Generalized reduction of the Poincaré differential equation to Cauchy matrix form

Ice B. Risteski

Abstract

In this paper the Poincaré differential equation of order n with multiple regular singularities is reduced to the Cauchy matrix form.

1 Introduction

Using the transformation of H.L.Turrittin [1, p. 494] we will prove that the Poincaré differential equation of n-th order with multiple regular singularities, can be reduced to the Cauchy matrix form [2, p. 369]. In this paper the results obtained in [3] are generalized.

2 Generalized reduction

Now we will prove the following result.
Theorem. The Poincaré differential equation

$$
\begin{equation*}
P_{n}(x) y^{(n)}=\sum_{i=0}^{n-1} P_{i}(x) y^{(i)}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{n}(x)=\prod_{i=1}^{k}\left(x-d_{i}\right)^{r_{i}} \tag{2}
\end{equation*}
$$

[^0]\[

$$
\begin{gathered}
\sum_{i=1}^{k} r_{i}=n, \quad(1 \leq k \leq n) \\
1 \leq r_{k} \leq r_{k-1} \leq \cdots \leq r_{1} \leq n
\end{gathered}
$$
\]

reduces to the Cauchy matrix form

$$
\begin{equation*}
(x I-D) \frac{d Y}{d x}=Q Y \tag{3}
\end{equation*}
$$

where

$$
\begin{gather*}
D=\operatorname{diag}\left(d_{1}, \cdots, d_{1}, d_{2}, \cdots, d_{2}, \cdots, d_{k}, \cdots, d_{k}\right), \quad(\operatorname{rank} D \geq 1) \tag{4}\\
Q=\left[\begin{array}{cccccc}
Q_{1} & 1 & 0 & \cdots & 0 \\
& Q_{2} & 1 & \cdots & 0 \\
& & & & \cdot \\
& q_{i j} & & & \cdot \\
& & & & \cdot \\
& & & & Q_{k}
\end{array}\right] \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
Y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{T} . \tag{6}
\end{equation*}
$$

Proof. The regular singularities in the equality (1) are $x=d_{i},(1 \leq i \leq k)$ and the following functions

$$
\left(x-d_{j}\right)^{i} P_{n-i}(x) / P_{n}(x), \quad(1 \leq i \leq n)
$$

are holomorphic for $x=d_{j}$, i.e. the polynomials $P_{n-i}(x)$ must contain the factor $\left(x-d_{j}\right)^{r_{j}-i},\left(1 \leq i \leq r_{j}\right)$. Hence it follows

$$
\begin{gather*}
P_{n-i}(x)=P_{n-i}^{*}(x) \prod_{j=1}^{k}\left(x-d_{j}\right)^{r_{j}-i}, \quad\left(0<i \leq r_{k}\right) \\
P_{n-i}(x)=P_{n-i}^{*}(x) \prod_{j=1}^{s-1}\left(x-d_{j}\right)^{r_{j}-i}, \quad\left(r_{s}<i \leq r_{s-1} ; \quad k \geq s \geq 2\right) \tag{7}\\
P_{n-i}(x)=P_{n-i}^{*}(x), \quad\left(r_{1}<i \leq n\right)
\end{gather*}
$$

such that if $r_{s}<i \leq r_{s-1},\left(1 \leq s \leq k+1 ; r_{0}=n, r_{k+1}=0\right)$ the polynomials $P_{n-i}^{*}(x)$ in the best case have degree

$$
(n-i)-\sum_{i=1}^{s-1} r_{i}+i(s-1)=n-N_{s-1}+i(s-2)
$$

where

$$
\begin{array}{cl}
N_{s}=\sum_{i=1}^{s} r_{i}, & (1 \leq s \leq k) \\
N_{0}=0, & N_{k}=n
\end{array}
$$

