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Abstract

Shult and Thas have shown in [13] that m-systems of certain finite classical
polar spaces give rise to strongly regular graphs and two weight codes. The
main result of this paper is to show that maximal arcs in symplectic translation
planes may be obtained from certain m-systems of finite symplectic polar
spaces. Many new examples of maximal arcs are then constructed. Examples
of m-systems are also constructed in Q~(2n+ 1, ¢) and Wa,11(q). A method
different from that of Shult and Thas is used to construct strongly regular
graphs using “differences” of m-systems.

1 Introduction

We follow the definitions and notation of [13]. Let P be a finite classical polar space
of rank r > 2. Then

W,.(q) denotes the polar space arising from a symplectic polarity of PG(n,q), n
odd and n > 3,

Q(2n,q) denotes the polar space arising from a non-singular parabolic quadric
of PG(2n,q), n > 2,

Q1 (2n + 1,q) denotes the polar space arising from a non-singular hyperbolic
quadric of PG(2n +1,q), n > 1,

@~ (2n+1, q) denotes the polar space arising from a non-singular elliptic quadric
of PG(2n +1,q), n > 2,
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H(n,q*) denotes the polar space arising from a non-singular hermitian polarity
of PG(n,q*), n > 3.

In [13] E.E. Shult and J.A. Thas introduced the the following definitions of partial
m-systems and m-systems of polar spaces.

Definition 1. Let P be a finite classical polar space of rank r, r > 2. A partial
m-system of P, with 0 < m < r —1 is any set {m,ma, ..., 7} of k # 0 totally
singular m-spaces of P such that no generator containing m; has a point in common
with (mpUmU.. . Umg) —m, i =1,... k.

Theorem 1. [13, Theorem 4] Let M be a partial m-system of the finite classical
polar space P. Then

|M| Sqn+1+1 forP:W2n+1(q) OTP:Q_(Qn—i_laq)a
M| <q¢"+1 for P=Q(2n,q) or P=Q"(2n+1,q),
IM| < ¢ +1 for P=H(2n,¢*) or P=H(2n +1,¢%).

Definition 2. Let M be a partial m-system of a finite classical polar space P. If
for |M| the upper bound in the previous Theorem is reached then M is called an
m-system of P.

In the same paper they gave several constructions of m-systems of polar spaces,
and showed that m-systems of three of the polar spaces also gave rise to strongly
regular graphs. In a later paper ([15]) bounds on the sizes of various partial m-
systems were given and some non-existence results proved.

In a finite projective plane of order ¢, a {k;n} — arc K is a non-empty proper
subset of k£ points of the plane such that some line of the plane meets K in n points,
but no line meets K in more than n points. For a given ¢ and n, the size k£ can not
exceed g(n — 1) +n. If equality occurs the set is called a mazimal arc. Equivalently,
a maximal arc can be defined as a non-empty, proper subset of points of the plane
such that every line meets the set in 0 or n points, for some n. The integer n is
known as the degree of the maximal arc. For example, any point of a projective
plane of order ¢ is a maximal {1; 1}—arc in that plane, and the complement of any
line is a maximal {¢?; ¢} —arc. These are known as trivial maximal arcs. See [8] for
theorems and definitions.

If € is a maximal {g(n — 1) + n;n}—arc, the set of lines external to K is a
maximal {¢(¢—n+1)/n;¢/n}—arc in the dual plane called the dual of IC. It follows
that a necessary condition for the existence of a maximal {¢(n — 1) + n;n}—arc
in a projective plane of order ¢ is that n divides ¢. But it is not sufficient. In
[1], S. Ball, A. Blokhuis and F. Mazzocca proved that no non-trivial maximal arcs
exist in PG(2,q) for ¢ odd. In PG(2,q), q even, R. H. F. Denniston has given a
construction of maximal {k;n}—arcs for all n dividing ¢ [4]. Hence the spectral
problem for existence of maximal arcs in solved in Desarguesian projective planes.
For non-Desarguesian planes few constructions are known. See [6][7] for known
constructions.

