
Caps embedded in the Klein quadric

A. Cossidente∗

1 Introduction

Let PG(N, q) be the projective space of dimension N over the finite field GF (q). A
k–cap K in PG(N, q) is a set of k points, no three of which are collinear [14], and
a k–cap is called complete if it is maximal with respect to set–theoretic inclusion.
The maximum value of k for which there exists a k–cap in PG(N, q) is denoted
by m2(N, q) [14]. This number m2(N, q) is only known, for arbitrary q, when N ∈
{2, 3}. Namely, m2(2, q) = q + 1 if q is odd, m2(2, q) = q + 2 if q is even, and
m2(3, q) = q2 + 1, q > 2. With respect to the other values of m2(N, q), apart
from m2(N, 2) = 2N , m2(4, 3) = 20, m2(5, 3) = 56 and m2(4, 4) = 41 [2], only upper
bounds are known. Finding the exact value for m2(N, q), N ≥ 4 and constructing an
m2(N, q)–cap seems to be a very hard problem. In the last few years there has been
a certain interest in caps embedded in the Klein quadric K of PG(5, q) considered
as ambient space, and the main purpose is to find lower and upper bounds for a
complete cap embedded in K. In this direction, Blokhuis and Sziklai [3] proved
a lower bound for the smallest complete cap of the Klein quadric. Precisely such
a cap has size at least const·q12/7. In 1997, Cossidente, Hirschfeld and Storme [8]
constructed a cap of size 2q2 + q + 1 of K obtained by gluing together two suitable
Veronese surfaces. If we assume q even, it is always possible to extend such a cap
to a complete 2(q2 + q + 1)–cap of K [5]. This seems to be the unique known
example of smallest complete cap of K. On the other hand Glynn [12] proved (using
the Klein correspondence between lines of PG(3, q) and points of PG(5, q)) that
any line orbit of a Singer cyclic group of PG(3, q) corresponds to a cap of size
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q3 + q2 + q + 1 embedded in K. Also, he observed that for q odd the above caps
are maximally embedded in K and left the q even case as an open problem. Note
that a standard double counting argument on flags and the value of m(2, q) for q
even give that the maximum number of lines in PG(3, q) with no three in a planar
pencil is (q2 + 1)(q + 2). Such a value can be taken as a theoretic upper bound.
In a recent paper by Ebert, Metsch and Szőnyi [11] it is shown that actually for q
even, caps of size larger than q3 + q2 + q+ 1 can be embedded in K, and the authors
constructed caps whose deficiency from the theoretic upper bound is q + 1. Also
they constructed maximal caps of size q3 + q2± r(q+ 1)− q+ 1 of K, for each value
of q, being q = 2h, h ≥ 3 and r = 2(h+1)/2. These caps are bigger then Glynn’s
caps. In this paper we describe the geometric structure of such caps which turn
out to be set–theoretic unions of q + 1 Suzuki–Tits ovoids and one elliptic quadric.
Our approach uses Singer cyclic groups and the geometric setting used to prove the
isomorphism between the groups Sp(4, q) and O(5, q), q even, as explained in [21].

2 Definitions and preliminary results

Denote by α a linear collineation of PG(n, q), the projective space of dimension n
over the Galois field GF (q). Assume that α has a matrix representation A = (ai,j),
i, j = 0, 1, . . . , n. The second exterior power of A, denoted by Λ(2)(A) is a matrix of

order
(
n+1

2

)
whose rows and columns are denoted by 01, 02, . . . , 0n; 12, . . . 1n;n−1n,

and occour in this order, where the element in row ij and column rs is

aij,rs = airajs − aisajr,
namely, the entries of Λ(2)(A) are the 2×2 submatrices of A arranged in lexicograph-
ical order. The second exterior power of the collineation α is a linear collineation of
the projective space PG(

(
n+1

2

)
−1, q), of the same order of α, which leaves the Grass-

mannian G1,n of lines of PG(n, q) invariant, and each collineation of PG(
(
n+1

2

)
−1, q)

which leaves the Grassmannian G1,n of lines of PG(n, q) invariant, comes from a
collineation of PG(n, q) [13]. Here we are interested in the second exterior power of
a Singer cycle of PG(3, q).