In the block matrix (5), each of the blocks $Q_{s},(1 \leq s \leq k)$ has format $r_{s} \times r_{s}$ and its form is

$$
Q_{s}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{8}\\
0 & 1 & 1 & \cdots & 0 & 0 \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
0 & 0 & 0 & \cdots & r_{s}-2 & 1 \\
a_{s 1} & a_{s 2} & a_{s 3} & \cdots & a_{s, r_{s}-1} & a_{s, r_{s}}+r_{s}-1
\end{array}\right]
$$

If we introduce the following substitutions

$$
\begin{gather*}
t_{s}^{i}=\prod_{j=1}^{n}\left(x-d_{j}\right)^{r_{j}-i}, \\
t_{s}^{i}=t_{s}^{i+1} \psi_{s}, \quad \psi_{s}=\prod_{j=1}^{s}\left(x-d_{j}\right), \tag{9}\\
\left(t_{s}^{i}\right)^{\prime}=t_{s}^{i+1} p_{s}^{i}, \quad p_{s}^{i}=\sum_{j=1}^{s}\left(r_{j}-i\right) \prod_{m=1}^{s}\left(x-d_{m}\right), \\
(1 \leq s \leq k)
\end{gather*}
$$

then the equality (7) takes the form

$$
\begin{gather*}
P_{n-i}(x)=t_{s-1}^{i} P_{n-i}^{*}(x), \quad\left(r_{s}<i \leq r_{s-1} ; k+1 \geq s \geq 2\right) \\
P_{n-i}(x)=P_{n-i}^{*}(x), \quad\left(r_{1}<i \leq n\right) \tag{10}
\end{gather*}
$$

and in the linear transformation of H.L.Turrittin [1]

$$
\left[\begin{array}{c}
y_{1} \tag{11}\\
y_{2} \\
y_{3} \\
\cdot \\
\cdot \\
\cdot \\
y_{i} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
c_{20}(x) & \varphi_{1} & 0 & \cdots & 0 & 0 \\
c_{30}(x) & c_{31}(x) & \varphi_{2} & \cdots & 0 & 0 \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
c_{i 0}(x) & c_{i 1}(x) & c_{i 2}(x) & \cdots & \varphi_{i-1} & 0 \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & \\
c_{n 0}(x) & c_{n 1}(x) & c_{n 2}(x) & \cdots & c_{n, n-2}(x) & \varphi_{n-1}
\end{array}\right] \cdot\left[\begin{array}{c}
y \\
y^{\prime} \\
y^{\prime \prime} \\
\cdot \\
\cdot \\
\cdot \\
y^{(i-1)} \\
\cdot \\
\cdot \\
\cdot \\
y^{(n-1)}
\end{array}\right],
$$

where $\operatorname{degc}_{i j}(x) \leq j$, it will be

$$
\begin{gather*}
\varphi_{i}=t_{s}^{0}\left(x-d_{s}\right)^{i-N_{s}}=t_{s}^{1} \psi_{s}\left(x-d_{s}\right)^{i-N_{s}}=t_{s}^{1} \psi_{s-1}\left(x-d_{s}\right)^{i+1-N_{s}}, \\
\varphi_{i}^{\prime}=t_{s}^{1}\left(x-d_{s}\right)^{i-N_{s}}\left[\left(x-d_{s}\right) p_{k-1}^{0}+\left(i-N_{s-1}\right) \psi_{s-1}\right], \tag{12}
\end{gather*}
$$

$$
\left(N_{s-1}<i \leq N_{s} ; 1 \leq s \leq k\right)
$$

Applying the previous substitutions, according to [3] $q_{i i}$ and $c_{i, i-2}(x)$ can be calculated. First it determines

$$
\begin{gathered}
c_{n, n-2}(x)=\left(x-d_{k}\right)^{-1}\left[q_{n n} \varphi_{n-1}-P_{n-1}(x)\right]-\varphi_{n-1}^{\prime}= \\
=\left(x-d_{k}\right)^{-1}\left[q_{n n} t_{k}^{0}\left(x-d_{k}\right)^{-1}-t_{k}^{1} P_{n-1}^{*}(x)\right]-t_{k}^{1}\left(x-d_{k}\right)^{-1}\left[\left(x-d_{k}\right) p_{k-1}^{0}+\left(r_{k}-1\right) \psi_{k-1}\right]= \\
=t_{k}^{1}\left(x-d_{k}\right)^{-1}\left[\left(q_{n n}-r_{k}+1\right) \psi_{k-1}-P_{n-1}^{*}(x)-\left(x-d_{k}\right) p_{k-1}^{0}\right] .
\end{gathered}
$$