The main result of the current paper is to show that under certain conditions m-
systems of Wo,,11(q) can be used to construct maximal arcs in symplectic translation
planes (Section 4). Certain of the maximal arcs constructed in this way are shown
to be new. In Section 2 constructions of m-systems of @~ (2n + 1,¢q) and Wa,11(q)
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are given for certain values of m. In Section 3 it is shown that certain collections of
m-systems of Wa,11(q), @ (2n + 1, q) and H(2n, ¢?) give strongly regular graphs.

2 Construction of m-systems

Recall that given a quadratic form @ on a projective space PG(n, q) a bilinear form
B(z,y) = Q(z+y) — Q(z) — Q(y) may be defined on the projective space. Given a
totally singular subspace S of a finite classical polar space in PG(n, q) we may then
define the tangent space S* to S as

S+ = {z € PG(n,q)|B(z,y) =0 for all y € S}.

Note that the tangent space to a totally singular subspace S contains every generator
of the polar space that contains S. It follows easily that showing that a collection
M of m-dimensional subspaces of a polar space is a partial m-system is equivalent
to showing that the tangent space to any element of M meets no other element of
M.

The following Theorems all use a “trace trick” to construct new m-systems of
polar spaces from old. See [13] for other constructions of m-systems of polar spaces.

Theorem 2. If Q~ (2t — 1,4°) has an m-system then Q= (2st — 1,q) has an (s(m +
1) — 1)-system.
Proof: Let Q24+ be a non-degenerate quadratic form of elliptic type on the

vector space V' (2t,¢%). Define a form on the vector space V(2st,q) by Qastq(z) =
Trares) (Qatqs(x)), where Trars) is the usual trace function from GF(¢*) to GF(q).
GF(q) GF(q)

The results of [14, Lemma 9.1] then show that Qa4 , is a non-degenerate quadratic
form of elliptic type on V(2st,q) (in fact much of the following proof is contained
in that reference, but we include it for the completeness). Note that the points of
the quadric (Qa;4s are a subset of the points of the quadric Qast 4.
Define the usual (alternating) bilinear forms on V'(2¢t,¢®) and V' (2st, q) respec-

tively by

Botgs(2,y) = Qatgs(x + ) — Qatgs(¥) — Qat,:(y),

Bast q(2,y) = Qastg(* +y) — Qast g(2) — Qast q(y)-

Suppose that Mo 4+ is an m-system of Qa 4, i.€. is a collection of ¢**+1 subspaces
of Qa4+ of (vector space) dimension m + 1 such that the the tangent space to any
element of My .+ does not meet any other element of My 4+. Each element of My 4
can then be considered as an s(m + 1)-dimensional subspace of V'(2st,q) and is
contained within ()24 4. Denote the collection of such subspaces by Mg . We show
that Mo 4 is an (s(m + 1) — 1)-system of Qast 4.

Let x and y be non-zero points. Suppose that x € ()2 4+ and that y is in the
tangent space to « with respect to the form By 4. Then ([10, Lemma 22.3.1])

BQths (l', y) = 0
& Qaug (T +Y) — Qag () — Qargs(y) =0
= TT%I;_((Q? (Qatgs(r +y) — Qargs () — Qargs(y)) =0
And B28t=‘](x7 y) = 0



240 N. Hamilton — C. T. Quinn

Hence y is also in the tangent space to x with respect to the form Bag 4.

Now consider an element M € My 4. It has dimension m + 1 as a subspace
of V(2t,¢%), and its tangent space M+ has dimension 2t — (m + 1). As a subspace
of V(2st,q), M has dimension s(m + 1), and M+ has dimension s(2t — (m + 1)).
Since M is contained within the quadric Qa4 4 of V/(2st, q) it follows by the previous
paragraph that M* is contained within the tangent space of M with respect to
the form Bsg,. But such a tangent space with respect to Bag, has dimension
2st — s(m + 1), the same as that of M. Hence M* is exactly the tangent space
of M with respect to Bags 4. Since My 4+ is an m-system, M+ does not contain any
points of elements of the m-system apart from those of M. Hence the result. [

Shult and Thas ([13, Theorem 13b]) give a geometric proof that if Q= (2t — 1, ¢?),
t > 1, admits an m-system then @~ (4t — 1,¢) admits an (2m + 1)-system. For ¢
even, the Shult and Thas construction corresponds to s = 2 in Theorem 2. The
more general method of construction of m-systems of Q= (2st — 1,¢) given in the
previous Theorem was first noted in [14, Remark, p.427].

