increasing, convex for positive values of s, $Lu_o(x) + f(u_o(x)) \ge 0$ in Ω and $\int_0^b \frac{ds}{f(s)} < \infty$. Finally suppose that there is a constant A < b close to b such that

$$sf'(s) \ge f(s)$$
 for $s \ge A$.

Then the solution u of the problem (1.1) - (1.3) quenches in a finite time T and there exist two constants c_1 and c_2 such that

$$H_f(c_2(T-t)) \le \sup_{x \in \overline{\Omega}} u(x,t) \le H_f(c_1(T-t))$$

where $H_f(s)$ is the inverse function of $F(s) = \int_s^b \frac{ds}{f(s)}$.

Corollary 6.2. Suppose that $f(u) = (b-u)^{-p}$ with p > 0 and $Lu_o(x) + f(u_o(x)) \ge 0$ in Ω . Then the solution u of the problem (1.1) - (1.3) quenches in a finite time T and there exist two constants C_1 and C_2 such that

$$b - C_2(T-t)^{\frac{1}{p+1}} \le \sup_{x \in \overline{\Omega}} u(x,t) \le b - C_1(T-t)^{\frac{1}{p+1}}.$$

Proof of Theorem 6.1.

Let (0,T) be the maximum time interval in which the solution u of the problem (1.1) - (1.3) exists. Since $u_o(x) \ge 0$, from the maximum principle, we have $u \ge 0$ in $\Omega \times (0,T)$. Put $w = \frac{\partial u}{\partial t}$. We obtain

$$\frac{\partial w}{\partial t} = Lw + f'(u)w \quad \text{in} \quad \Omega \times (0,T), \tag{6.1}$$

$$\mu \frac{\partial w}{\partial N} + (1 - \mu)w = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \tag{6.2}$$

$$w(x,0) \ge 0 \quad \text{in} \quad \Omega. \tag{6.3}$$

From the maximum principle, it follows that

$$\frac{\partial u}{\partial t} \ge c > 0 \quad \text{in} \quad \Omega \times (\varepsilon_o, T) \tag{6.4}$$

for $\varepsilon_o > 0$. Put $J(x,t) = u_t - \delta f(u)$ where δ is a constant which will be determined later. We have

$$\frac{\partial J}{\partial t} - LJ = \frac{\partial}{\partial t} (u_t - Lu) - \delta f'(u)(u_t - Lu) + f''(u) [\sum_{i,j=1}^n a_{ij}(x)u_{x_i}u_{x_j}]$$

$$\geq f'(u)u_t - \delta f'(u)f(u) = f'(u)J \quad \text{in} \quad \Omega \times (0,T)$$

because f is convex and $u_t - Lu = f(u)$. We also have

$$J(x,\varepsilon_o) = u_t(x,\varepsilon_o) - \delta f(u(x,\varepsilon_o))$$
 in Ω .

From (6.4), choose $\delta < \frac{c}{f(A)}$ small enough that

$$J(x,\varepsilon_o) > 0 \quad \text{in} \quad \Omega. \tag{6.5}$$

Show that $J(x,t) \geq 0$ in $\overline{\Omega} \times (\varepsilon_o, T)$. In fact suppose that J admits a negative minimum in (x_o, t_o) in $\overline{\Omega} \times (\varepsilon_o, T)$. From the maximum principle, $(x_o, t_o) \in \partial\Omega \times (\varepsilon_o, T)$.

If $u(x_o, t_o) < A < b$, from (6.4), we have

$$J(x_o, t_o) = u_t(x_o, t_o) - \delta f(u(x_o, t_o)) \ge c - \delta f(A)$$

because f is an increasing function. Since $\delta < \frac{c}{f(A)}$, we obtain $J(x_o, t_o) > 0$ which is a contradiction.

