Curves of the Projective 3–space, Tangent Developables and Partial Spreads

E. Ballico A. Cossidente

1 Introduction

A twisted cubic C of PG(3,q), the 3-dimensional projective space over the Galois field GF(q), is given in its canonical form by

$$\mathcal{C} = \{ P(t) = (t^3, t^2, t, 1), t \in GF(q) \cup \{\infty\} \},\$$

where $t = \infty$ gives the point (1, 0, 0, 0). Twisted cubics over Galois fields were introduced and studied by Segre [17], [18]. Further properties were investigated by Hirschfeld [12], [13]. The main property of a twisted cubic of PG(3, q) is that it is a maximal arc [10, 21.2], namely it is a set of q + 1 points of PG(3, q), no four of which are coplanar.

However, twisted cubics are also interesting because of their connection with spreads and partial spreads of PG(3, q).

In PG(3,q), a spread S is a set of $q^2 + 1$ lines, no two of which intersect. A partial spread P is a set of mutually skew lines, and if $|\mathcal{P}| = s$, then P is also called a *s*-span. Hence, a $(q^2 + 1)$ -span is a spread of PG(3,q).

In [3] it was shown that in PG(3, q), (q + 1, 3) = 1, if \mathcal{C} is a twisted cubic, then the set \mathcal{S} of lines consisting of the imaginary chords of \mathcal{C} , the imaginary axes of the osculating developable of \mathcal{C} and the tangents to \mathcal{C} form a spread.

In particular, it is easily seen that the tangents to C form a (q + 1)-span [10, Theorem 21.1.9] (actually the proof works for any field). For further results on twisted cubics over Galois fields see also [4].

Bull. Belg. Math. Soc. 7 (2000), 387-394

Received by the editors January 1999.

Communicated by J. Van Geel.

In this paper we are mainly interested in curves \mathcal{X} of $PG(3, \mathbb{K})$, where \mathbb{K} is an algebraically closed field of characteristic $p \geq 0$, satisfying the following condition.

Tangent lines to
$$\mathcal{X}$$
 at distinct smooth points are skew. (1.1)

If we assume that \mathbb{K} is the algebraic closure of GF(q), the condition (1.1) means that tangent lines to \mathcal{X} at GF(q)-rational points will form a (partial) spread of PG(3,q). We will see, under suitable assumptions, that if \mathcal{X} satisfies condition (1.1), then \mathcal{X} must necessarily be a twisted cubic, giving in this manner a characterization of twisted cubics.

Also an infinite family of curves of $PG(3, \mathbb{K})$, distinct from twisted cubics and satisfying property (1.1), is found.

2 Definitions and Preliminaries

We work over an algebraically closed field \mathbb{K} of characteristic $p \geq 0$.

Let $\mathcal{X} \subset PG(3, \mathbb{K})$ be an integral curve of degree $d \geq 3$. Let $PG(3, \mathbb{K})^*$ be the dual projective space of $PG(3, \mathbb{K})$. Let

$$\mathcal{X}^* = \overline{\{H \in PG(3, \mathbb{K})^* | H \text{ tangent to } \mathcal{X} \text{ at a smooth point } P \in \mathcal{X}\}}$$

be the dual of \mathcal{X} and also let $Z(\mathcal{X})$ be the set

 $\overline{\{(P,H)\in\mathcal{X}_{reg}\times PG(3,\mathbb{K})^*|H \text{ tangent to }\mathcal{X} \text{ at the smooth point } P\in\mathcal{X}\}}.$

It follows that \mathcal{X}^* is the image of $Z(\mathcal{X})$ under the projection $pr_2 : PG(3, \mathbb{K}) \times PG(3, \mathbb{K})^* \to PG(3, \mathbb{K})^*$.

The curve \mathcal{X} is said to be *reflexive* if $Z(\mathcal{X}^*) = Z(X)$ via the identification $PG(3, \mathbb{K})^{**} = PG(3, \mathbb{K})$ [7].

Let $\{b_i\}_{0 \le i \le 3}$ be the order sequence of \mathcal{X} [19]. Hence $b_0 = 0$, $b_1 = 1$ and $d \ge b_3 > b_2 > 1$. We have that \mathcal{X} is reflexive if and only if $b_2 = 2$ and $p \ne 2$ [7, 3.5]. The integer b_2 is the order of contact of \mathcal{X} with its tangent line at a generic point of \mathcal{X} [9, Prop. 4]. The integer b_3 is the order of contact of \mathcal{X} with its osculating plane at a generic point of \mathcal{X} .

