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Abstract

The translation planes of even order q2 that admit a collineation group
with point orbits at infinity of lengths q+ 1 and q2− q are classified as either
Desarguesian or Hall. Furthermore, the translation planes with spreads in
PG(3, q), for q even, admitting a linear collineation group with one point orbit
at infinity of length q + 1 and i point orbits at infinity of lengths (q2 − q)/i
for i = 1, 2 are classified as either Desarguesian, Hall, or Ott-Schaeffer.

1 Introduction.

Several years ago, the second author proposed a series of problems involving trans-
lation planes (see [15]). We mention the most difficult of these problems.

Determine the translation planes π of order qn which admit a collineation
group having an infinite point orbit of length qn − q.

To illustrate the complexity of this problem, we note the following classes of
examples satisfying the hypothesis.

First of all, when n = 2, we, of course, have the Desarguesian and Hall planes.
Futhermore, there are tremendous varieties of generalized Hall and related planes

(see Jha [16]) .
When n = 3, there are infinitely many classes of examples including the gener-

alized Desarguesian planes (see e.g. Jha and Johnson [17]) where the collineation
group contains GL(2, q).

When n = 4, translation planes admitting SL(2, q) × Z1+q+q2 correspond to
Desarguesian parallelisms in PG(3, q). Recently, there is an infinite class of such
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parallelisms due to Penttila and Williams [26] which contains the previously known
Desarguesian parallelisms. Hence, there are infinitely many associated translation
planes.

So, there is quite a variety of translation planes of order qn admitting a collineation
group with an infinite point orbit of length qn − q.

It would appear that some additional assumption must be made in order to make
some progress on the given problem.

The translation planes of order q2 that admit a collineation group isomorphic
to SL(2, q) are completely determined by Foulser and Johnson. In this instance,
the planes admit a group with an infinite point orbit of length q + 1 and i infinite
point orbits of lengths (q2 − q)/i where i = 1, 2. So, it might be conceivable that a
converse of sorts is possible based merely on the length of the point orbits on the
line at infinity of the translation planes.

We note that with the exception of the Dempwolff planes of order 16, all such
known planes with the required orbit lengths have spreads in PG(3, q). Furthermore,
two of these known planes admit a Baer subplane which is left invariant by the
associated collineation group.

Recently, the authors have considered the classification of translation planes π
of order qn that have an infinite point orbit of length q + 1 and i orbits of lengths
(qn − q)/i for i = 1, 2. It is possible but is not necessarily the case that there is an
invariant subplane πo of order q. If so, and i = 1 then there is an infinite point orbit
of length (qn − q) and π is said to be an extension of a flag-transitive plane.

For odd order planes of order q2 with spreads in PG(3, q), a complete classifica-
tion can be given for the general problem.

Theorem 1. (Hiramine, Jha, Johnson [10])
Let π be a translation plane of odd order q2 with spread in PG(3, q) which admits

a linear collineation group G with infinite point orbits one of length q + 1 and i of
length (q2 − q)/i for i = 1, 2.

Then, one of the following situations hold:
(i) The plane is Desarguesian, the group G (modulo the kernel) is reducible, there

exists an elation in G and i = 1.
(ii) The plane is Hall, the group G is reducible, there exists a Baer p-element,

q = pr and i = 1.
(iii) The plane is Hering, the group G is irreducible, q = pr for r odd and i = 2.
(iv) The plane is the derived likeable Walker plane of order 25.

For translation planes for which no particular assumption is made on the corre-
sponding spreads but when there is an invariant subplane of order q and there are
two infinite point orbits, it is possible to completely classify the planes; the quadratic
extensions of flag-transitive planes can also be determined without further assump-
tions on the spread.

Theorem 2. (Hiramine, Jha, Johnson [9]).
Let π be a finite translation plane which is a quadratic extension of a flag-

transitive plane πo.
Then π is either Desarguesian, Hall or the derived likeable Walker plane of order

25.
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The first result mentioned above involved translation planes of odd order q2 with
spread in PG(3, q) where a classification is possible. The methods for planes of even
order are quite different so the problem is open in the even order case.

However, for even order planes, there are group theoretic results available which
provide a framework for the solution of the planes for n = 2 provided we assume
that the collineation group is also transitive on the remaining q + 1 infinite points.

Hence, in this article, we consider translation planes of even order q2 that admit
a collineation group with two infinite point orbits; one orbit of length q +1 and one
orbit of length q2 − q. Without further assumption on the nature of the spread, we
may give a complete classification.

As a corollary, we may complete the analysis of translation planes with spreads
in PG(3, q) which admit a linear collineation group with an infinite point orbit of
length q +1 and i infinite point orbits of lengths (q2− q)/i for i = 1, 2 to include the
even order case. The result is similar to the above mentioned result for odd order
planes with spreads in PG(3, q).

Thus, our results are, in some sense, an extension of the results of Hiramine, Jha
and Johnson [9] and an even order companion to the paper of Hiramine, Jha and
Johnson [10].

Our main results are:

Theorem 3. Let π be a translation plane of even order q2 that admits a collineation
group G in the translation complement with infinite points orbits of lengths q + 1
and q2 − q.

Then one of the following situations occur:
(1) π is Desarguesian or
(2) π is Hall.

As an application of this result, we have

Theorem 4. Let π denote a translation plane of order q2, q even, with spread in
PG(3, q).

If G is a linear collineation group with an infinite point orbit of length q + 1 and
i infinite point orbits of length (q2−q)/i for i = 1 or 2 then π is one of the following
types of planes:

(1) Desarguesian and i = 1,
(2) Hall and i = 1, or
(3) Ott-Schaeffer and i = 2.

2 Background.

The proof of the main results revolves about the combinatorics of groups acting on
translation planes. There are results in three loosely connected areas which we shall
group together for convenience; results in translation planes and their collineation
groups, combinatorial results on translation planes and purely group theoretic re-
sults.

For the most part, we shall list the main results that we shall be using in the
proofs.
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2.1 Translation Planes and their Groups.

Theorem 5. (Hiramine, Jha and Johnson [9], (2.2))
Assume that a translation plane π of order q2 admits a collineation group G with

an infinite orbit ∆ of length q +1 and all other infinite orbits of lengths λ such that
(λ, q + 1) ≤ 2.

If G contains an elation then π is Desarguesian or Hall or the order is 81 or 64.

Theorem 6. (Hering [11])
Let π be a translation plane of even order 2m and let S be a 2-group of collineations

in the translation complement. Then the exponent e of S divides 2m. If S does not
contain any non-trivial elation with affine axis, then e divides m.

Theorem 7. (Hering and Ostrom [12], [23], and [24])
Let π denote a finite translation plane of order pn and let E denote the collineation

group in the translation complement which is generated by all affine elations.
Then one of the following holds:
(1) E is an elementary Abelian p-group,
(2) p = 2, and the order of E is 2t where t is odd,
(3) E is isomorphic to SL(2, pb),
(4) E is isomorphic to Sz(2

c) and p = 2 or
(5) E is isomorphic to SL(2, 5) and p = 3.

Theorem 8. (Johnson-Ostrom [21])
In the context of the previous result of Hering-Ostrom, if the translation plane

of order q2 has a spread in PG(3, q) then in case (2), the group is dihedral of order
2t where t is the number of elation axes.

Theorem 9. (Foulser-Johnson [6])
Let π denote a translation plane of even order q2 that admits a collineation group

isomorphic to SL(2, q).
Then π is one of the following planes:
(1) Desarguesian,
(2) Hall,
(3) Ott-Schaeffer,
(4) the Dempwolff plane of order 16.

Theorem 10. (Johnson and Ostrom [21] (3.1))
Let π be a translation plane of order 22r and of dimension 2 over its kernel. Let

G be a collineation group in the linear translation complement and assume that the
involutions in G are Baer. Then the Sylow 2-subgroups of G are elementary Abelian.