If $u(x_o, t_o) > A$, then we have $\mu \frac{\partial J}{\partial N}(x_o, t_o) + (1 - \mu)J(x_o, t_o) < 0$, which implies that

$$u(x_o, t_o)f'(u(x_o, t_o)) < f(u(x_o, t_o)).$$

Therefore, we have again a contradiction because by hypothesis $uf'(u) \ge f(u)$ for $u \ge A$. We deduce that $u_t(x,t) \ge f(u)$ in $\Omega \times (\varepsilon_o, T)$ that is

$$-(F(u))_t \ge \delta. \tag{6.6}$$

Integrating (6.6) over (ε_o, T) , it follows that

$$\infty > F(u(x,\varepsilon_o)) \ge F(u(x,\varepsilon_o)) - F(u(x,T)) \ge \delta(T-\varepsilon_o).$$
(6.7)

Therefore, T is finite and u quenches in a finite time. Integrating again (6.6) over (t,T), we have

$$F(u(x,t)) \ge F(u(x,t)) - F(u(x,T)) \ge \delta(T-t).$$
 (6.8)

Since H_f is a decreasing function, from (6.8) we obtain

$$\sup_{x\in\overline{\Omega}}u(x,t)\leq H_f(\delta(T-t)).$$

Now put $U(t) = \sup_{x \in \overline{\Omega}} u(x, t)$. Since $\overline{\Omega}$ is compact, there exist $x_i \in \overline{\Omega}$ (i = 1, 2) such that $U(t_i) = u(x_i, t_i)$ for $t_i \ge 0$. Let $h = t_2 - t_1$. We also have

$$U(t_2) - U(t_1) \le u(x_2, t_2) - u(x_2, t_1) = hu_t(x_2, t_2) + 0(h).$$

Consequently

$$\frac{U(t_2) - U(t_1)}{t_2 - t_1} \le u_t(x_2, t_2) + 0(1).$$
(6.9)

Since $Lu(x_2, t_2) \leq 0$, we obtain

$$u_t(x_2, t_2) \le f(u(x_2, t_2)) = f(U(t_2)).$$
 (6.10)

In the fact that

$$\lim_{t_1 \to t_2} \frac{U(t_2) - U(t_1)}{t_2 - t_1} = U'(t_2),$$

from (6.9) and (6.10), we deduce that $U'(t_2) \leq f(U(t_2))$. Therefore

$$\sup_{x\in\overline{\Omega}}u(x,t)\geq H_f(T-t),$$

which gives the result.

7 Quenching time.

In this section, we give some conditions under which the solution of the problem (1.4) - (1.6) quenches in a finite time and estimate its quenching time.

Theorem 7.1. Suppose that $\int_0^b \frac{ds}{g(s)} < \infty$ and for positive values of s, g(s) is positive and increasing. Then the solution u of the problem (1.4) - (1.6) quenches in a finite time T and

$$T \le \frac{|\Omega|}{|\partial\Omega|} \int_m^b \frac{ds}{g(s)},$$

where $m = \inf_{x \in \Omega} u_*(x)$.

Proof. Let (0,T) be the maximum time interval in which the solution u of the problem (1.4) - (1.6) exists. Our aim is to show that T is finite and satisfies the above inequality. Since $u_*(x) \ge 0$ in Ω , from the maximum principle $u(x,t) \ge 0$ in $\Omega \times (0,T)$. Multiplying (1.4) by $\frac{1}{g(u)}$, we have after integration over Ω

$$-\frac{d}{dt}\int_{\Omega}G(u(x,t))dx = \int_{\partial\Omega}ds + \int_{\Omega}\frac{g'(u)}{g^2(u)}\sum_{i,j=1}^n a_{ij}(x)\frac{\partial u}{\partial x_i}\frac{\partial u}{\partial x_j}dx,$$
(7.1)

where $G(s) = \int_{s}^{b} \frac{dz}{g(z)}$. Since g is an increasing function, from (7.1) we obtain

$$-\frac{d}{dt} \int_{\Omega} G(u(x,t)) dx \ge |\partial \Omega|.$$
(7.2)

Integrating (7.2) over (0,T) and using the fact that $G(u(x,T)) \ge 0$, we have

$$\infty > |\Omega| \int_{m}^{b} \frac{ds}{g(s)} \ge \int_{\Omega} \int_{u_{*}(x)}^{b} \frac{ds}{g(s)} dx \ge T |\partial\Omega|.$$
(7.3)

Then the solution u of the problem (1.4) - (1.6) quenches in a finite time T and we obtain the result.