If we substitute $x=d_{k}$ in the last equation we obtain

$$
\begin{gather*}
q_{n n}=r_{k-1}+P_{n-1}^{*}\left(d_{k}\right) / \psi_{k-1}\left(d_{k}\right) \\
c_{n, n-2}(x)=t_{k}^{1} c_{n, n-2}^{*}(x) \tag{13}
\end{gather*}
$$

where $c_{n, n-2}^{*}$ is a polynomial of the form

$$
\begin{equation*}
c_{n, n-2}^{*}(x)=\left(x-d_{k}\right)^{-1}\left[\left(q_{n n}-r_{k}+1\right) \psi_{k-1}-P_{n-1}^{*}(x)-\left(x-d_{k}\right) p_{k-1}^{0}\right] . \tag{14}
\end{equation*}
$$

Now let be $N_{k-1}<i \leq N_{k}-1$. According to [3], by substituting

$$
\begin{equation*}
c_{i, i-2}(x)=t_{k}^{1}\left(x-d_{k}\right)^{i-N_{k}} c_{i, i-2}^{*}(x) \tag{15}
\end{equation*}
$$

and by using of (9), we obtain

$$
\begin{gathered}
t_{k}^{1}\left(x-d_{k}\right)^{i-N_{k}} c_{i, i-2}^{*}(x)= \\
=t_{k}^{1}\left(x-d_{k}\right)^{i-N_{k}}\left[c_{i+1, i-1}^{*}(x)-p_{k-1}^{0}\right]+t_{k}^{1}\left(x-d_{k}\right)^{i-1-N_{k}} \psi_{k-1}\left[q_{i i}-\left(i-N_{k-1}-1\right)\right],
\end{gathered}
$$

and hence it follows that

$$
\begin{gather*}
q_{i i}=i-N_{k-1}-1 \\
c_{i, i-2}^{*}(x)=c_{i+1, i-1}^{*}(x)-p_{k-1}^{0}=c_{n, n-2}^{*}(x)-(n-i) p_{k-1}^{0} \tag{16}\\
\left(N_{k-1}<i \leq N_{k-1}\right)
\end{gather*}
$$

For $i=N_{k-1}, c_{i+1, i-1}(x)=t_{k-1}^{1} c_{i+1, i-1}^{*}(x)$ from (15) and

$$
\begin{gathered}
\varphi_{i-1}=t_{k-1}^{0}\left(x-d_{k-1}\right)^{-1}=t_{k-1}^{1} \psi_{k-1}\left(x-d_{k-1}\right)^{-1}=t_{k-1}^{1} \psi_{k-2} \\
\varphi_{i-1}^{\prime}=t_{k-1}^{1}\left(x-d_{k-1}\right)^{-1}\left[\left(x-d_{k-1}\right) p_{k-1}^{0}+\left(r_{k-1}-1\right) \psi_{k-2}\right]
\end{gathered}
$$

according to (12), we obtain the equation

$$
c_{i, i-2}(x)=t_{k-1}^{1}\left(x-d_{k-1}\right)^{-1}\left\{c_{i+1, i-1}^{*}(x)+\left[q_{i i}-\left(r_{k-1}-1\right)\right] \psi_{k-2}\right\}-t_{k-1}^{1} p_{k-2}^{0}
$$

which yields to

$$
\begin{gather*}
q_{i i}=r_{k-1}-1-c_{i+1, i-1}^{*}\left(d_{k-1}\right) / \psi_{k-2}\left(d_{k-1}\right) \\
c_{i, i-2}(x)=t_{k-1}^{1} c_{i, i-2}^{*}(x) \tag{17}
\end{gather*}
$$

$$
\left(i=N_{k-1}\right)
$$

where

$$
\begin{gather*}
c_{i, i-2}^{*}(x)=\left(x-d_{k}\right)^{-1}\left\{c_{i+1, i-1}^{*}(x)+\left[q_{i i}-\left(r_{k-1}-1\right)\right] \psi_{k-2}\right\}-p_{k-2}^{0}, \tag{18}\\
\left(i=N_{k-1}\right) .
\end{gather*}
$$