Theorem 11. (Johnson and Ostrom [21] part of (3.27))
Let π be a translation plane of dimension 2 over GF (q), where q is a power of

2. Let G be any subgroup of the translation complement.
If the involutions of G are all Baer, let G1 denote the subgroup of G generated

by the Baer involutions in the linear translation complement. If G is nonsolvable
then G1 is isomorphic to SL(2, 2s) for some s and is normal in G.

If G1 is irreducible, π has an Ott-Schaeffer subplane of order 22s.
If G1 is reducible then π is derived from a plane also admitting SL(2, 2s) and the

involutions in the derived plane are elations.
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Theorem 12. (Johnson [20])
Let π be a translation plane of order q2 admitting a collineation group isomorphic

to SL(2, pa). If pa >
√

q then SL(2, q) is a collineation group of π.

Theorem 13. (see Lüneburg [22] (50.3) p. 262)
Let π be an Ott-Schaeffer translation plane of order q2 and let S ' SL(2, q) be

a collineation group of π. Then the full translation complement is NΓL(V )(S) where
V is the underlying vector space.

Theorem 14. (André [1])
Let π+ be a finite projective plane admitting two homologies with the same center

and distinct axes. Then there is an elation in the group generated by the homologies.

2.2 Combinatorial Translation Planes.

Theorem 15. (Johnson [19])
Let π be a finite translation plane of order pr which admits a collineation σ in

the translation complement H0 of order u, a prime p-primitive divisor of pr − 1.
If σ fixes at least three mutually disjoint r-dimensional GF (p)-subspaces then

there exists a unique Desarguesian spread Σ consisting of the σ-invariant r-dimensional
GF (p)-subspaces.

Furthermore, NH0(〈σ〉) is a collineation group of Σ.

Theorem 16. (Foulser [5])
Let π be a finite translation plane of order q2 which contains a Baer subplane πo

incident with the zero vector. Let Nπo denote the net of degree q + 1 defined by the
components of the subplane πo. Let the kernel of πo be isomorphic to GF (pa) where
q = pr and p is a prime and assume that there are at least three Baer subplanes in
Nπo which are incident with the zero vector.

Then the number of subplanes of Nπo incident with the zero vector is 1 + pa.
Furthermore, the set of Baer subplanes incident with the zero vector is isomorphic

to PG(1, pa).

Theorem 17. (Ostrom[25])
Let N be a net of order q2 and degree q2 − q.
Then N can be extended to at most two non-isomorphic affine planes and if there

are two extensions, the planes are related to each other by derivation.

2.3 Group Theoretic.

Theorem 18. (Hering [13] Theorem 1)
Let Q be a subgroup of a finite group G with the properties:
(a) NGQ ∩Qx = 1 for all x ∈ G−NGQ,
(b) NGQ 6= G, and
(c) 2 | |Q|.
Denote the normal closure of Q in G by S. Then, in general, S = Q ·O(S), and

Q is a Frobenius complement. An exception is only possible if S ' SL(2, q), Sz(q),
SU(3, q), or PSU(3, q), where q is a power of 2 and q ≥ 4.
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Theorem 19. (Holt [18] (stated less generally than in Holt), Theorem 1)
Denote by An and Sn the alternating and symmetric groups on n letters respec-

tively. If ∆ is a set let A∆ and S∆ denote the alternating and symmetric groups on
∆ respectively.

Let GΩ be a transitive permutation group on a finite set Ω such that an involution
central in a Sylow 2-subgroup fixes a unique point of Ω. Let J denote the involutions
which fix a unique point of Ω and let H = 〈J〉. Let Ψ denote the set of orbits of
O(H), and let bars denote images modulo O(H). Then, if |Ψ| > 1, we have

H = 〈⊗ni=1Mi, t〉 for some n

where t ∈ J and for each i, either we have Mi ' Am where m ≥ 5, or is isomorphic
to one of the simple groups PSL(2, 2k) (k > 1), PSU(3, 2k) (k > 1), or Sz(2

k)
(k = 2w + 1, w ≥ 1), in their natural 2-transitive representation. Furthermore,
t ∈ N(Mi) for each i and t induces an inner automorphism on Mi unless Mi ' Am

for m ≡ −1( mod 4) in which case

〈Mi, t〉 ' Sm.

Furthermore, we can write

Ψ = ⊗ni=1Ψi

where

H
Ψ ⊆ ⊗ni=1S

Ψi

and Mi acts faithfully on Ψi in its natural 2-transitive representation. We have
t = (t1, t2, ..., tn) where tΨi

i is an involution in SΨi and ti ∈ Mi unless Mi ' Am

with m ≡ −1( mod 4), in which case

〈Mi, ti〉Ψi ' S
Ψi .

If this latter possibility occurs for some i, then H acts faithfully on Ψ. Otherwise,
we have t

Ψ ∈ ⊗ni=1M
Ψi
i and if O(H) 6= 1, then the kernel of the action of H on Ψ

has order 2. Thus t ∈ ⊗ni=1Mi if and only if O(H) = 1 and |Ψi| ≡ 1( mod 4) for
all i.

Theorem 20. (Gleason [7])
Let G be a finite group operating on a set Ω and let p be a prime. If Ψ is a subset

of Ω such that for every α ∈ Ψ, there is a p-subgroup Πα of G fixing α but no other
point of Ω then Ψ is contained in an orbit.

Theorem 21. (See e.g. Gorenstein [8] (3.16))
Let H be any finite group of odd order which is normalized by an elementary

Abelian 2-group A.
Then H = 〈CH(a); a ∈ A− {1}〉.

(Note that 21 refers to p-groups but since a 2-group normalizes some Sylow p-
group of order pa for every odd prime dividing |H|, it follows that the group indicated
is divisible by pa for every order pa of a Sylow p-subgroup.)
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Theorem 22. (See e.g. Aschbacher [2] p. 167 (33.3))
Let G be a finite perfect group and (H, π) a central extension of G with kernel

kerπ. Then H =kerπ H ′ with H ′ perfect.

Theorem 23. (See e.g. Huppert [14] p. 629, 23.3)
Let G be a finite perfect group with normal subgroup H contained in Z(G). Then

H is a subgroup of the Schur multiplier of G/H.

Theorem 24. (See e.g. Huppert [14] p. 646, 27.5)
The Schur multiplier of SL(2, q) for q even has order 1 if q 6= 4 and 2 if q = 4.

The outer automorphism group has order r where q = 2r.

Theorem 25. (See e.g. The Atlas of Finite Groups, table 5 p. xvii)
The Schur multiplier of PSU(3, q1/3) for q even has order 1. The outer auto-

morphism group has order (3, q1/3 + 1)2r/3 where q = 2r.

2.4 The Planes of the Characterization.

The planes involved in our classification theorem are the Desarguesian, Hall and
Ott-Schaeffer planes of order q2. All of these planes may be regarded as arising
from spreads in PG(3, q). Of course the Hall planes are those derived from the
Desarguesian spreads by the derivation of a regulus net. Since a Desarguesian plane
π of order q2 admit a collineation group isomorphic to GL(2, q) which fixes a regulus
net R and which acts transitively on the components of R and the components of
π −R, we see that the Desarguesian planes of even order q2 satisfy our hypothesis.
We note that the kernel homology group Zq2−1 acting on π also acts on the Hall
plane π∗ obtained by derivation of R, it follows that GL(2, q)Zq2−1 acts on π∗ and
has orbits of lengths q + 1 and q2 − q.

An Ott-Schaeffer plane of even order q2 admits a collineation group isomorphic to
SL(2, q) such that each Sylow 2-subgroup fixes a unique component of the plane and
the group acts irreducibly on the associated 4-dimensional vector space. Hence, there
is an orbit of components of length q +1. This orbit of components defines a regulus
in PG(3, q) whose derivation produces another Ott-Schaeffer plane. Furthermore,
the group SL(2, q) has two component orbits of length (q2− q)/2 both of which are
left invariant under the full collineation group.

Our main theorem states that without any assumption on the nature of the
spread (or kernel) the only translation planes of even order q2 admitting collineation
groups with component orbit lengths q +1 and q2− q are the Desarguesian and Hall
planes. When we assume that the spread is in PG(3, q), only the Ott-Schaeffer
planes of order q2 occur among the possible planes that admit a collineation group
with component orbits of lengths q + 1 and (q2 − q)/2.