8 Quenching set.

In this section, we describe the quenching set of the solution for the problem (1.4) - (1.6). More precisely, we show that under some conditions, the solution of the problem (1.4) - (1.6) quenches in a finite time and its quenching set is on the boundary $\partial\Omega$ of the domain Ω .

Theorem 8.1. Suppose that $\int_0^b \frac{dz}{g(z)} < +\infty$, $Lu_*(x) \ge 0$ and for positive values of s, g(s) is positive, increasing and convex. Then the solution u of the problem (1.4) - (1.6) quenches in a finite time T and there is a constant $\delta > 0$ such that the following estimate holds:

$$\sup_{x\in\overline{\Omega}}u(x,t) \le H_g(\delta(T-t))$$

where $H_g(s)$ is the inverse function of $G(s) = \int_s^b \frac{dz}{g(z)}$.

Theorem 8.2. Suppose that the hypotheses of Theorem 8.1 are satisfied. Suppose also that there is a positive constant C_o such that

$$sg'(H_g(s)) \leq C_o \quad for \quad s > 0.$$

Then the solution u of the problem (1.4) - (1.6) quenches in a finite time T and $E_Q \subset \partial \Omega$, where E_Q is the quenching set of the solution u.

Remark 8.3. If $g(s) = (b - s)^{-p}$, then we may take $C_o = \frac{p}{p+1}$.

Proof of Theorem 8.1. Let (0,T) be the maximum time interval in which the solution u of the problem (1.4) - (1.6) exists and put $w = u_t$. Since $Lu_*(x) \ge 0$, we have

$$\frac{\partial w}{\partial t} - Lw = 0 \quad \text{in} \quad \Omega \times (0, T),$$
$$\frac{\partial w}{\partial N} = g'(u)w \quad \text{on} \quad \partial\Omega \times (0, T),$$
$$w(x, 0) \ge 0 \quad \text{in} \quad \Omega.$$

¿From the maximum principle

$$w(x,t) \ge c > 0$$
 in $\Omega \times (\varepsilon_o, T)$, (8.1)

for $\varepsilon_o > 0$. Consider the following function: $J(x,t) = u_t - \delta g(u)$. From (8.1), take δ small enough that

$$J(x,\varepsilon_o) = u_t(x,\varepsilon_o) - \delta g(u(x,\varepsilon_o)) > 0.$$
(8.2)

We also have

$$\frac{\partial J}{\partial N} = g'(u)(u_t - \delta g(u)) = g'(u)J \quad \text{on} \quad \partial \Omega \times (\varepsilon_o, T).$$
(8.3)

Finally we have

$$\frac{\partial J}{\partial t} - LJ = \frac{\partial}{\partial t}(u_t - Lu) - \delta g'(u)(u_t - Lu) + g''(u)\left[\sum_{i,j=1}^n a_{ij}(x)u_{x_i}u_{x_j}\right].$$

Since g is a convex function, from (1.4) we obtain

$$J_t - LJ \ge 0$$
 in $\Omega \times (\varepsilon_o, T)$. (8.4)

From the maximum principle, we deduce that

$$J(x,t) \ge 0$$
 in $\Omega \times (\varepsilon_o, T)$,

that is to say

$$u_t \ge \delta g(u)$$
 in $\Omega \times (\varepsilon_o, T)$. (8.5)

Since $\int_0^b \frac{dz}{g(z)} < +\infty$, then the function $G(s) = \int_s^b \frac{dz}{g(z)}$ is well defined. Therefore from (8.5), it follows that

$$-(G(u))_t \ge \delta \quad \text{in} \quad \Omega \times (\varepsilon_o, T).$$
(8.6)

Integrating (8.6) over (ε_o, T) , we have

$$\infty > G(u(x,\varepsilon_o)) \ge G(u(x,\varepsilon_o)) - G(u(x,T)) \ge \delta(T-\varepsilon_o)$$

This implies that T is finite and u quenches in a finite time. On the other hand, integrating (8.6) over (t, T), we also have

$$G(u(x,t)) \ge G(u(x,t)) - G(u(x,T)) \ge \delta(T-t).$$

Since G is a decreasing function, so is H_g and we obtain

$$\sup_{x\in\overline{\Omega}}u(x,t)\leq H_g(\delta(T-t)).$$

Therefore, the theorem is proved.