For q even, Q~ (2t — 1,¢°) always has an (¢ — 2)-system (see the discussion at
the end of the next Section), which by Theorem 2 gives an (st — s — 1)-system of
@~ (2st — 1,¢q). Shult and Thas give another construction in [13, Section §].

Essentially the same construction as the previous Theorem can be applied for
hyperbolic quadrics, for any ¢, but this only gives rise to partial m-systems. In this
case an m-system of Q1 (2t — 1, ¢®) gives rise to a partial (s(m + 1) — 1)-system of
Q*(2st — 1,q) with ¢°*~Y + 1 elements. See also [14, Lemma 9.1].

Theorem 3. If Wy _1(¢°) has an m-system then Wagi—1(q) has an (s(m + 1) — 1)-
system.

Proof: Define a (non-degenerate) symplectic form on GF(¢*") & GF(¢*") by
B((x1,11), (z2,92)) = x1y2 — 22y1. Define the (non-degenerate) symplectic forms on
V(2t,q*) and V (2st, q) respectively by

Bat s (21, 91), (22, y2)) = Traresy (B((x1,91), (2, 92)))

GF(q%)

Bosto((21,91), (22, 12)) = TT%§_<3?(B2t,qs((~’U1a Y1), (z2,92))).

Proceed as in the proof for the m-systems of elliptic quadrics in Theorem 2. n

The space Wa_1(¢®) always has an (t — 1)-system (i.e. a symplectic spread of
PG(2t —1,¢%)). Applying Theorem 3 gives a (st — 1)-system of Way_1(q), i.e. a
spread again. This is a standard technique for constructing symplectic spreads.

For g even, the bilinear form from an elliptic quadric Q~(2n — 1, q) is symplec-
tic, and so any m-system of Q~(2n — 1,q) is also an m-system of the associated
Wan—1(q). Shult and Thas use this fact to construct m-systems of Wa,_1(q) from
those constructed for Q7 (2n — 1,¢), ¢ even.

It is worth noting that the Tits ovoid (see [9, p.46]) is an 0-system of W3(2%T1),
t > 0. This example (and the result of applying Theorem 3 to it) give m-systems
where the systems are not necessarily contained in some elliptic quadric.
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3 Strongly regular graphs

In [13, Theorem 7] Shult and Thas show that the set of points of an m-system of
Wani1(q), Q= (2n +1,q) or H(2n,¢?) has two intersection numbers with respect to
hyperplanes of the underlying projective space, and hence gives rise to a strongly
regular graph. In this section we show how m-systems that are “disjoint” or are
“contained” within each other also give rise to strongly regular graphs.

For an m-system M of a finite classical polar space, denote the union of the
points contained in elements of M by M.

Let M; be an mq-system and M, be an mo-system of a finite classical polar space
P. We say M, is contained by Ms if every element of M; is a subspace of a unique
element of M,. We say M, and M, are disjoint if M, N M, is the empty set.

Theorem 4. Let M; be an m;-system of Woni1(q), mi < n, i = 1...k, for some
integer k > 1. Fori=1...k define

(@™t = 1)(¢" +1)
(q—1) '

(i) If for all i # j M; and M; are disjoint, then the set My UMy U. ..UMy has two
intersection numbers a; + as + ...+ ap — q" and ay + as + ... + ax with respect to
hyperplanes in PG(2n,q).