The reader is directed to Lüneburg [22], chapter VII for further background on
the Ott-Schaeffer planes.
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3 The Structure of the Proof:

Assume that conditions of 3. We shall complete the proof for order 26 after the main
argument.

Furthermore, we assume that the plane is neither Desarguesian nor Hall.

Lemma 1. The order is not 16.

Proof: The translation planes with order 16 are completely determined in [4].
The requirement on the group orbits forces the plane to be Desarguesian or Hall.

Lemma 2. Assume that the order q2 is not 26. Then we may assume that all
involutions are Baer and there is not a G-invariant Baer subplane.

Proof: Apply 2 and 2.1. �

Lemma 3. Since G has order divisible by (q + 1)q(q− 1), the Sylow 2-subgroups of
G are not cyclic.

Proof: Deny! The order of a Sylow 2-subgroup of G is divisible by q. Since there
are no elations, if q = 2r then q divides 2r by 6 which implies that r = 1 or 2 so
q = 2 or 4. However, planes of order 4 are Desarguesian and the order is not 16 by
the above lemma. �

Lemma 4. Let σ be an involution in the center of a Sylow 2-subgroup S of G. Then
either σ fixes all points of the orbit ∆ of length q + 1 or fixes exactly one of them.

Proof: Let Q be in the orbit Γ of length q2−q. We note that since SQ ≤ GQ then
it follows that [G : S][S : SQ] = [G : GQ][GQ : SQ]. Hence, as q divides [G : GQ],
as the index is the orbit length, it follows that q also divides [S : SQ]. That is, if Q
is an infinite point of F ixσ then the orbit length of Q under S must be q. Hence,
either exactly q or 0 infinite points of F ixσ are in Γ. �

Lemma 5. If the group G admits SL(2, q) then the plane cannot be an Ott-Schaeffer
plane.

Proof: In this case, q = 2r where r is odd and the spread is in PG(3, q). The full
collineation group is in ΓL(4, 2r) so the Sylow 2-subgroups are in GL(4, 2r). Hence,
by 10, the Sylow 2-subgroups are elementary Abelian.

The group orbit lengths of the Ott-Schaeffer plane under the group isomorphic
to SL(2, q) are (q + 1), (q2 − q)/2 on the line at infinity and the full translation
complement is NΓL(V )(SL(2, q)) by 13. Suppose there exists a collineation g which
inverts the two SL(2, q)-orbits of lengths (q2−q)/2. Hence, g2 fixes both such orbits
as well as the orbit of length q +1. It follows that the order of g is even = 2es where
(2, s) = 1.Thus, 〈gs〉 is a cyclic subgroup of order 2e so e = 1. Hence, the Sylow
2-subgroup of 〈g〉 inverts the two orbits of lengths (q2 − q)/2.

However, all involutions are Baer so there is a Baer involution τ with fixed point
subplane in N∆. In the group SL(2, q) acting on the Ott-Schaeffer plane, each Sylow
2-subgroup fixes a unique component of N∆. Moreover, τ normalizes SL(2, q) and
hence normalizes each Sylow 2-subgroup of SL(2, q). But, each Sylow 2-subgroup
of SL(2, q) also leaves invariant a unique Baer subplane upon which it induces an
elation group. Hence, τ leaves invariant each Baer subplane of the net N∆ which is
a contradiction. �
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3.1 Part I of the proof:

In part I, we consider the case where there is an involution σ central in a containing
Sylow 2-subgroup such that F ixσ is a Baer subplane of the net N∆ defined by the
orbit ∆ of length q+1. Since F ixσ is not G-invariant, we have several Baer subplanes
of the net N∆. Using the structure of a net containing at least three Baer subplanes
determined by Foulser, we may show that we must obtain SL(2, q) as a collineation
group which forces the plane to be Hall using the theorem of Foulser-Johnson 9. �

3.2 Part II of the proof:

In part II, we assume that some F ixσ is not a Baer subplane of the net N∆. Hence,
an involution in the center fixes a unique point of ∆ and G acts transitively on ∆.
In this situation, we may use results of Holt 19 to again show that we must obtain
SL(2, q) as a collineation group and again the theorem of Foulser-Johnson 9 shows
that the plane must be Ott-Schaeffer in this case. However, we have shown that the
full collineation group of an Ott-Schaeffer plane does not have such orbit lengths on
the line at infinity. �

4 Part I. Fix σ is in N∆.

Let σ be any Baer involution in the center of a Sylow 2-subgroup such that F ixσ
is in N∆. Let T denote the maximal 2-group which fixes F ixσ pointwise for a fixed
involution σ. We emphasize that T may not necessarily be in the center of a Sylow
2-subgroup.

We also note if there are no elations in the general case for a particular value of
q (i.e. when q = 8 as well) our arguments do not depend on q and apply also to
planes of order 64.

Lemma 6. Assume that F ixσ is a subplane of the net N∆ defined by ∆. Then the
net N∆ is derivable.

Proof: We have that there is a 2-group of order at least 2 fixing a Baer subplane
pointwise but we know that the subplane is not G-invariant by 2 or Lemma 3.2.

Then there is a second subplane on the net and hence a third since the Baer group
must move the second subplane. Hence, by Foulser 16, the lattice of subplanes is
PG(1, | K |) where K is the kernel of one of them. Let S be a Sylow 2-subgroup of
G and S1 the subgroup which is trivial on the set of all Baer subplanes of the net
incident with the zero vector. Then S1 is normal and if not trivial then contains
a nontrivial element of the center of S. However, such elements contain only Baer
involutions. If such a Baer involution τ fixes ∆ pointwise then τ fixes exactly one
Baer subplane of N∆. If τ fixes exactly one point of ∆ then τ cannot induce a Baer
involution on any invariant Baer subplane. Thus, τ induces an elation on each Baer
involution and again can fix no more than one. Hence, S1 is trivial.

Let G∗ denote the group acting on these Baer subplanes. We see that G∗ is
a subgroup of PΓL(2, K). A Sylow 2-subgroup S is faithful on this set of Baer
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subplanes and has order at least q. Let the order of K be 2a . Then a Sylow 2-
subgroup of PΓL(2, K) has order dividing 2a | a |2. If a is not r then 2r divides
2a | a |2≤ 2r/2r/2. However, this implies that 2r/2 ≤ r/2 which can occur only if
r = 2 and the order of the plane is 4 and hence Desarguesian.

Thus, the kernel K is GF (q) so that the net is derivable. �

Lemma 7. Assume that T has order 2 then π is Desarguesian or Hall.

Proof: A Sylow 2-subgroup S containing T acting on the set of q + 1 Baer
subplanes is faithfully in ΓL(2, q). Furthermore, S leaves a Baer subplane πo = F ixT
invariant. The full translation complement of a derivable net is a group isomorphic
to ΓL(2, q)GL(2, q) where the first listed group is the group leaving πo invariant and
the second listed group is a group which fixes all components of the net. Note, for
example, the group generated by central collineations of the net will leave each Baer
subplane incident with the zero vector invariant. The linear part S ∩GL(2, q) = S ′

of group S sitting in ΓL(2, q) as acting on the set of Baer subplanes is a linear
subgroup of ΓL(2, q)GL(2, q) as a collineation group of the net and/or the translation
plane. Considered as a subgroup of the net, we have a 4-dimensional vector space
V4 over a field K isomorphic to GF (q) and the group of the net is a semilinear
subgroup of ΓL(4, K). Notice that within the first listed ΓL(2, q) the subgroup
GL(2, q) generated by central collineations of the net acts trivially on the set of
Baer subplanes.

We could also represent the group isolating on any component. Let ` be any
component of the derivable net fixed by the Sylow 2-subgroup S. Then the group
induced on ` is isomorphic to the group acting on the net which is clearly isomorphic
to ΓL(2, q). Moreover, S ′ acting on ` must fix a 1-dimensional K-subspace pointwise.