Proof of Theorem 8.2.

By Theorem 8.1, we know that u quenches in a finite time T. Then our aim is to show that $E_Q \subset \partial \Omega$. Let $d(x) = \text{dist}(x, \partial \Omega)$ and $v(x) = d^2(x)$ for $x \in N_{\varepsilon}(\partial \Omega)$ where

$$N_{\varepsilon}(\partial \Omega) = \{x \in \Omega \quad \text{such that} \quad d(x) < \varepsilon\}.$$

Since $\partial\Omega$ is of class C^2 , then the function $v(x) \in C^2(\overline{N_{\varepsilon}(\partial\Omega)})$ if ε is sufficiently small. On $\partial\Omega$, we have

$$Lv - \frac{C_o}{v} \sum_{i,j=1}^n a_{ij}(x) v_{x_i} v_{x_j}$$

$$= \sum_{i=1}^{n} a_{ii}(x) v_{x_i x_i} + \sum_{i=1}^{n} (\sum_{j=1}^{n} \frac{\partial a_{ij}(x)}{\partial x_j}) v_{x_i} - \frac{C_o}{v} \sum_{i,j=1}^{n} a_{ij}(x) v_{x_i} v_{x_j}$$

$$= 2 \sum_{i=1}^{n} a_{ii}(x) + 2d \sum_{i=1}^{n} (\sum_{j=1}^{n} \frac{\partial a_{ij}(x)}{\partial x_j}) d_{x_i} - 4C_o \sum_{i,j=1}^{n} a_{ij}(x) d_{x_i} d_{x_j}$$

$$\geq -2 \sum_{i=1}^{n} |a_{ii}(x)| - 2d' \sum_{i=1}^{n} |\sum_{j=1}^{n} \frac{\partial a_{ij}(x)}{\partial x_j}| |\nabla d| - 4C_o \lambda_2 |\nabla d|^2$$

where $d' = \sup_{x \in \overline{\Omega}, y \in \overline{\Omega}} ||x - y||$. Therefore, there exists a positive constant C_1 such that

$$Lv - \frac{C_o}{v} \sum_{i,j=1}^n a_{ij}(x) v_{x_i} v_{x_j} \ge -C_1 \quad \text{on} \quad \partial\Omega.$$

Since $v \in C^2(\overline{N_{\varepsilon}(\partial\Omega)})$ for ε sufficiently small, let ε_o be so small that

$$Lv - \frac{C_o}{v} \sum_{i,j=1}^n a_{ij}(x) v_{x_i} v_{x_j} \ge -2C_1 \quad \text{in} \quad \overline{N_{\varepsilon_o}(\partial\Omega)}.$$

We extend v to a function on $\overline{\Omega}$ such that $v \in C^2(\overline{\Omega})$ and $v \geq C_o^* > 0$ in $\overline{\Omega - N_{\varepsilon_o}(\partial \Omega)}$. Then we have

$$Lv - \frac{C_o}{v} \sum_{i,j=1}^n a_{ij}(x) v_{x_i} v_{x_j} \ge -C^* \quad \text{in} \quad \overline{\Omega}$$
(8.7)

for some $C^* > 0$. Since $H_g(0) = b$, multiplying (8.7) by ϵ small enough, we may assume without loss of generality that C^* and v are sufficiently small so that

$$H_g(\delta(v(x) + C^*(T - \varepsilon_o))) > u(x, \varepsilon_o).$$
(8.8)

Put $w(x,t) = H_g(\tau)$ where $\tau = \delta(v(x) + C^*(T-t))$. From (8.8), we obtain

$$w(x,\varepsilon_o) > u(x,\varepsilon_o)$$
 in Ω .