(ii) Suppose M; is contained by M1, it =1...k —1, then

(a) if k is even, the set K = (M} — My_1) U (My_5 — My_3) U...U (Mg — M)
has two intersection numbers ar — ax_1 + ap_o — ax_3 + ... + as — a3 — q" and
ag — Q—1 + g9 — Qp—3 + . . . + ag — ay with respect to hyperplanes in PG(2n + 1, q).
(b) ka 18 Odd, the set K = (Hk — Mk_1> U (Mk_g — Mk_g) U...u (Hg — Mg) UMl
has two intersection numbers ay — ax_1 + ag_o — ap_3+...+az —as+ ay —q" and
ag—ag—1+ak—2—ag_3+...+as3—as+ay with respect to hyperplanes in PG(2n+1, q).

a; =

Proof: Let L be the polarity associated with the Wy, 11(q). Then every hyper-
plane of PG(2n + 1, ¢) can be written as p* for some point p € PG(2n +1,q). Now
[13, Theorem 7] shows that the sets M; each have two intersection numbers with
respect to hyperplanes. These intersection numbers are a; — ¢" and a;, t = 1... k.
Further, p € M; <= |p- N M,| = a; — ¢, and also p € M; <= |pt N M;| = a;.

Proof of (i): If p & M, for every i = 1...k, then it follows immediately that p*
meets each M; in a; points. If p € M; for (unique) i € {1...k}, then p* meets M;
in a; — ¢" points, and M in a; points, j # i.

Proof of (ii)(a): If p & M; for every i = 1...k, then it follows immediately that
pt meets K in ap — ap_1 + ap_2 — ap_3 + ... + as — a; points.

Suppose p € M; and p & M;_; for some (unique) i € {1...k}. Then p* meets
each M; in a; points for j =1...7—1, and a; — ¢" points for j =¢...k. If i is even,
p* meets K in ((ar —¢") = (ak-1—¢")) +. ..+ ((air2 —¢") — (a1 —¢") + ((a; —¢") —
ai_l) -+ (az‘_g — az‘_g) +...+ (ag — al) =Qar—Qp_1+ax_9—Qg_3...+a2— a1 — qn. For ¢
odd, p* meets K in ((ax—q¢") — (ar_1—¢"))+. . .+ ((airz3—q") — (air2—q")) + (a1 —
q¢")—(a;—q")+(ai-1—ai—2)+.. .+ (az—a1) = ap—ag_1+ak—2—ap_3+. ..+ azs—ay.

Proof of (ii)(b) Similarly. ]
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Theorem 5. Let M; be an m;-system of Q~(2n+1,q), i = 1...k, for some integer
k> 1. Fori=1...k define a; as in Theorem 4, then the conclusions (i), (ii)(a) and
(i) (b) of Theorem 4 hold.

Proof: As in Theorem 4. n

Theorem 6. Let M; be an m;-system of H(2n,q*), i = 1...k, for some integer
k>1. Forit=1...k define

(¢*™ = 1)(¢* " +1)
(¢>—1) '

(i) If for all i # j M; and M; are disjoint, then the set My UMy U. ..UMy, has two
intersection numbers a1 + as + ...+ ap — ¢** ' and ay + as + ... + ai with respect
to hyperplanes in PG(2n, ¢?).

(i) Suppose M; is contained by M;y1, i =1...k —1, then

(a) if k is even, the set K = (My — My_1) U (My_o — My _3)U...U (My — M)
has two intersection numbers ay — ap—1 + Gg—o — ap—3 + ... +as —ay — ¢*" ' and
Ay — Ag—1 + Ag_2 — Qg_3 + ... + az — a; with respect to hyperplanes in PG(2n, ¢?).
(b) Zf k is Odd, the set KK = (Hk — Mk_1> U (Mk_g — Mk_g) U...u (Mg — Mg) UMl
has two intersection numbers ay — ap—1 + Gp—2 — Qp—3 +. .. +as —as+a; —¢* ! and
A — g1+ ag_2 — ax_3+. .. +az —as +ay with respect to hyperplanes in PG(2n, ¢?).

a; =

Proof: As in Theorem 4 noting that for p some point in PG(2n,¢?), p € M; if
and only if [pt N M| = a; — ¢!, and p ¢ M; if and only if [p* N M;| = a;,. ]

J.A. Thas notes that disjoint 0-systems of H(3,q?) may easily be constructed
(personal communication). Take an hermitian curve C on H(3,¢*) (the classical
ovoid). Let V' be a set of ¢ + 1 collinear points on C; V' is on a line L. Consider a
second classical ovoid C’ containing V. Let V' be the intersection of H(3,¢?) with
the polar line L' of L with respect to H(3,¢*). Then C and (C' —V)UV’ are disjoint
ovoids of H(3,¢%).