We assert that there can be no central collineations of the translation plane with
axis `. We have assumed that there are no elations. Assume that there is a homology
τ with axis `. Since there are q remaining points of ∆ and the order of τ divides
q2− 1, it follows that the center of τ is a point of ∆. Let the center and co-center of
τ be denoted by (P, Q). Either there is an elation by André’s theorem 14 or for any
collineation g of G then {P, Q}∩{Pg, Qg} = φ or the two sets are equal. Hence, the
q + 1 infinite points of ∆ are partitioned into pairs which are sets of imprimitivity
under G. However, since q + 1 is odd, this is a contradiction. Thus, there are no
central collineations with axis a component of Nπo .

Let 2r and r = 2cm where (2, m) = 1. Then there is a linear subgroup S ′ of S
of order at least 22cm/2c. Now 22cm−c > 22c−1m if and only if 2cm− c− 1 ≥ 2c−1m if
and only if m > c/2c−1. The latter inequality is valid unless possibly c = 1 or 2 and
m = 1. Hence, there are possible orders q = 4 or 16. Since we may assume that q
is not 4 as above, we have that S ′ has order strictly larger than

√
q or q = 16 and

S ′ would have order at least 4.
We consider the group generated by the linear parts of the Sylow 2-subgroups.

Assume that S ′ fixes the Baer subplane πo and fixes πo ∩ ` pointwise. Let π1 be
another Baer subplane incident with the zero vector which is an image of πo under
some collineation of G. Then π1 admits an involution σ1 fixing it pointwise. This
collineation σ1 must leave ` invariant and map πo to another subplane π2 distinct
from πo or π1. Hence, there is another 2-subgroup S ′2 that fixes π2∩` pointwise. The
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subgroup generated by ‘elations’ on ` is isomorphic to SL(2, 2a) for some 2a >
√

q
or q = 16. This group is faithful on the translation plane as well and hence by 12,
the plane admits a collineation group isomorphic to SL(2, q).

Now assume that q = 16 and assume that we obtain a group isomorphic to
SL(2, 4) but not one isomorphic to SL(2, 16). The group S of order 16 then contains
a subgroup of order 4 which fixes a second subplane of the indicated five subplanes
corresponding to the five Sylow 2-subgroups of SL(2, 4). Since an involution fixing
at least two subplanes cannot be an elation, this implies that the involution fixes
components outside of the net Nπo. Hence, it follows that the Sylow 2-subgroups
have order divisible by 25. Each Sylow 2-subgroup leaves invariant a Baer subplane
and induces upon it a group in ΓL(2, 16). The order of a Sylow 2-subgroup faithfully
induced is 16 ·4. Note that since we obtain SL(2, 4), it follows that there is a faithful
group induced on πo of order at least 32/4 = 8 so there must be an induced linear
group of order at least two. It then follows that there is a subgroup of order at least
8 which either fixes πo pointwise or induces an elation on πo. However, this means
that the group generated as above would be SL(2, 16).

Hence, in any case, by 9, the plane is either Desarguesian, Hall, Ott-Schaeffer or
Dempwolff of order 16. The assumptions imply that we must have the Ott-Schaeffer
plane.

However, the previous lemma 5 shows that we obtain a contradiction. �

Lemma 8. T does not have order q.

Proof: Assume that the order of T is q. Then clearly as the net is derivable and
we may apply the Hering-Ostrom theorem 7 to the derived plane to show that the
group < T x for x in G > is isomorphic to SL(2, q). Since the Sylow 2-subgroups
fix Baer subplanes pointwise, it follows from the classification theorem of Foulser-
Johnson 9 that the plane is Hall. �

Lemma 9. π is Desarguesian or Hall.

Proof: By the previous lemmas, we have 2 < |T | < q.
Again, we may apply the theorem of Hering and Ostrom 7 to conclude that the

group generated by the Baer involutions is isomorphic to SL(2, 2b) for b > 1 and is
normal in G and where |T | = 2b.

Hence, G induces an automorphism group on SL(2, 2b).
Note that Aut(SL(2, 2b))/SL(2, 2b) has order b .
Thus, G/(CG(SL(2, 2b) × SL(2, 2b)) has order less than or equal to b. We note

that no nontrivial element ρ of a Sylow 2-subgroup S of G commutes with SL(2, 2b)
for if so then ρ must leave invariant each Baer subplane fixed pointwise by a Sylow
2-subgroup of SL(2, 2b). We have seen above that the subgroup S1 of S acting
trivially on the set of all Baer subplanes is trivial. Similarly, here the subgroup
S ′1 which acts trivially of the set of 1 + 2b subplanes is normal in G and, hence if
non-trivial, contains a nontrivial involution τ of the center of S. Since τ fixes one
or all points of ∆, we have a contradiction as before. Hence, S ′1 is trivial.

Furthermore, the above remarks then imply that q/2b divides b2 (the 2-part of
b). Let b2 = 2c so that for q = 2r then r − b ≤ c ≤ b so that b ≥ r/2. If b = r/2
then q/2r/2 = 2r/2 divides r/2 which never occurs. Hence, b > r/2.
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There is a subgroup of the net N∆ which is isomorphic to SL(2, q) and generated
by Baer groups of order q. The group in question, acting on the translation plane,
is a subgroup of SL(2, q) and isomorphic to SL(2, 2b) with b > r/2. Moreover, we
may consider this group acting on the derived plane. Hence, it follows from 12 that
the group SL(2, 2b) must be SL(2, q) and we may apply 9 to complete the proof
and/or have a contradiction to our assumptions as this forces the order of T to be
q. �

5 Part II. Fix σ is not in N∆.

We now assume that some involution σ in the center of a Sylow 2-subgroup has q of
its infinite points in Γ. Furthermore, we may assume by the previous section that
each involution in the center of a Sylow 2-subgroup fixes exactly one point of ∆.

Lemma 10. The subgroup G[∆] that fixes ∆ pointwise has odd order.

Proof: Let S be any Sylow 2-subgroup. Then S[∆] is a normal subgroup and if not
trivial contains an element in the center of S which is contrary to our assumptions.�

In addition, we consider the action of G on ∆ as G∗ = G/G[∆] and let L∗ =
L/G[∆] =

〈
z∗; z∗2 = 1 and z∗ = zG[∆] ∈ G/G[∆] � z∗ fixes exactly one point of ∆

〉
Note that σ∗ = σG[∆] is in L. Also, note that G[∆] has odd order and is normal

in G and hence, normal in L and thus contained in O(L).
Assume that q is not 8 and let u be a 2-primitive divisor of q2 − 1. Recall that

q(q− 1)(q + 1) divides the order of G. Let Su denote a Sylow u-subgroup of G and
let Ψ denote the set of O(L∗) orbits on ∆. Note that L is normal in G and O(L) is
characteristic in L so normal in G.

Lemma 11. If Ru is a Sylow u-subgroup of O(L) then G = NG(Ru)O(L).

Proof: Apply the Frattini argument. �

Lemma 12. A Sylow u-subgroup of O(L) is cyclic or q = 2 and the plane is Desar-
guesian.

Proof: Let q = 2m so that G ≤ GL(4m, 2). Recall that a Sylow u-subgroup of
GL(4m, 2) is isomorphic to Zuk × Zuk where uk =| q + 1 |u. Let Ru denote a Sylow
u-subgroup of O(L). Then Ru leaves invariant at least two points Q and T of Γ.

Since a Sylow u-subgroup of GL(2m, 2) is isomorphic to Zuk , it follows that
either Ru is cyclic or there exists a homology of order u with axis 0Q and coaxis 0T .
Hence, NG(Ru) leaves {Q, T} invariant. Thus, a Sylow 2-subgroup of G in NG(Ru)
which fixes Q has index at most 2. Hence, the orbit length of Q is not divisible by
4. This implies that q = 2. �
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Lemma 13. | O(L) | is not divisible by u.