It is known that $b_2 = 2$ and $b_3 = 3$ if the characteristic p of \mathbb{K} is zero. If this is the case, \mathcal{X} is said to be *classical*. [15]. Also, if p > 0 and $b_2 > 2$ or p = 2, then it can be proven that there exists an integer $e \ge 1$ such that $b_2 = p^e$ [7], and the curve is said to be *non-reflexive*.

Remark 2.1. Let \mathcal{Y} be the normalization of \mathcal{X} . Fix a general point $P \in \mathcal{X}$ and let $\pi : \mathcal{Y} \to PG(1, \mathbb{K})$ be the morphism induced by the projection of \mathcal{X} onto $PG(1, \mathbb{K})$ from the tangent line to \mathcal{X} at P, which we will denote by $T_P\mathcal{X}$. The morphism π is not separable, i.e. its differential at a generic point is zero if and only if \mathcal{X} is strange (\mathcal{X} is said to be *strange* if all its tangent lines at smooth point pass through a fixed point called the *center* or the *nucleus*). Also \mathcal{X} is strange if and only if its tangent developable is a cone. The morphism π has degree $d - b_2$ and it ramifies at P if and only if $b_3 > b_2 + 1$.

3 The Main Result

In this section we will characterize twisted cubics of $PG(3, \mathbb{K})$ (PG(3,q)) as explained in the Introduction.

Theorem 3.1. Let $\mathcal{X} \subset PG(3, \mathbb{K})$ be a smooth degree d curve such that for a general point $P \in \mathcal{X}$ there is no tangent line to \mathcal{X} at a point $Q \neq P$, with $T_P \mathcal{X} \cap T_Q \mathcal{X} \neq \emptyset$. Then $\mathcal{X} \equiv PG(1, \mathbb{K})$, and either d = 3 and \mathcal{X} is a twisted cubic, or $d = p^e + 1$ and \mathcal{X} is projectively equivalent to the rational curve \mathcal{D} with the parametrization

$$(w_0, w_1) \to (w_0^{p^e+1}, w_0^{p^e} w_1, w_0 w_1^{p^e}, w_1^{p^e+1}).$$
 (3.1)

Conversely, any two tangent lines to \mathcal{X} , where \mathcal{X} is one of the above curves, are skew. If \mathcal{X} is the the curve \mathcal{D} , we also require $p^e \geq 4$.

Proof. We divide the proof into three steps.

Step 1. Here we assume that \mathcal{X} has classical order sequence, i.e. $b_i = i, i = 2, 3$. Let g be the genus of \mathcal{X} . Fix a general point $P \in \mathcal{X}$ and let $\pi : \mathcal{X} \to PG(1, \mathbb{K})$ be the morphism induced by the projection of \mathcal{X} from the line $T_P\mathcal{X}$. Since $b_2 = 2, \pi$ is a degree d - 2 morphism (Remark 2.1). By the last assertion of Remark 2.1, for a general point P, the morphism π has differential not zero. Hence the differential of π at a general point of \mathcal{X} is not zero, i.e. π is separable. Thus we may apply the Riemann–Hurwitz formula [6, Cor. 2.4] and obtain that the ramification divisor of π has degree 2d - 6 + 2g. Since $b_3 = b_2 + 1$ and P is general, every ramification point of π corresponds either to a smooth point Q of \mathcal{X} with $T_P\mathcal{X} \cap T_Q\mathcal{X} \neq \emptyset$, or to a cusp of \mathcal{X} . Hence we have 2d - 6 + 2g = 0. Since $d \geq 3$ and $g \geq 0$, we obtain g = 0 and d = 3. Hence \mathcal{X} is a twisted cubic, as wanted.