As far as the authors are aware there are no other known examples of disjoint
m-systems of a finite classical polar space. However, a “chain” of m-systems of
@~ (2ts — 1,q), q even, where each m-system of the chain is contained by the next
in the chain can be constructed as follows.

Suppose a field GF'(¢®), q even, contains a chain of subfields GF(¢*) = GF(q) <
GF(¢*') < ... < GF(¢**) = GF(q®), where each s; necessarily divides s;;1. Let
& + a& + 1 be an irreducible polynomial over GF(¢*), q even. Define a quadratic
form on GF (¢*)®GF(¢*) by f(z,y) = 2*+azy~+y* Define Q; = Trars (f(2,v))

GF(q°)
for each i = 0...k. Then each @); is a non-degenerate elliptic quadratic form on
the vector space V(Q(Sii)t, ¢*). Further, Q; = TT pgpir) (Qi+1), hence considering
GF(a™)
each quadric as a subset of points of the quadric Qp = Q~(2st — 1,q), the (i + 1)
quadric is contained in the i‘*.

Consider the set of subspaces

{{(a,ab) :a € GF(¢*™")} : b€ GF(¢*)} U{(0,b) : b € GF(¢*)}.

It is readily verified that the intersection of this set with a quadric @); induces a
spread (an ((£)t — 2)-system projectively) of that quadric in V' (2(£)t, ¢*), and so

S S
Si Si
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by Theorem 2 gives rise to an (st — s; — 1)-system of Q~(2st — 1, ¢). Hence we get
a chain of (st — s; — 1)-systems of Q@ (2st — 1,¢q), i = 0. ..k each element contained
by the previous one in the chain.

4 Maximal Arcs in Symplectic Translation Planes

An n-spread S of PG(2n + 1,q) is a set of projective spaces of dimension n such
that every point of PG(2n+1, q) lies in exactly one element of S. Equivalently, it is a
set of ¢"™! + 1 pairwise disjoint n-dimensional projective subspaces of PG(2n+1, q).

Let PG(2n + 1,q) be embedded as a hyperplane ¥ in PG(2n + 2,q) = II, and
let S be an n-spread of X. Construct a new incidence structure 7 (S) as follows:

The points of 7(S) are the points of II\Y, together with the elements of the
spread. The lines of 7(8S) are the (n+ 1)-dimensional subspaces of I which intersect
¥ in a member of S, together with the line (often denoted L.,) whose points are
the elements of the spread.

The incidence relation of m(S) is that induced by the incidence in II.

Then 7(8) is a translation plane of order ¢" ™!, with translation line Ly, [3]. The
spread is called symplectic if there exists a non-degenerate symplectic space such
that each element of S is a generator of the space.

In 1980 J.A. Thas gave the following construction of maximal arcs in certain
translation planes of order ¢¢ whose kernel contains GF(q)[17].

Theorem 7. Let Q- = Q (2n + 1,q) be a non-singular elliptic quadric in
PG(2n +1,q9), n > 0, and let S~ be an (n — 1)—spread of Q~. Suppose there
exists an n-spread S = {s1, S2, ..., 8141} of PG(2n+1,q) such that S~ ={Q~ N
S1,..., Q" Nsgnt111}. Embed PG(2n+1,q) as a hyperplane ¥ in PG(2n+2,q) and
choose any point © € PG(2n + 2,q)\X. Let K be the affine points of the cone with
vertex x and base QQ~ i.e. the union of the points of PG(2n+2,q)\X on the lines of
PG(2n + 2,q) given by the span of x and each of the points of Q. Then K is the
set of points of a degree ¢" mazimal arc in the translation plane ©(8S) of order ¢"**
determined by the spread S.

As Thas notes in [17], spreads of PG(2n + 1,¢) and Q™ (2n + 1, ¢q) of the form
required for the construction are well known for ¢ even, and the spreads of PG(2n+
1, q) are in fact symplectic with respect to the bilinear form induced by Q~(2n+1, q).
In [2], for ¢ odd, it is shown these spreads can not exist.