Proof: Assume so. Then we have seen previously that Ru is cyclic if q is not
2. Let Ut denote the integers less than and relatively prime to t. Let the order of
Ru be uc and note that Uu is a subgroup of Uuc . Furthermore, the order of Uu is
u− 1 and is cyclic. Furthermore, the order of Uuc is uc−1(u− 1). Hence, the Sylow
2-subgroup of Uuc is cyclic.

The automorphism group of Ru induced by G is NG(Ru)/CG(Ru) so that the
Sylow 2-subgroup NG(Ru)/CG(Ru) is cyclic.

Assume that there is an involution z in CG(Ru) which may be taken in the center
of a Sylow 2-subgroup of NG(Ru). Since z commutes with Ru and fixes exactly one
point P of ∆ then Ru must fix P and hence must fix a second point of ∆. Since z
is not an elation then there exists a set of q points on 0P fixed by z which are then
permuted by Ru. Let g be an element of Ru of order u. Since u is a 2-primitive
divisor, it follows that g must fix this set of points pointwise. It then follows that
g must be an affine homology. However, g must fix at least two points of Γ so that
we have a contradiction.

Hence, it follows that CG(Ru) has odd order so that a Sylow 2-subgroup of
NG(Ru) and hence of G is cyclic. Since this cannot occur by a previous lemma then
| O(L) | is not divisible by u. �

Lemma 14. The number Ψ of orbits on ∆ of O(L) is not 1.

Proof: Deny! Then q+1 divides the order of O(L) and q+1 contains a 2-primitive
divisor of q2 − 1. �

5.1 The application of Holt’s Theorem.

We may now employ the main result of Holt 19.
We let L̃ = L/O(L) ' ((L/G[∆])/(O(L)/G[∆])) = L∗/O(L∗) = L∗ and G̃ =

G/O(L) ' (G/G[∆])/O(L)/G[∆]) = G∗/O(L∗) = G
∗

and adopt the notation intro-
duced in 19 but using the isomorphisms developed here.

Lemma 15. L̃ =< ⊗ri=1M̃i, σ̃ >
where M̃i ' An for n ≥ 5,
PSL(2, 2n), n > 1,
PSU(3, 2n), n > 1,
or Sz(2

n) for n = 2m + 1.

Proof: Apply Holt noting that the number of orbits on ∆ is not 1. �

We note that it is possible that σ̃ is in Πr
i=1M̃i but if we take M̃ = [L̃, L̃] = ⊗ri=1M̃i

then M̃ is a normal subgroup of G̃.

Lemma 16. G̃ acts on {M̃i for i = 1, 2, ..., r}.

Proof: Note that M̃g
i ∩M̃j for g in G̃ is normal in M̃j since g(m1, m2, ..., mr) =

(m∗1, m
∗
2, ..., m

∗
r)g for mi and m∗i in M̃i so that

M̃
g(n1,n2,...,nr)
i for nj in Mj, is M̃

(n∗1 ,n
∗
2,...,n

∗
r)g

i = M̃g
i . �
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Now reindex, if necessary so that {M̃1, M̃2, .., M̃s} is a G̃-orbit. Hence, M̃o =
⊗si=1M̃i is a normal subgroup of G̃.

Lemma 17. Mo = Πs
i=1Mi is normal in G, and every Sylow 2-subgroup So of Mo

contains a central involution zo and Mo is transitive on ∆.

Proof: Let S be a Sylow 2-subgroup of G so that S ∩Mo is normal in S and is
a Sylow 2-subgroup of Mo. Hence, Z(S) ∩ (S ∩Mo) 6=< 1 > so that there exists a
central involution z in Z(S ∩Mo). By assumption, z fixes exactly one point of ∆
and since Mo is normal, zx for all x in G is in Mo so that it follows by Gleason’s
theorem 20 that Mo is transitive on ∆. �

Lemma 18. Mo = M.

Proof: If not M is not Mo, let Ỹ = ⊗ri=s+1M̃i so that Y = Πr
i=s+1is normal in

G. Moreover, it follows from the argument of the previous lemma that there is a
central involution z1 in every Sylow 2-subgroup S1 of Y and that Y is transitive on
∆. Since So and S1 commute modulo O(L), it follows that So permutes the Sylow
2-subgroups of S1O(L) and since the number of these is odd, it must be that So
normalizes Sg

1 for some g in O(L). This says that So fixes some point in the O(L)
orbit of P . Choosing P in various orbits implies that So fixes a point in each O(L)
orbit and since there are > 1 such orbits in ∆, we have a contradiction. �

Hence, we obtain:

Lemma 19. L is transitive on ∆ and G̃ acts transitively on
{ M̃i for i = 1, 2, ..., r} by conjugation.

Lemma 20. u | | M̃i | for all i = 1, 2, ..., r.

Proof: We see that M̃ has index 1 or 2 in L̃ so that u divides the order of M̃
and hence divides the order of one of the M̃i and hence divides the order of all of
the M̃i. �

Lemma 21. r = 1 or 2.

Proof: Note that it follows that M̃ contains an elementary Abelian u-group of
order ur. However, we have noted that u cannot divide the order of O(L) so that
M contains an elementary Abelian u-group of order ur which is then a subgroup of
GL(4m, 2) and hence of Zuk × Zuk where k =| q + 1 |u. Thus, r ≤ 2. �

Lemma 22. If a Sylow 2-subgroup of M1 fixes exactly one point of ∆ then r = 1.

Proof: Let H denote the preimage normal subgroup of G which is of index 1 or 2
(that is H is the preimage of N

G̃
(M̃1) = N

G̃
(M̃2)). In any case, Mi are both normal

subgroups of H for i = 1, 2 and H is transitive on ∆.
Let S1 be a Sylow 2-subgroup of M1. Assume that S1 fixes exactly one point

of ∆. Since M1 is normal and H is transitive then M1 is transitive on ∆. Since
M1 is congugate to M2 in G then M2 is also transitive on ∆. Let S2 be a Sylow
2-subgroup which fixes P in ∆. Note that S2 commutes with S1 modulo O(L) and
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since S2 is even and there are an odd number of Sylow 2-subgroups in S1O(L), it
follows that S2 must leave one invariant. That is, S1 must normalize Sx

2 for some x
in O(L) so that S1S

x
2 is a 2-group and hence [Sx

2 , S1] =< 1 >. In any case, S1 must
fix the point P x. Hence, S1 must fix a point in every O(L)-orbit on ∆. Since there
is more than one such orbit, we have a contradiction.

Lemma 23. r = 1.

Proof: By the previous lemma, we may assume that S1 fixes at least two points of
∆. It then follows that H must have index two in G. Let SH be a Sylow 2-subgroup
of H. Since M1 is normal in H, SH ∩H = S1 is a Sylow 2-subgroup of M1 which
contains a central involution τ of H (this is not necessarily a central involution of
G) as the index of SH in a Sylow 2-subgroup S of G is 1 or 2.

We have noted that if there exists a nontrivial element in S[∆] where S is a Sylow
2-group of G then S∩S[∆] is normal and hence contains an element in Z(S). Hence,
assuming that no element in the center of a Sylow 2-subgroup acts trivially implies
that S acts faithfully on ∆ and hence G[∆] must be contained in O(L) so that,
L/O(L) ' (L/G[∆])/(O(L)/G[∆]).

Since S1 acts faithfully on ∆, τ must fix a point Q of the orbit Γ of length q2−q.
Any orbit length under S of a point of Γ is at least q so any orbit length under SH
is at least q/2. It follows since S1 fixes at least two points of ∆ that τ fixes exactly
q/2 points of Γ and hence exactly 1 + q/2 points of ∆.