Hence we can suppose that for $N_{s-1}<i \leq N_{s},(k-1 \geq s \geq 1)$ it holds

$$
\begin{equation*}
c_{i, i-2}(x)=t_{s}^{1}\left(x-d_{s}\right)^{i-N_{s}} c_{i, i-2}^{*}(x) \tag{19}
\end{equation*}
$$

Indeed, for $N_{s-1}<i \leq N_{s}$, the equation

$$
c_{i, i-2}(x)=\left(x-d_{s}\right)^{-1}\left[c_{i+1, i-1}(x)+q_{i i} \varphi_{i-1}\right]-\varphi_{i-1}^{\prime},
$$

can be reduced to the form

$$
c_{i, i-2}^{*}(x)=c_{i+1, i-1}^{*}(x)-p_{s-1}^{0}+\left(x-d_{s}\right)^{-1} \psi_{s-1}\left[q_{i i}-\left(i-N_{s-1}-1\right)\right] .
$$

Using the substitution

$$
\begin{equation*}
q_{i i}=i-N_{s-1}-1, \tag{20}
\end{equation*}
$$

can be determined the polynomial

$$
\begin{gather*}
c_{i, i-2}^{*}(x)=c_{i+1, i-1}^{*}(x)-p_{s-1}^{0}= \\
=c_{N_{s}, N_{s}-2}^{*}(x)-\left(N_{s}-i\right) p_{s-1}^{0}, \quad\left(N_{s-1}<i \leq N_{s}\right) . \tag{21}
\end{gather*}
$$

Since it is $c_{i+1, i-1}(x)=t_{s-1}^{1} c_{i+1, i-1}^{*}(x)$, for $i=N_{s-1}$ and

$$
\begin{gathered}
\varphi_{i-1}=t_{s-1}^{1} \psi_{s-2} \\
\varphi_{i-1}^{\prime}=t_{s-1}^{1}\left(x-d_{s-1}\right)^{-1}\left[\left(x-d_{s}\right) p_{k-2}^{0}+\left(r_{s}-1\right) \psi_{s-2}\right]
\end{gathered}
$$

we obtain

$$
c_{i, i-2}(x)=t_{s-1}^{1}\left(x-d_{s-1}\right)^{-1}\left[c_{i+1, i-1}^{*}(x)+\left(q_{i i}-r_{s-1}+1\right) \psi_{s-2}\right]-t_{s-1}^{1} p_{s-2}^{0},
$$

and hence we can determine

$$
\begin{equation*}
q_{i i}=r_{s-1}-1-c_{i+1, i-1}^{*}\left(d_{s-1}\right) / \psi_{s-2}\left(d_{s-1}\right), \tag{22}
\end{equation*}
$$

obtaining

$$
\begin{equation*}
c_{i, i-2}(x)=t_{s-1}^{1} c_{i, i-2}^{*}(x), \quad\left(i=N_{s-1}\right) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i, i-2}^{*}(x)=\left(x-d_{s-1}\right)^{-1}\left[c_{i+1, i-1}^{*}(x)+\left(q_{i i}-r_{s-1}+1\right) \psi_{s-2}\right]-p_{s-2}^{0} . \tag{24}
\end{equation*}
$$

Thus we determined the polynomials $c_{i, i-2}(x),(n \geq i \geq 2)$ which have the form (19) and the constants $q_{i i},(n \geq i \geq 2)$ together with $q_{11}=-c_{20}(x)=0$, uniquely from $P_{n-1}(x)$.