The point of interest to us here is that the (n—1)-spread of Q~(2n+1, q), ¢ even,
is in fact an (n — 1)-system of the associated symplectic space Wa,11(q). Hence,
for ¢ even, the Thas construction requires that an (n — 1)-system of W, 11(q) is
contained by an n-system (spread) of Wa,11(¢q). This leads us to the main Theorem
of this paper.

Theorem 8. Let M be an m-system of the symplectic polar space Wapni1(q) in
PG(2n +1,q), n > 0. Suppose there exists an n-spread S of Wapn11(q) such that M
is contained by S (considered as an n-system of Wa,11(q)). Embed PG(2n+1,q) in
PG(2n + 2,q) and choose some point x € PG(2n +2,q)\PG(2n + 1,q), and let K
be the set of affine points on the cone with vertex x and base M. Then K is the set
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m—+1

of points of a degree q mazimal arc in the translation plane of order ¢"*' defined

by S.

Proof: We show in PG(2n+ 1, ¢) that every subspace of dimension n + 1 containing
an element s € S meets the set of points of M — s in either 0 or ¢™*! points. The
result then follows by projection.

Let L be the polarity of Wy, 11(q). For s € S, let M, be the (unique) element
of the m-system contained in s, and let H be any subspace of dimension n — 1 of s.
Then H* is a subspace of dimension n+ 1 containing s. Restricting L to H* gives a
degenerate symplectic space with radical H N H+ = H, and the factor space H+/H
is isomorphic to the projective line with a (non-degenerate) symplectic geometry
on it. The space H* then contains ¢ + 1 generators G of Wa,11(q) all on H and
partitioning the points of H+ — H. Note that s € G.

Now by [13, Theorem 8] every generator of W, 1(q) meets M in (g
1)/(q — 1) = | M| points. Suppose M; is contained within H. Then each element of
G contains M, and so contains no other points of M. Hence H* meets M — s in 0
points.

Suppose M; is not contained within H. Then H is a hyperplane of s and so
meets M, in a subspace of dimension m — 1. Hence H meets M in (¢™ —1)/(¢ — 1)
points. So each generator in G meets M — H in ((¢™*"* — 1) — (¢™ —1))/(q — 1)
points. There are ¢ such generators in G not equal to s (and partitioning H+ — s)
and it then follows that H+ — s meets M in q((¢™™ —1) = (¢™ —1))/(¢—1) = g™
points.

It remains to be shown that any line of the projective plane defined by & meets
K in 0 or ¢™** points. An n + 1 dimensional subspace containing z and an element
of 8 clearly contains ¢™*! points of K. Let N be an n + 1 dimensional subspace
containing an element s € S but not containing = and not contained in PG(2n+1, q).
Then the projection of N through = onto PG(2n + 1, q) is of dimension n + 1 an so
meets M — s in either 0 or ¢™*! points. It follows that N meets K in either 0 or
¢™*! points. Finally, the line L., does not meet K. .

The above Theorem provides a method for constructing maximal arcs in sym-
plectic translation planes if we can find m-systems of symplectic spaces of the right
form. The question is then: can we find m-systems such that the resulting maximal
arc is not one of those previously constructed by Thas.

The first thing that might be considered would be to take an (n — 1)-system of
@~ (2n+1,¢°) and an n-system (spread) of the associated Wa,11(¢°), ¢ even, as per
the Thas construction, and apply the results of Theorem 3. This would then give
an (sn — 1)-system contained by an (sn + s — 1)-system (spread) of Wag,125-1(q),
and hence maximal arcs by the previous Theorem. Unfortunately, the translation
plane and the maximal arc obtained are then isomorphic to the original maximal
arc and translation plane and so gives nothing new. But suppose we could “twist”
the (sn 4+ s — 1)-system to find another (sn 4+ s — 1)-system that also contained
the (sn — 1)-system then we might get new maximal arcs. A method of “twisting”
symplectic spreads is the subject of the next subsection.

m+1
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4.1 Kantor's Cousins of Symplectic Spreads and Construction of Maximal
Arcs

The following description of the construction of cousins of symplectic spreads follows
that given in Kantor’s Kerdock set papers [11][12]. See also R.H. Dye [5].