Let Ro denote a Sylow u-subgroup of M2 so that < z > commutes with Ro

modulo O(L). However, since u does not divide | O(L) |, it follows that < z >
commutes with Rx

o for some x in O(L). Since u divides q + 1, then Rx
o must fix

a point P fixed by z. Let S denote a Sylow 2-subgroup of G that fixes P . Then
S ∩M1M2 is a Sylow 2-subgroup of M1M2 so equal to T1 × T2 where Ti is a Sylow
2-subgroup of Mi for i = 1, 2. Since Rx

o and T1 commute modulo O(L)P it follows
as above that Rx

o commutes with some T y
1 for y in O(L)P . Thus, Rx

o × T y
1 acts on

the component OP containing P in the projective extension. Since Rx
o is a u-group,

if there exists an element h of order u which fixes OP pointwise, then h must fix a
second point of ∆ which implies that u then divides q− 1, which is a contradiction.
Hence, Rx

o acts fixed-point-free on OP . Let g be an element of Rx
o of order u. Then

g fixes at least two points of ∆ and at least one point of Γ.
By Johnson 15, there is a Desarguesian spread Σg consisting of g-invariant sub-

spaces of dimension 2m over GF (2) where 22m is the order of the plane. Moreover,
T y

1 acts as a collineation group in GL(2, 22m) since the group commutes with g and
g acts as a kernel homology group of Σg. However, this implies that T y

1 acts as
an elation group of the Desarguesian plane and since it fixes OP , it has OP as its
axis. Since OP is also a component of the translation plane, we have an elation in
G contrary to assumption. This completes the proof of the lemma. �

Lemma 24. M̃o cannot be isomorphic to Am.

Proof: Under the assumptions and statement of Holt’s theorem, it is possible
that the group indicated can be isomorphic to an alternating group Am where m
is the number of O(L∗) orbits on ∆. But O(L∗) = O(L/G[∆]) = O(L)/G[∆] so
the number of O(L∗) orbits on ∆ is the number of O(L)/G[∆] orbits which is the
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number of O(L) orbits. However, we have noted that M̃o is transitive and since
it is simple O(M̃o) = 1 so a re-application of Holt’s results imply that the group
generated by the involutions which fix exactly one point of ∆ is as stated in Holt’s
theorem. However, since we realize that the group is An, this forces the group to be
isomorphic to Aq+1. If so then there is a cyclic group of order q/2 generated by the
element in cycle notation (1, 2, 3, ...., q/2)(q, q +1) acting on ∆. Since O(L) contains
G[∆], it follows that there is a cyclic collineation group of order q/2. We have seen
that this cannot occur by 6. �

Lemma 25. O(L∗) =< 1 >. Hence, O(L) fixes ∆ pointwise.

Proof: By Holt 19, it follows that σ̃ is in M̃o. This means that for the subgroup
L∗ of the group G∗ acting on ∆ has O(L∗) = 〈1〉 by Holt’s theorem. �

Lemma 26. M̃o cannot be isomorphic to Sz(
√

q).

Proof: Since 2 does not divide | Out(Sz(
√

q) | it follows that the order of the
Sylow 2-subgroup of G is q. However, since a central involution fixes points of Γ
and Γ is an orbit of length q(q − 1), it follows that a Sylow 2-subgroup has order
≥ 2q. �

Hence, we arrive at the following situation:

Remark 1. G∗ = G/O(L) contains a normal subgroup Y ∗ = Y/O(L) isomorphic
to SL(2, q) or PSU(3, q1/3). The centralizer of Y ∗ fixes ∆ pointwise so is trivial as
G∗ is a permutation group on ∆. Hence, G∗/Y ∗ = (G/O(L))/(Y/O(L)) ' G/Y is
a subgroup of the outer automorphism group of Y ∗.

Lemma 27. O(G) = O(L) = G[∆] and u does not divide the order of O(G).

Proof: Let S be a Sylow 2-subgroup fixing the unique point P of ∆. The order
of Z(S) is ≥ 4 by assumption, so we have an elementary Abelian 2-subgroup A of
order 4 normalizing O(G) such that each involution in A fixes a unique point P of
∆. Hence, CO(G)(g) for g ∈ A − {1} fixes the unique point P of ∆ which implies

that O(G) =
〈
CO(G)(g); g ∈ A− {1}

〉
also fixes P . Since S was arbitrary, it follows

that O(G) fixes ∆ pointwise.
Let Ro denote a Sylow u-subgroup of O(G). It follows that Ro is cyclic since the

subgroup fixes ∆ pointwise. Since there are an odd number of Sylow u-subgroups in
O(G), it follows that any Sylow 2-subgroup S normalizes some Rh

o for h ∈ O(G) and
hence, normalizes the unique cyclic subgroup of order u. So, Rh

oS fixes a point P on
∆. Let gu be an element of order u. Since Rh

o is cyclic, there exists a Desarguesian
spread consisting of gu-invariant subspaces of line size and the normalizer of 〈gu〉 is
a collineation group of the Desarguesian affine plane Σ. Hence, the subgroup S is
a subgroup of a group isomorphic to ΓL(2, q2) acting on Σ. Since q = 2r > 2r for
q > 4, there must be an elation in S as then S ∩ GL(2, q2) is nontrivial. However,
this is contrary to our assumptions. �

Lemma 28. (1) A Sylow 2-subgroup of G/Y is cyclic.
(2) u does not divide |G/Y |.
Proof: G/Y is an outer automorphism group of SL(2, q) or PSU(3, q1/3). The

outer automorphism group has order r and (3, q1/3+1)2r/3 where q = 2r, respectively.�
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Lemma 29. Let Q be a point of Γ. Then a Sylow 2-subgroup of YQ is cyclic or
generalized quaternion.

Proof: Since Γ is an orbit then q + 1 divides the order of GQ. Let K = O(Y ).
Since G/Y is a group of outer automorphisms of Y ∗, and then the order of GQY/Y '
GQ/YQ is not divisible by u so that u divides the order of YQ. If Z2×Z2 is a subgroup
of YQ then YQK/K is a subgroup of Y/K = Y ∗ which contains a element whose
order is a 2-primitive divisor of q2 − 1 and which contains an elementary Abelian
subgroup of order at least 4. By the structure of SL(2, q) or PSU(3, q1/3), it follows
that YQK/K = Y/K so that YQK = Y . Hence, |YQ|2 = |Y |2 since 2 does not divide
the order of K.

Since |GQ|2 = |YQ|2 [GQ : YQ]2 = |Y |2 |GQY/Y | and
|G|2 = |GQ|2 [G : GQ]2 = |Y |2 |G/Y |2 = |Y |2 |GQY/Y | [G : GQ]2, it follows that

q = [G : GQ]2 (the 2-part of the orbit length of Q) = |G/Y |2 / |GQY/Y | ≤ r2 where
q = 2r since G/Y induces an outer automorphism group on Y ∗ and a 2-group is
cyclic of order the 2-part of r. Hence, 2r ≤ r which cannot occur. �

Lemma 30. The central involutions in a Sylow 2-subgroup of Y share a common
fixed point set of q points.

Proof: Let S be a Sylow 2-subgroup of Y fixing the point P of ∆. Then Z(S)
is the set of involutions of a Sylow 2-subgroup isomorphic to one of Y ∗ which is
isomorphic to SL(2, q) or PSU(3, q1/3).

Let A be any subgroup of Z(S) of order 4. Note that A cannot fix a point of
Γ. Hence, if σ1 and σ2 are distinct involutions in A then σ2 induces on F ixσ1 either
an elation, Baer involution or the identity. However, since Z(S) can fix exactly one
point of ∆ and no points of Γ, it follows that σ2 induces an elation on F ixσ1. �

Lemma 31. Let K = O(G) = O(L) = G[∆]. Then K is Z-group of order divisible
by q − 1.

Proof: let A be an elementary Abelian 2-group of a Sylow 2-subgroup S of Y
that fixes the point P of ∆. Each element z of A is Baer and fixes a subspace on
OP of q points. Since K is generated by the centralizers of elements of A, and A
fixes a set of q points of OP , it follows that K permutes a set of q points of OP . If
some element k of K fixes one of these points then k is a Baer collineation and k
divides q − 1. Let F ixk = πo and note that πo is a Baer subplane of the net N∆.
Moreover, k fixes a second Baer subplane π1 of N∆ and induces a kernel homology
on π1. It is also true that k fixes a unique second Baer subplane of N∆. Suppose k
commutes with some element τ of A. Then, τ must fix πo and π1. However, τ must
have fixed points on π1 which leads immediately to a contradiction.