We also have

$$w_t - Lw = -\delta H'_g(\tau) [C^* + Lv + \delta \frac{H''_g(\tau)}{H'_g(\tau)} \sum_{i,j=1}^n a_{ij}(x) v_{x_i} v_{x_j}].$$
(8.9)

Since $H_g(s)$ is the inverse function of G(s), we have $H'_g(s) = -g(H_g(s))$ and $H''_g(s) = -H'_g(s)g'(H_g(s))$. Consequently

$$w_t - Lw = \delta g(H_g(s))[C^* + Lv - \delta g'(H_g(\tau))\sum_{i,j=1}^n a_{ij}(x)v_{x_i}v_{x_j}].$$
(8.10)

Since $sg'(H_g(s)) \leq C_o$ for s > 0, using the fact that $g'(H_g(s))$ is a decreasing function (g') is increasing and H_g is decreasing), we have

$$w_t - lw \ge \delta g(H_g(\tau))[C^* + Lv - \frac{C_o}{v} \sum_{i,j=1}^n a_{ij}(x)v_{x_i}v_{x_j}].$$
(8.11)

From (8.7) and (8.11), we deduce that

$$w_t - Lw \ge 0$$
 in $\Omega \times (\varepsilon_o, T)$. (8.12)

We also have

$$w(x,t) = H_g(\delta C^*(T-t)) > H_g(\delta(T-t)) \quad \text{on} \quad \partial\Omega \times (\varepsilon_o, T)$$
(8.13)

because $C^* < 1$, which implies that

$$w(x,t) > u(x,t)$$
 on $\partial \Omega \times (\varepsilon_o, T)$. (8.14)

Consequently, from the maximum principle, it follows that

$$u(x,t) < w(x,t)$$
 in $\Omega \times (\varepsilon_o, T)$. (8.15)

Since H_g is decreasing, we obtain

$$u(x,t) \le H_g(\delta(v(x) + C^*(T-t))) \le H_g(\delta v(x)).$$
 (8.16)

Then if $\Omega' \subset \subset \Omega$, from (8.16) we have

$$\sup_{x \in \Omega', t \in [\varepsilon_o, T)} u(x, t) \le \sup_{x \in \Omega'} H_g(\delta v(x)) < b_g(\delta v(x)$$

which yields the result.

References

- [1] Acker A., Walter W., *The quenching problem for nonlinear parabolic equations*, Lecture Notes in Mathematics, **564**, Springer-Verlag, New York, 1976.
- [2] Bandle C., *Isoperimetric inequalities and applications*, Pitman, London, 1980.
- [3] Dai Q., Gu Y., A short note on quenching Phenomena for semilinear Parabolic equations, Jour. of Diff. Equat. 137 (1997), pp. 240-250.
- [4] Deng K., Levine H. A., On the blow up of u_t at quenching, Proc. of Amer. Math. Soc. Vol. 106, 4 (1989), pp. 1049-1056.
- [5] Gilbarg D., Trudinger N.S., *Elliptic partial differential equations of second order*, Springer-Verlag 1977.
- [6] Kawarada H., On solutions of initial boundary value problem for $u_t = u_{xx} + \frac{1}{1-u}$, RIMS Kyoto Univ., **10** (1975), pp. 729 - 736.
- [7] Levine H.A., The quenching of solutions of linear hyperbolic and parabolic with nonlinear boundary conditions, SIAM J. Math. Anal., 14 (1983), pp. 1139 – 1153.
- [8] Levine H.A., Lieberman G.M., Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions, J. Reine Ang. Math., 345 (1983), pp. 23 - 38.
- [9] Levine H.A., Montgomery J.T., Quenching of solutions of some nonlinear parabolic problems, SIAM J. Math. Anal., 11 (1980), pp. 842 – 847.
- [10] Levine H.A., Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Annali di Matematica pura ed applicata (IV), Vol. CLV (1989), pp. 243 – 260.
- [11] Matano H., Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. R.I.M.S. Vol. 15, 2 (1979), pp. 401-454.
- [12] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967.
- [13] Walter W., Differential- und Integral-Ungleichungen, Springer, Berlin, 1964.

Université Paul Sabatier, UFR-MIG, MIP, 118 route de Narbonne, 31062 Toulouse, France. E-mail: boni@mip.ups-tlse.fr