First we show how a spread of Q*(4n—1, ¢) may be “sliced” to obtain symplectic
spreads of PG(4n — 3, q).

Let QT (4n — 1,q) be a non-degenerate hyperbolic quadric in PG(4n — 1,q),
g even and n > 1, with a spread ST of totally singular subspaces of dimension
2n — 1. If y is some point not on the quadric, then y* is a PG(4n — 2, ¢) that meets
Q1 (4n — 1,q) in a parabolic quadric Q(4n — 2,q). The point y is the nucleus of
Q(4n — 2,q). The spread ST induces a spread S of Q(4n — 2, ¢) by intersection. If
PG(4n — 3, q) is a subspace of PG(4n — 2, q) not containing y, then PG(4n — 3,q)
meets Q(4n — 2,q) in a non-degenerate quadric which is necessarily of elliptic or
hyperbolic type. Then PG(4n — 3,q) provided with the projections of the totally
singular subspaces of Q(4n — 2, ¢) is a symplectic space, and the projection through
the nucleus of Q(4n —2, q) of the spread S onto PG(4n — 3, q) is a symplectic spread
of PG(4n — 3,q).

Conversely, for ¢ even, if we start with a symplectic spread of PG(4n — 3, q) this
can be “expanded” to a spread ST of Q" (4n — 1,q) as follows.

In the notation of the previous paragraphs, a symplectic spread of PG(4n —3,q)
can be “pulled back” to a spread S of Q(4n — 2,q) since there is a one to one
correspondence between the points of PG(4n — 3, q) and Q(4n — 2, q). For Q*(4n —
1, q) there are two types of maximal totally singular subspaces; two have the same
type if and only if their intersection is a subspace of odd dimension. Each element
of S is contained within two maximal totally singular subspaces of Q*(4n — 1,q),
one from each class. Choose either class of maximal totally singular subspaces in
Q1 (4n—1,q). Form the set ST of the elements of that class that contain an element
of S; then St is a spread of Q" (4n — 1, q).

Hence we get a correspondence between spreads of the symplectic space Wy,,—3(q)
and QT (4n —1,q), q even.

Suppose we take a Desarguesian spread of Wy, _3(¢q), ¢ even, and expand it to a
spread ST of QT (4n—1, q) as above. Such a spread is called the Desarguesian spread
of Q*(4n—1,q). Choosing a point ¥ € Q@ (4n—1,q) of PG(4n—1,q), with y" # y,
another “slice” y"* of the Desarguesian spread of Q71 (4n—1,q) may be taken which
will also give rise to a symplectic spread of some Wy,,_3(q). Surprisingly such a slice
may give rise to a non-Desarguesian spread of the symplectic space.

Kantor [11, Lemma 4.1] identifies four types of slice that can occur:

These are known as the first, second, third and fourth cousins of the Desarguesian
spread respectively [12, Section 4]. Spreads of Wy, _3(q), and therefore PG(4n—3, q),
arising in different classes give rise to non-isomorphic projective planes, though
spreads in the same class need not give rise to isomorphic planes.
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More generally we can define the cousins of any symplectic spread of PG (4n—3, q)
in correspondence with cases (I) to (IV).

Theorem 9. Let M be an m-system of a non-degenerate elliptic quadric Q~(4n —
3,q) in PG(4n — 3,q), q even and n > 1. Suppose that the associated symplectic
space Wy,—3(q) admits a spread S such that M is contained by S. Then the m-
system gives rise to degree ¢ mazimal arcs in q of the projective planes arising
from the fourth cousins of S.

Proof: We show that certain (symplectic) fourth cousin spreads also contain the
m-system and so give rise to maximal arcs by Theorem 8.

Embed the elliptic quadric @~ (4n — 3, ¢) into a parabolic quadric Q(4n — 2,q)
in PG(4n — 2,q). Embed Q(4n — 2,q) into a hyperbolic quadric Q" (4n — 1,¢) in
PG(4n —1,q). Expand the symplectic spread S of PG(4n — 3, ¢) to a spread St of
Q+(4n - 17 q)

The spread S induces a spread S~ of Q™ (4n — 3, q) by intersection. By assump-
tion, since M is a subset of @~ (4n—3, ¢) and S contains M there is a unique element
of M contained within each element of §~, and so the m-system is contained by
S~ considered as an m-system and an (2n — 3)-system of @~ (4n — 3, ¢). Note that
S~ can also be viewed as the intersection of the spread of Q(2n — 2, ¢) (and so the
spread ST) with @~ (4n — 3, q).