Now we can see that the polynomials $c_{i, i-j}(x)$ can be expressed as

$$
\begin{gather*}
c_{i, i-j}(x)=t_{s}^{j-1}\left(x-d_{s}\right)^{i-N_{s}} c_{i, i-j}^{*}(x), \tag{25}\\
\left(N_{s-1}<i \leq N_{s} ; 1 \leq s \leq k\right),
\end{gather*}
$$

where it understands that the factor $\left(x-d_{j}\right)$ up to potention of nonpositive integers is equal to 1 , i.e.

$$
\begin{gathered}
\left(x-d_{s}\right)^{r_{s}-N_{s}+i+1-j}=1, \quad\left(r_{s}-N_{s}+i+1 \leq j\right) \\
\left(x-d_{j}\right)^{r_{j}-j+1}=1, \quad\left(r_{j}+1 \leq j\right) .
\end{gathered}
$$

For $j=2$, from the formulas (16) can be obtained the formulas (19), and hence for $i=n+1$ the formulas (10) correspond to the formulas (16), i.e.

$$
c_{n+1, n+1-j}(x)=P_{n-j+1}(x)=t_{k}^{j-1} P_{n-j+1}^{*}(x) .
$$

The equality (25) will be proved by induction with respect to the subdiagonal row j . Now we will consider the rows $c_{i, i-j}(x)$ for $N_{s-1}<i \leq N_{s}$. In this case it holds

$$
\begin{gather*}
\left(x-d_{s}\right)\left[c_{i, i-j-1}(x)+c_{i, i-j}^{\prime}(x)\right]= \\
=c_{i+1, i-j}(x)+\sum_{\nu=0}^{j-2} q_{i, i-\nu} c_{i-\nu, i-j}(x)+q_{i, i-j+1} \varphi_{i-j}, \quad\left(N_{s-1}<i \leq N_{s}\right) . \tag{26}
\end{gather*}
$$

Let us suppose that equations (22) hold for $i=N_{s}+1$, then we can prove by induction of $j,(j=2,3, \cdots)$ that the $r_{s} \times r_{s}$ matrix $\left[q_{i, i-j}\right],\left(0 \leq j \leq r_{s}-1\right)$ is a joint matrix. Indeed, for $j=2$ we have

$$
\begin{gather*}
\left(x-d_{s}\right) c_{i, i-3}(x)-c_{i+1, i-2}(x)= \\
=t_{s}^{2}\left(x-d_{s}\right)^{i-N_{s}+1}\left\{\left[\left(q_{i i}-i+N_{s}\right) \psi_{s-1}+p_{s}^{1}\right] c_{i, i-2}^{*}(x)-\psi_{s} c_{i, i-2}^{*^{\prime}}(x)\right\}+q_{i, i-1} t_{s}^{2}\left(x-d_{s}\right)^{i-N_{s}} \psi_{s-1}^{2} . \tag{27}
\end{gather*}
$$

From the assumption $c_{i+1, i-2}(x)=t_{s}^{2} c_{i+1, i-2}^{*}(x)$ for $i=N_{s}$, we can substitute

$$
\begin{equation*}
q_{i, i-1}=-c_{i+1, i-2}^{*}\left(d_{s}\right) / \psi_{s-1}^{2}\left(d_{s}\right), \quad\left(i=N_{s}\right) \tag{28}
\end{equation*}
$$

and we will prove that $c_{i, i-3}(x)$ can be determined in the form

$$
\begin{equation*}
c_{i, i-3}(x)=t_{s}^{2} c_{i, i-3}^{*}(x), \quad\left(i=N_{s}\right) \tag{29}
\end{equation*}
$$