Let ω be a primitive element of GF (q4) over GF (q) and let f(x) = x4 − a3x
3 −

a2x2−a1x−a0 be its minimal polynomial over GF (q). The companion matrix C(f)
of f given by 

0 1 0 0
0 0 1 0
0 0 0 1
a0 a1 a2 a3


represents a Singer cycle of PG(3, q). The second exterior power of C(f) is repre-
sented by the following matrix

Λ(2)(C(f)) =



0 0 0 1 0 0
0 0 0 0 1 0
−a0 0 0 a2 a3 0

0 0 0 0 0 1
0 −a0 0 −a1 0 a3

0 0 −a0 0 −a1 −a2


,



Caps embedded in the Klein quadric 15

and induces a linear collineation Λ(2)(C(f)) of PG(5, q) leaving a Klein quadric
K = G1,3 (the Grassmannian of lines of PG(3, q)) invariant. In [6] the canonical
form of Λ(2)(C(f)) was studied. It is the following matrix of GL(6, q4):

Λ(2)(D) = diag(ωq+1, ωq
2+1, ωq

3+1, ωq
2+q, ωq

3+q , ωq
3+q2

),

where ω is a primitive element of GF (q4). In particular, it follows that Λ(2)(C(f))
has a rational form, say J which is a diagonal block matrix. In particular, it is the
direct sum of the companion matrix of a primitive quadratic polynomial over GF (q)
and the (q+ 1)–th power of the companion matrix of a primitive quartic polynomial
over GF (q). Of course, Λ(2)(C(f)) has order (q2 +1)(q+1). From a geometric point
of view, the first block induces a Singer cycle on a projective line l of PG(5, q). The
second block fixes (setwise) a solid L of PG(5, q) inducing a partition into elliptic
quadrics [10]. So Λ(2)(C(f)) fixes one line l and its conjugate solid L with respect
to τ . This is exactly the geometric setting used in [21] to prove the isomorphism
between the groups Sp(4, q) and O(5, q), q even.

Remark 1. For completeness and for our future purposes we illustrate the gemetry
in which we are moving. In [6] we noted that in PG(3, q) the group fixing setwise
a pencil C of linear complexes generated by two linear complexes, say C1 and C2

contains a Singer cyclic group of PG(3, q), see also [18]. Note that the base locus of
C is an elliptic congruence E3 of PG(3, q). Using the Klein representation of lines
of PG(3, q) as points of PG(5, q), we get that the pencil of linear complexes C is
represented by a line l skew to the Klein quadric K. Each point of l is conjugate
with respect to K to a hyperplaneH whose intersection with K (a parabolic quadric)
represents the lines of the corresponding linear complex belonging to C . The argu-
ment applies to all points of l, giving a pencil of hyperplanes centered in a solid L
(conjugate to l) which meets K in an elliptic quadric since the congruence is elliptic.

The subgroup 〈Λ(2)C(f)〉 has one orbit of size q + 1 (the line l), q + 1 orbits of
size q2 + 1 (such orbits partition L) and all the other orbits have size (q+ 1)(q2 + 1)
and are caps as described in [12]. It is easily seen that L meets K in an elliptic
quadric E, representing the elliptic congruence E3 ( a regular spread of PG(3, q)
[13]). Hence the Klein quadric can be partitioned into q caps of size (q + 1)(q2 + 1)
and one elliptic quadric of L. For further details see [6].

Here we are interested in the action of the unique subgroup of 〈Λ(2)(C(f))〉
of order q + 1. Denote by H such a subgroup. It is easily seen that the linear

transformation (Λ(2)(C(f)))
q2+1

has the following canonical form in GL(6, q4):

diag(ωq
3+q2+q+1, ω2(q2+1), ωq

3+q2+q+1, ωq
3+q2+q+1, ω2q(q2+1), ωq

3+q2+q+1).