Let L be the polarity of PG(4n — 1, q) arising from Q" (4n — 1,¢). Let y be the
point such that y* = PG(4n — 2,q), i.e. gives rise to the slice of Q% (4n — 1, ¢) that
defines Q(4n — 2, q). Define the line [ by | = PG(4n — 3,q)*. It follows that [ is an
anisotropic line containing y [10, Theorem 22.7.2].

Let y” # y be a point on [. Now y’* also contains PG(4n — 3,q) and meets
Q1 (4n — 1,q) in a non-degenerate parabolic quadric Q”(4n — 2,q) with nucleus y".
The spread S8” of Q"(4n — 2,q) induced by intersection with ST has the property
that each element of S” contains exactly one element of S~. Hence when S” is
projected from y” onto PG(4n — 3,q), to obtain a spread of PG(4n — 3,q), each
element of the projected spread contains a unique element of M.

Hence this fourth cousin spread contains the m-system M of Q@ (4n — 3, ¢), and
so gives rise to maximal arcs in the associated translation plane. There are ¢ such
cousins corresponding to the ¢ points of [ — {y}. ]

Corollary 1. Let s,t be positive integers such that s.t is odd, t > 1. Then there exist
degree ¢V mazimal arcs in (at least) q of the fourth cousins of the Desarguesian
projective plane of order ¢*, q even.

Proof: Let @~ (2t — 1, ¢°) be a non-degenerate elliptic quadric in PG(2t — 1,¢°), ¢
even. The discussion at the end of Section 3 gives a Desarguesian symplectic spread
of PG(2t —1,¢°) that induces a spread (an (t — 2)-system) of @~ (2t — 1, ¢*). In fact
these are just the structures used for the Thas 1980 construction of maximal arcs in
Desarguesian planes.

Applying Theorems 2 and 3 gives rise to an (st — s — 1)-system of Q~(2st — 1, q)
contained by a symplectic (Desarguesian) spread. The condition s.t odd is required
so that 2st — 1 = 4n — 3 for some integer n. [

In the case that s = 1 these are Thas 1980 maximal arcs in the fourth cousins of
the Desarguesian plane. However, for s > 1 the maximal arcs are new. This follows
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since the fourth cousins of the Desarguesian spread in PG(2st — 1, q) are symplectic
with kernel GF(¢). But the only maximal arcs known in such planes are the Thas
1980 ones which have different degree to those of the Corollary.

Note that the procedure described in the Corollary can be applied to non-
Desarguesian symplectic spreads of PG(2t—1, ¢) to give maximal arcs. We restricted
ourselves to the Desarguesian case since the isomorphism problem for fourth cousins
had been solved by Kantor enabling us to identify the maximal arcs as new.

5 Conclusions

We have shown how an m-system of W, 11(q) that is contained by a spread of
Want1(q) gives rise to a maximal arc in the symplectic translation plane determined
by the spread.

For ¢ even, it would be interesting to have more examples. In particular do
there exist m-systems contained by a Desarguesian spread of W, 1(q) such that
the resulting maximal arc is not a Thas 1980 maximal arc or another previously
known. In [16], Thas constructs maximal arcs using the Tits ovoid and a symplectic
spread of lines tangent to the ovoid in PG(3,q), ¢ = 2°, e > 2, e odd. This can be
seen as an 0-system contained by a spread of W3(q). So there is at least one class
of examples that are not related to an elliptic quadric. Are there others?

For ¢ odd, if the symplectic spread is Desarguesian then the results of [1] show
that the spread contains no m-system. It would be interesting to know whether an
m-system can be contained by a general symplectic spread for ¢ odd.

Acknowledgement: The authors would like to thank J.A. Thas for observing
that Theorem 2 is true for ¢ odd as well as ¢ even, and for supplying reference [14],
as well as his many helpful comments.
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