Substituting the equation (29) in (27) for $i=N_{s}-1$ we obtain $q_{i, i-1}=0$ and the equation (25) for $i=N_{s}-1$. The equation (27) for $N_{s}-1 \geq i \geq N_{s-1}+2$ reduces to

$$
\begin{gathered}
\left(x-d_{s}\right)\left[c_{i, i-3}^{*}(x)-c_{i+1, i-2}^{*}(x)\right]= \\
=\left(x-d_{s}\right)\left\{\left[\left(q_{i i}-i+N_{s}\right) \psi_{s-1}+p_{k}^{1}\right] c_{i, i-2}^{*}(x)-\psi_{s} c_{i, i-2}^{*^{\prime}}(x)\right\}+q_{i, i-1} \psi_{s-1}^{2}, \\
\left(i=N_{s}-1, N_{s}-2, \cdots, N_{s-1}+2\right)
\end{gathered}
$$

where it follows that

$$
\begin{equation*}
q_{i, i-1}=0, \quad\left(i=N_{s}-1, N_{s}-2, \cdots, N_{s-1}+2\right) \tag{30}
\end{equation*}
$$

For $i=N_{s-1}+1$ the expressions $c_{i, i-2}(x)=t_{s-1}^{1} c_{i, i-2}^{*}(x)$ and $\varphi_{i-2}=t_{s-1}^{1} \psi_{s-2}$ does not contain the factor $\left(x-d_{s}\right)$. In this case $q_{i, i-1}$ can be determined, if we substitute $x=d_{s}$ in (26). We will also prove that the polynomials $c_{i, i-3}(x)$ contain the factor t_{s-1}^{2}.

The previous calculations can be used for all blocks ($N_{s-1}<i \leq N_{s} ; k \geq s \geq 1$), which means that the first subdiagonal determines from $P_{n-1}(x)$.

Now we will assume that the polynomials (25) are valid until the first $(j-2)$-nd subdiagonal rows. Then we will prove that (25) holds for the $(j-1)$-st part together with the constants $q_{i, i-j+1}$.

For $N_{s-1}<i \leq N_{s}$ according to the assumption, it follows that

$$
\begin{gather*}
c_{i, i-1}^{\prime}(x)=t_{s-1}^{j}\left(x-d_{s}\right)^{i-j-N_{s-1}}\left\{\left[P_{s-1}^{j-1}\left(x-d_{s}\right)+\right.\right. \\
\left.\left.+\psi_{s-1}\left(i-j+1-N_{s-1}\right)\right] c_{i, i-j}^{*}(x)+\psi_{s-1}\left(x-d_{s}\right) c_{i, i-j}^{*^{\prime}}(x)\right\}, \\
c_{i-\nu, i-j}(x)=t_{s-1}^{j-\nu-1}\left(x-d_{s}\right)^{i-j+1-N_{s-1}} c_{i-\nu, i-j}^{*}(x)= \\
=t_{s-1}^{j} \psi_{s-1}^{\nu+1}\left(x-d_{s}\right)^{j-i+1-N_{s-1}} c_{i-\nu, i-j}^{*}(x) \tag{31}
\end{gather*}
$$

and

$$
\begin{equation*}
\varphi_{i-j}=t_{s-1}^{0}\left(x-d_{s}\right)^{i-j-N_{s-1}}=t_{s-1}^{j} \psi_{s-1}^{j}\left(x-d_{s}\right)^{i-j-N_{s-1}} . \tag{32}
\end{equation*}
$$

Let $2 \leq j \leq r_{k}$. Then for $c_{i+1, i-j}(x)=t_{s-1}^{j}\left(x-d_{s}\right)^{r_{s}-j} c_{i+1, i-j}^{*}(x),\left(i=N_{s}\right)$ from (26), (31) and (32) we obtain

$$
\begin{gather*}
q_{i, i-j+1}=-c_{i+1, i-j}^{*}\left(d_{s}\right) / \psi_{s-1}^{j}\left(d_{s}\right), \\
c_{i, i-j+1}(x)=t_{s}^{j} c_{i, i-j-1}^{*}(x), \quad\left(i=N_{s}\right) . \tag{33}
\end{gather*}
$$