Since ωq
3+q2+q+1 ∈ GF (q) and ω2(q2+1) and ω2q(q2+1) are distinct elements in GF (q2),

conjugate over GF (q), we have that the induced linear collineation (Λ(2)(C(f)))
q2+1

fixes the line l setwise and the solid L pointwise. All the other orbits have size q+ 1
and are planar conics. These conics lie in planes conjugate (with respect to the
polarity of K, say τ ) to planes in L meeting E3 into a conic, see [12]. In particular
we have the following
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Lemma 2. The linear collineation (Λ(2)(C(f)))
q2+1

fixes the elliptic quadric E point-
wise.

From now on we assume q = 2h, h odd and h ≥ 3. Set r = 2(h+1)/2. Denote by
Sz(q) the Suzuki group of PGL(4, q), thought embedded in the symplectic group
Sp(4, q) [16]. Associated with the group Sz(q) is an ovoid Ω [20] (the Suzuki–Tits
ovoid), in the sense that Ω is invariant under Sz(q). From [16] it follows that Sz(q)
contains cyclic subgroups of order q + 1 + r and q + 1 − r, actually subgroups of
distinct Singer cyclic groups of PGL(4, q). Also the group Sz(q) is associated with
a line–spread S of PG(3, q) [17] (the Lűneburg spread). In particular, the lines of
S are tangent to Ω, see [13, Th. 16.4.12], in the sense that such lines belong to
the linear complex C defined by all the tangents to Ω [19]. Hence, if the group
Sz(q) acts on the points of Ω in its natural permutation representation, the second
exterior power of Sz(q) acts on the lines of C. The linear complex C is represented
on the Klein quadric K by a parabolic quadric P4, obtained as a section of K by a
non–tangent hyperplane, say Π. The Lűneburg spread S is then represented by an
ovoid Ω of P4.

Lemma 3. The regular spread E3 and the Lűneburg spread S have in common
q + 1 + r (resp. q + 1− r) lines. In particular the lines of E3 are tangent to Ω.

Proof. An elliptic quadric of PG(3, q) admits a Singer cyclic group T of order
q2 + 1. Hence it is always possible to choose T in such a way |T ∩Sz(q)| = q+ 1 + r
(resp. q + 1 − r) [7]. Note that q2 + 1 = (q + 1 + r)(q + 1 − r). Using the
isomorphism Sp(4, q) ' O(5, q), we get that the subgroup of O(5, q) fixing E is
SL(2, q2)·Gal(GF (q2), GF (q)) [9]. Such a group always contains a Singer cyclic
subgroup of order q2 + 1, say T̄ and |T̄ ∩ Λ(2)(Sz(q))| = q + 1± r. For the second
assertion see [7, Lemma 2.6]. �

It follows that the elliptic quadric E and the ovoid Ω of K meet into a set, say
A, of size q + 1 + r (resp. q + 1− r), see also [1].

3 The cap construction

Denote by 〈σ〉 the Singer cyclic group of PGL(4, q) such that K = Sz(q) ∩ 〈σ〉
has order q + 1 ± r. From [15] the subgroup K is irreducible and its centraliser in
PGL(4, q), say C coincides with 〈σ〉. Consider the unique subgroup of C of order
q + 1, say J . Then J is not a subgroup of Sz(q) [16] and so Λ(2)(J), the second
exterior power of J , does not leave Ω invariant (but of course leaves K invariant).
Under the action of J on Ω, we get a partition of the point–set of PG(3, q) into
Suzuki–Tits ovoids (as explained in [7]) and so under the action of Λ(2)(J) on Ω we
obtain q+ 1 4–dimensional Suzuki–Tits ovoids, say Ω1 = Ω, . . . ,Ωq+1. Since Λ(2)(J)
fixes A, we have that such ovoids all meet in the set A. We have proved the following

Proposition 1. The orbit of Ω under the group Λ(2)(J), consists of q + 1 4–dimen-
sional Suzuki–Tits ovoids all intersecting in the set A.