In any case, π1τ is a third subplane of the net N∆ which implies that there
are 1 + |kernel of πo| = 1 + 2a Baer subplanes incident with the zero vector of N∆.
The group induced on the 1 + 2a subplanes is a subgroup of PΓL(2, 2a). A Sylow
2-subgroup S that fixes P must also leave πo invariant and cannot fix a second
Baer subplane since if so then an involution in S must induce an elation on each
Baer subplane forcing the involution to be an elation. Hence, Y/K is isomorphic to
SL(2, q) and the kernel of πo is GF (q). Note also that K must fix πo. Furthermore,



412 Y. Hiramine – V. Jha – N. L. Johnson

since this argument is independent upon the Sylow 2-subgroup S, it follows that
each Baer subplane is pointwise fixed by some element in K as K is normal and
K must leave each such Baer subplane invariant. Note that each Sylow 2-subgroup
must leave invariant a unique point of ∆ and for any point P ∗ of ∆, there is a Sylow
2-subgroup fixing P ∗. However, this implies that k leaves each subplane invariant
which is a contradiction.

Hence, K is fixed-point-free on the sets of q points fixed pointwise by the set of
central involutions of Sylow 2-subgroups. It follows that K is a Frobenius comple-
ment as it acts on a vector space. Hence, all Sylow p-subgroups are cyclic for p odd
and K has odd order so that K is a Z-group of order dividing q − 1. �

Lemma 32. K commutes with Z(S) for any Sylow 2-subgroup, S of Y .

Proof: We have the group Z(S)K. Let σ ∈ Z(K) and x ∈ K, then consider
σxσx−1. Since σ = σ−1 and K is normal then σxσx−1 = x∗x−1 for some element x∗

of K. But, σ and σx both fix a set of q points on a component OP pointwise for P
a point of ∆ and K is fixed-point-free on this vector subspace. Hence, x∗x−1 = 1 so
that x∗ = x and σxσ = x. Thus, K commutes with every element σ ∈ Z(Q). �

Lemma 33. Y = 〈Z(S); S is a Sylow 2-subgroup of Y 〉K and thus
Y = CY (K)K.
Furthermore, CY (K) is a central extension of Y ∗.

Proof: Note that 〈Z(S); S is a Sylow 2-subgroup of Y 〉 is a normal subgroup of
Y and 〈Z(S); S is a Sylow 2-subgroup of Y 〉K/K is a normal subgroup of Y ∗. It
follows that Y = 〈Z(S); S is a Sylow 2-subgroup of Y 〉K.

Since 〈Z(S); S is a Sylow 2-subgroup of Y 〉 centralizes K, we have the proof of
the lemma. �

Lemma 34. CY (K) is a central extension of Y ∗.
Then CY (K) = Z(K)(CY (K))′ and (CY (K))′ is perfect.

Proof: Y/K is isomorphic to CY (K)/CY (K)∩K. But, CY (K)∩K ⊆ Z(CY (K))
since all elements of K commute with all elements of CY (K). Hence, CY (K) is a
central extension of a perfect group so the result follows by 22. �

Lemma 35. (CY (K))′∩K = 〈1〉 so that Y contains a subgroup isomorphic to either
SL(2, q) or PSU(3, q1/3).

Proof: Note that (CY (K))′ ∩ K ⊆ Z(CY (K)′) since every element of CY (K)
commutes with every element of K. Furthermore,

Y/K = CY (K)K/K = (CY (K))′Z(K)K/K =

= (CY (K))′K/K ' (CY (K))′/(CY (K))′ ∩K

so that as (CY (K))′ is perfect and (CY (K))′ ∩ K ⊆ Z((CY (K))′), it follows that
(CY (K))′ ∩K is a subgroup of the Schur multiplier of Y/K.

Thus, (CY (K))′∩Z(K) is a subgroup of the Schur multiplier of (CY (K))′K/K =
Y ∗ by 23. When Y ∗ is SL(2, q) or PSU(3, q1/3) the Schur multiplier is trivial (see
24, 25) so that (CY (K))′ is isomorphic to SL(2, q) or PSU(3, q1/3). �
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Actually, there is an alternative proof without the use of Schur multipliers that
we might mention here. Starting with the lemma 32 so that

Y = 〈Z(S); S is a Sylow 2-subgroup of Y 〉K and thus Y = CY (K)K, we con-
sider g ∈ NCY (K)(Z(S)) ∩ Z(S)x for x ∈ CY (K) − NCY (K)(Z(S)). We see that it
must be that x fixes OP where P is the unique point of ∆ fixed by Z(S). Since
K commutes with Z(S), it follows that S 6= Sx and hence modulo K are distinct
Sylow 2-subgroups acting in Y/K. But, the action on ∆ is the standard 2-transitive
in Y/K so that any two Sylow 2-subgroups of Y generate the group Y/K. Thus,
x cannot leave OP invariant and hence NCY (K)(Z(S)) ∩ Z(S)x = 〈1〉. Thus, we
may use the results of Hering 18 to show that there is a subgroup isomorphic to
SL(2, 2a), Sz(2

a), SU(3, 2a), or PSU(3, 2a) which acts transitively on ∆ so there
are at least q + 1 Sylow 2-subgroups. Thus, we must obtain either the case SL(2, q)
or PSU(3, q1/3). �

Lemma 36. There cannot be a subgroup of Y isomorphic to PSU(3, q1/3) or SL(2, q).

Proof: First assume that the group is isomorphic to PSU(3, q1/3). H = Mo is a
normal subgroup of G so acts 1/2-transitively on Γ. Hence, 2(q + 1) divides (Mo)Q.

Since M̃o acts on ∆ in its normal 2-transitive representation (Holt 19), it follows
that (Mo)Q is transitive on ∆.

First we note that all involutions are Baer as all involutions in PSU(3, q1/3) are
conjugate or merely note that otherwise we would have an elation and be finished
by previous results.

Since H is normal in G and G is transitive on Γ then the number of involutions
in HQ is equal to the number of involutions in HQx for all x in G and hence equal
to the number of involutions in HT for T in Γ.

We count the set Λ = {(Q, z); Q ∈ Γ and z an involution in HQ} in two ways. We
shall call (Q, z) a ‘flag’. The number of flags is obtained by counting the number of
point Q times the number of involutions fixing Q which is then equal to the number
of involutions z in H times the number of points of Γ that z fixes.

Since each involution in H fixes exactly one point of ∆ and all involutions in H
are conjugate, we have:

(q2 − q)× C = [H : CH(z)]× q as a Baer involution fixes exactly q points of Γ
where C is the number of involutions in HQ. Let e = (q1/3 + 1, 3) and q1 = q1/3 so
that [H : CH(z)]× q = [((q3

1 + 1)q3
1(q

2
1 − 1)/e)/(q3

1(q1 + 1))]× q
= (q + 1)(q1 − 1)q.
Hence, C = ((q + 1)(q1 − 1)q)/(q2 − q) = ((q + 1)(q1 − 1))/(q − 1) which is a

contradiction as (q + 1, q − 1) = 1 and q1/3− 1 < q − 1.
Hence, Mo must be isomorphic to SL(2, q) so that the plane is classified by

Foulser-Johnson 9. The structure of the group forces the plane to be Ott-Schaeffer
which is contrary to lemma 5.

Hence, the theorem is proven except possibly when the order is 64.
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5.2 Order 64.

It remains to consider order 64.
The proof given in general applied to order 64 breaks down in essentially two

places. In particular, it might be possible that there is an elation with center in ∆
when q = 8.

Furthermore, in the argument of part II, it was required that there is a 2-primitive
divisor of q2 − 1 which is, of course, not valid when q = 26.

5.2.1 The elation case.

When there is an elation group of order at least 4, it follows that either SL(2, 4)
and hence SL(2, 8) is generated by the elations. Then the plane is Desarguesian by
theorem 9.