By substituting (33) in (26), by continuing of this procedure, can be determined $c_{i, i-j-1}(x)$ in the form (25). For $N_{s}-1 \geq i \geq N_{s-1}+j$ we obtain

$$
\begin{gathered}
\left(x-d_{s}\right)\left\{c_{i, i-j-1}^{*}(x)+\left[p_{s-1}^{j-1}\left(x-d_{s}\right)+\psi_{s-1}\left(i-j+1-N_{s-1}\right)\right] c_{i, i-j}^{*}(x)+\psi_{s-1}\left(x-d_{s}\right) c_{i, i-j}^{*^{\prime}}(x)\right\}= \\
=\left(x-d_{s}\right)\left[c_{i+1, i-j}^{*}(x)+\sum_{\nu=0}^{j-2} q_{i, i-\nu} \psi_{s-1}^{\nu+1} c_{i-\nu, i-j}^{*}(x)\right]+q_{i, i-j+1} \psi_{s-1}^{j},
\end{gathered}
$$

and hence it follows that

$$
\begin{equation*}
q_{i, i-j+1}=0, \quad\left(i=N_{s}-1, N_{s}-2, \cdots, N_{s-1}+j\right) \tag{34}
\end{equation*}
$$

and $c_{i, i-j-1}(x)$ can be determined uniquely.
Thus, we verified that the matrix

$$
Q_{s}=\left[\begin{array}{ccccc}
q_{N_{s-1}+1, N_{s-1}+1} & 1 & 0 & \cdots & 0 \\
0 & q_{N_{s-1}+2, N_{s-1}+2} & 1 & \cdots & 0 \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
q_{N_{s}, N_{s-1}+1} & q_{N_{s}, N_{s-1}+2} & q_{N_{s}, N_{s-1}+3} & \cdots & q_{N_{s}, N_{s}}
\end{array}\right]
$$

is a joint matrix.
From (31) and (32), if $N_{s-1}<i \leq N_{s-1}+j-1$ or if $j>r_{s}$, the right term of (26) does not contain the factor $\left(x-d_{s}\right)$ longer. From these cases can be determined the constants $q_{i, i-j+1}$, if $x=d_{s}$ substitutes in (26), and then it obtains $c_{i, i-j-1}(x)$ from the expressions of dividing of the right side of (26) by $\left(x-d_{s}\right)$. We also note that for $j<r_{1}$, the factor $t_{s-1}^{j}=t_{m}^{j},\left(j<r_{m}\right)$ moves in the next block. The previous calculations can be applied to all blocks $N_{s-1}<i \leq N_{s}$, $(k \geq s \geq 1)$, which means that the $(j-1)$-st subdiagonal parts are determined from $P_{n-j}(x)$.

Example. For the Poincaré differential equation

$$
x^{2}(x-1) y^{\prime \prime \prime}=x(x-1) y^{\prime \prime}+(x-1) y^{\prime}+y
$$

where

$$
\begin{gathered}
P_{3}(x)=x^{2}(x-1), P_{2}(x)=x(x-1), P_{1}(x)=x-1, P_{0}(x)=1, \\
d_{1}=d_{2}=0, d_{3}=1, \varphi_{1}(x)=x, \varphi_{2}(x)=x^{2},
\end{gathered}
$$

the coefficients of the matrix Q, given by the equation (5) have values

$$
q_{11}=0, q_{21}=-2, q_{22}=4, q_{31}=1, q_{32}=0, q_{33}=0
$$

and the coefficients of the matrix of transformation (11) are

$$
c_{31}(x)=-3 x, c_{30}(x)=2, c_{20}(x)=0 .
$$

References

[1] H.L.Turrittin: Reduction of Ordinary Differential Equations of Birkoff Canonical Form, Trans. Amer. Math. Soc., 107 (1963), 485-507.
[2] F.R.Gantmacher: The Theory of Matrices, Nauka, Moscow 1988, (in Russian).
[3] I.B.Risteski, A Simple Reduction of the Poincaré Differential Equation to Cauchy Matrix Form, Missouri J. Math. Sci., 11 (1999), 4-9.

[^0]: Received by the editors June 1998.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 34A30, 15A18.
 Key words and phrases : Generalized reduction, Poincaré differential equation, Cauchy matrix form.