Set O = (Ω1 ∪ Ω2, · · · ∪ Ωq+1) \ A. Then |O| = (q + 1)(q2 − q ∓ r), according as
|A| = q+1±r. In particular, O, from the above discussion, is made up of (q2−q∓r)
conics belonging to the same number of planes through the line l.
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Lemma 2. The Suzuki–Tits ovoids Ω1, . . . ,Ωq+1 lie in distinct hyperplanes
Π1, . . . ,Πq+1 belonging to the pencil centered in the solid L. In particular, the line l
meets each hyperplane Πi in one point, say Pi, i = 1, . . . q + 1.

Proof. We know that Ω1 is contained in a parabolic quadric P4, obtained as section
of K by a non–tangent hyperplane Π containing L. In particular Π is conjugate with
respect to K to a point on the line l; this argument applies to all points of l and
since Λ(2)(J) acts transitively on the points of l we are done. Moreover, we have seen
that the hyperplane Π = Π1 represents the linear complex C, and such a hyperplane
is conjugate with respect to τ to a point P1 on l. Since q is even, P1 ∈ Π1 and it
turns out to be the nucleus of the parabolic quadric P4. �

Theorem 3. The set O is a cap embedded in K.

Proof. Assume that three points P1, P2, P3 on O are collinear on the line r. Then
r is completely contained in K. Since each Ωi, i = 1, . . . q + 1 is a cap we suppose
that P1, P2 lie on Ωj and P3 lies on Ωk for some j and k, j 6= k. Using the Klein
representation of lines of PG(3, q) as points of PG(5, q) on K, we have that the lines
r1, r2, r3 corresponding to the points P1, P2 and P3 belong to the same pencil. This
is a contradiction since r1 and r2 belong to a Lűneburg spread and so are skew.
Assume now that P1 lies on Ωj , P2 lies on Ωk and, P3 lies on Ωm, j 6= k 6= m. In this
case we can argue as follows. Consider the projection Q of Ω1 ⊂ P4 ⊂ Π1 from the
point P1 onto L. Remember that P1 is the nucleus of P4 and so every line through
P1 contains exactly one point of P4 [9], [21]. Under this projection, the generating
lines of P4 are mapped bijectively into the lines of a non–singular linear complex
which may be taken, by an appropriate choice of coordinates, to be C. Hence Q is a
Suzuki–Tits ovoid meeting E in q+ 1± r points. If ρ denotes the polarity associated
to E, then for each point R belonging to Q\E, Rρ is a plane meeting E in a conic and
so (Rρ)

τ
is a plane meeting K in a conic which is an orbit of a point of Ω \ E under

the action of the subgroup 〈(Λ(2)(C(f)))
q2+1〉. Of course such a conic is contained

in the set O. We can conclude using the second part of [11, Lemma 3.1]. �

Corollary 4. The set O ∪ E is a cap of K.

Proof. The union of a Suzuki–Tits ovoid Ω̄i and E is a cap since both represent line
spreads of PG(3, q). Assume that the points P1 ∈ Ω̄i, P2 ∈ Ω̄j , P3 ∈ E are collinear
on a line r (which of course belongs to K). We get immediately a contradiction,
since, for instance, r is completely contained in the hyperplane Πi which meets the
hyperplane Πj only in L and Ω̄i meets L only in the points of A. �

As a by–product we get also infinite families of caps of PG(4, q) embedded in
parabolic quadrics. For a similar construction see [7, Sec. 3].

Theorem 5. There exist caps of size 2q2−q+r+1 (resp. 2q2−q−r+1) embedded
into parabolic quadrics of PG(4, q), q = 2h, h ≥ 3.

Proof. From our previous discussion it is possible to consider the set–theoretic
union of a Suzuki–Tits ovoid in a hyperplane Πi, i = 1 . . . q + 1, with the elliptic
quadric E. �
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Remark 6. Our method can be applied to any ovoidD of PG(3, q), q even, assuming
that its collineation group does not contain a Singer cyclic subgroup of order q + 1.
In particular, if the line–spread associated to D and E3 (regular spread) have no line
in common, we get a cap embedded in K which turns out to be the set–theoretic
disjoint union of q + 1 ovoids of type D and one elliptic quadric.

Remark 7. It would be interesting to have other caps constructions on the Klein
quadric with respect to other subgroups of the Suzuki groups, distinct from Singer
cyclic subgroups.
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