Hence, if there is an elation, we may assume that there is a unique elation of
order 2 per center in ∆. The argument given in Hiramine, Jha and Johnson [9]
supporting theorem 5 applies in this case to show that if M is the group generated
by the elations then O(M) fixes `∞ − ∆ pointwise. The argument when there
exists a prime 2-primitive divisor applies that connects a Desarguesian spread to
the components of `∞ −∆ will apply provided if there exists a collineation of order
9 when is then a 2-primitive divisor of 26− 1 albeit not a prime divisor. Then there
exists a Desarguesian spread sharing the components of `∞ − ∆ and by Ostrom’s
result on critical deficiency, the plane is Hall or Desarguesian.

Hence, it remains to show that there is a cyclic collineation group of order 9.
We see that O(M) is faithful on any component ` of `∞ −∆ and is semi-regular

and is thus fixed point free. Since O(M) then becomes a Frobenius complement,
the Sylow 3-subgroups are cyclic. Similarly, if O(M) fixes a proper GF (2)-subspace
then 9 must divide 2a− 1 for a = 1, 2, 3, 4 or 5 which it does not. Hence, O(M) acts
irreducibly on ` and hence the centralizer in Hom(`, `) is a field. But, this implies
that O(M) is cyclic and hence the plane is either Desarguesian or Hall as noted
above.

5.2.2 When F ixσ is in N∆.

We have note previously that the arguments given in the relevant section does not
depend on the value for q. Hence, when q = 8, we have also completed the analysis.

5.2.3 When F ixσ is not in N∆.

We note that it might be expected that the Ott-Schaeffer planes would occur here,
but the orbit length of q2 − q for q = 8 does not occur in the Ott-Schaeffer planes
as we have seen previously.

We may assume that every involution ρ in the center of a Sylow 2-subgroup fixes
exactly one point of ∆.

But, this implies that the order of a Sylow 2-subgroup is divisible by 2 · 8.
Furthermore, this also says that there is an involution τ which fixes at least two
infinite points of ∆.
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Lemma 37. If an involution τ fixes at least two points of ∆ then F ixτ is a subplane
of N∆ and N∆ is derivable.

Proof: If F ixτ is not a subplane of N∆ then τ fixes a component, say `, of
Γ. But, there exists a central involution σ fixing `. Hence, there exists a Sylow
2-subgroup S such that σ is central in S and τ is also in S. But, S fixes exactly
one point of ∆ and τ can’t induce a Baer involution on F ixσ since the order is 8.
Hence, τ induces an elation on F ixσ but fixes at least two components of F ixσ, a
contradiction. Hence, F ixτ is a Baer subplane of N∆.

Since F ixτ cannot be G-invariant by 2 and F ixτ has order 8 then this implies
that either N∆ is derivable or there exist exactly three Baer subplanes of N∆ incident
with the zero vector. In this case, we consider the group A = 〈σ, τ〉 and note that
σ must induce an elation on F ixτ . Hence, if σ fixes a second Baer subplane π1 of
the three then σ must fix points of π1 which is a contradiction as σ fixes exactly
one infinite point P of ∆ and σ is not an elation. Similarly, τ cannot fix either
of the two remaining Baer supblanes. Hence, it follows that στ leaves all three
planes invariant which is a similar contradiction as στ is an involution which fixes
F ixτ ∩OP pointwise and fixes P but fixes no other points of ∆. Hence, the net N∆

is a derivable net. �

Lemma 38. Let T denote the subgroup which fixes F ixτ pointwise.
Then the order of T is 2.

Proof: If the order of T is strictly larger than 2, then there is a group isomor-
phic to SL(2, 2a ≥ 4) within a group isomorphic to SL(2, 8) which is generated
by 〈T x; x ∈ G〉. Since the plane is derivable, it follows immediately that the group
generated must be SL(2, 8) and the plane is Hall by 9. �

Now since S acting on the set of 9 Baer subplanes incident with the zero vector
is faithful (i.e. there are no elations), it is a subgroup of PΓL(2, 8) which cannot be
the case since the order of S is at least 2 · 8.

Hence, we have:

Lemma 39. The case that F ixσ is not in N∆ does not occur.

Hence, we have completed the case when the order is 64 which, in turn, completes
the proof of our main theorem. �

6 The spread is in PG(3, q), q even.

Theorem 26. Let π denote a translation plane of order q2, q even, with spread in
PG(3, q).

If G is a linear collineation group which has an infinite point orbit of length q +1
and i infinite point orbits of lengths (q2 − q)/i and i = 1 or 2 then π is one of the
following types of planes:

(1) Desarguesian, i = 1,
(2) Hall, i = 1 or
(3) Ott-Schaeffer and i = 2.
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Proof:
First we note that if i = 1, we may employ the main result of the previous

sections.
Assume that the order is 64 and there exist elations. Since the group is linear,

then it follows from the result of Johnson and Ostrom 8 that either SL(2, 8) is
generated or there is a dihedral group of order 2 · 9 generated. In the former case,
the plane is Desarguesian. In the latter case, the cyclic group C9 of order 9 is normal
in the full group. Furthermore, C9 fixes a component in each of the two orbits at
infinity of length 28. It follows that C9 fixes 56 infinite points. Thus, there is a
collineation of order 9 and since 9 is a 2-primitive divisor of 26 − 1 of order 9, it
follows similarly as above in the order 64 case for i = 1 that, using Ostrom’s theorem
on critical deficiency, the plane is Desarguesian or Hall.

Thus, we may assume by 5 and the above argument that the involutions are all
Baer. Since the group is linear then by Johnson-Ostrom 10, the Sylow 2-subgroups
are elementary Abelian.

First assume that the group is nonsolvable. Then, by Johnson-Ostrom 11, we
obtain a normal subgroup isomorphic to SL(2, 2s) for some integer s. Since, the
Sylow 2-subgroups has order at least q/2, it follows from Johnson 12, that if q/2 >√

q then SL(2, q) is obtained as a collineation group. Hence, since for q = 4, all
translation planes are known, we may assume that q > 4 and thus q/2 >

√
q. Now,

by the results of 9, it follows that the planes listed are the only possible planes of
order q2 admitting SL(2, q).

Thus, assume that the group G is solvable. Let Γ denote an orbit of components
of length (q2 − q)/i for i = 1 or 2. The stabilizer of a component L of Γ has order
divisible by (q + 1). By the general section on planes of even order, we may assume
that i = 2.

Now a Sylow 2-subgroup S has an orbit in Γ of length divisible by q/2. First
assume that S has order q/2. Since there are two orbits of length (q2 − q)/2 then
each involution must fix each infinite points of the orbit ∆ of length q + 1. Since S
must fix a 1-space pointwise on a component of ∆, it follows that S must fix a Baer
subplane pointwise. Assume that FixS is invariant under the group G. The order
of the group G is divisible by (q−1)2(q +1)q and is linear so it follows that G/Z(G)
is a solvable subgroup of PGL(2, q) which is a contradiction by order.

Thus, F ixS is not G invariant and thus there exist at least two Baer groups of
order q/2. It follows that the group generated by SL(2, 2s) where 2 ≥ q/2. So,
either q = 4 or we obtain SL(2, q) as a collineation group. Since all translation
planes of order 16 are determined, we again have a contradiction.

So, a Sylow 2-subgroup has order divisible by q and as all involutions are Baer,
the order is exactly q. Since there are exactly q − 1 involutions in S, it follows that
each involution fixes exactly q/2 infinite points of each orbit of length (q2 − q)/2.

Hence, each Sylow 2-subgroup fixes exactly one component of ∆ and G is doubly
transitive on ∆. It follows that S is a subgroup of ΓL(1, q + 1) and q + 1 is a prime
power vb since G is solvable. However, GL(1, q + 1) is cyclic of order q. When
S ∩ GL(1, q + 1) has order at least q/(q, b) > 2, then the subgroup is cyclic and
elementary Abelian which is a contradiction. However, q/(q, b) > 2 for q larger than
4. To see this, note that otherwise, 2r + 1 = v2r−1z > 22r−1

which implies that r = 1
or 2.
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So, when q > 4, the group must be solvable and this completes the proof of the
theorem. �
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