Step 2. Here we assume $b_2 = p^e$ and $b_3 = p^e + 1$. Let g be the genus of \mathcal{X} . Fix a general point $P \in \mathcal{X}$ and let $\pi : \mathcal{X} \to PG(1, \mathbb{K})$ be the morphism induced by the projection of \mathcal{X} from the line $T_P(\mathcal{X})$. Since $b_2 = p^e$, π is a morphism of degree $d - b_2$. Since the general tangent line to \mathcal{X} does not intersect $T_P\mathcal{X}$, the morphism π is separable (see Remark 2.1). Hence, we may apply the Riemann-Hurwitz formula and obtain that, counting multiplicities, the ramification divisor of π has degree $2d - 2p^e + 2g - 2$. Since $b_3 = b_2 + 1$ and \mathcal{X} is smooth, every point on the ramification divisor of π corresponds to a point $Q \in \mathcal{X}, Q \neq P$, such that $T_P\mathcal{X} \cap T_Q\mathcal{X} \neq \emptyset$ (see Remark 2.1). Hence $2d - 2p^e + 2g - 2 = 0$ and so $d = p^e + 1$ and g = 0. It follows that $\mathcal{X} \equiv PG(1, \mathbb{K})$. We choose homogeneous coordinates x_0, \ldots, x_3 on $PG(3, \mathbb{K})$ such that $P = (1, 0, 0, 0), T_P\mathcal{X} = \{x_2 = x_3 = 0\}$ and $\{x_3 = 0\}$ is the osculating plane to \mathcal{X} at P. Hence, taking affine coordinates $X_i = x_i/x_0, i = 1, 2, 3, \mathcal{X}$ has a parametrization $(t, \alpha t^{p^e}, \beta t^{p^{e+1}})$, with $\alpha \neq 0, \beta \neq 0$. Again, passing to homogeneous coordinates, we obtain $\mathcal{X} = \mathcal{D}$, as wanted.

Step 3. Now we assume $b_3 \ge b_2 + 2$. From the Riemann-Hurwitz formula and the assumptions one finds $2g - 2 = 2(d - b_2) + (b_3 - b_2 - 1)$. Hence $2d - 2b_2 - 2 + 2g = b_3 - b_2 - 1$. From $d \ge b_3$, we have that $2(b_3 - b_2) - 2 + 2g \le b_3 - b_2 - 1$. This is a contradiction as $b_3 - b_2 > 1$.

The viceversa comes from [10, 21.1.9] and the following remark.

Remark 3.2. Fix integers p,e,d with p prime, e > 0 and $p^e < d < 2p^e$. Let $\mathcal{X} \subset PG(3,\mathbb{K})$ be any integral degree d curve with order sequence $\{b_i\}_{0 \le i \le 3}$ and $b_2 = p^e$. Fix $P, Q \in X_{reg}$ with $T_P \mathcal{X} \neq T_Q \mathcal{X}$; for a general point $P \in \mathcal{X}$ this is the case for every $Q \in \mathcal{X}_{reg}$.

Assume $T_P \mathcal{X} \cap T_Q \mathcal{X} \neq \emptyset$ and let H be the plane spanned by $T_P \mathcal{X}$ and $T_Q \mathcal{X}$. Since $T_P \mathcal{X} \cap \mathcal{X}$ (resp. $T_Q \mathcal{X} \cap \mathcal{X}$) contains at least a 0-dimensional subscheme of length p^e with P (resp. Q) as support, and $d < 2p^e$, this is impossible. The possibility $d = 2p^e - 1$ does not occur because in this case we would find a plane intersecting the curve in a 0-dimensional subscheme of length at least $2p^e$, which is more than the degree of the curve. In particular, if $d \leq 2p^e - 1$ (but also in several other cases), we are sure that for a general point $P \in \mathcal{X}$ no tangent line to a smooth point of \mathcal{X} may intersect $T_P \mathcal{X}$.

Remark 3.3. The proof of Theorem 3.1 works in the same way if instead of assuming that \mathcal{X} is smooth, we assume only that the normalization map $f : \mathcal{Y} \to \mathcal{X}$ is unramified, i.e. \mathcal{X} has no cusps, or equivalently, that for every $A \in \operatorname{Sing}(\mathcal{X})$ (if any) all the formal branches of \mathcal{X} at A are smooth. Note that the normalization map may be unramified even if some of these formal branches have the same tangent line (e.g. if A is a tacnode or a higher order tacnode of \mathcal{X}).

However, it would be interesting to have the analogue of Theorem 3.1 for singular curves. In this case, the Hasse–Weil bound [11, 2.9] for the number N of GF(q)–rational points, gives

$$N \le q + 1 + 2g\sqrt{q},$$

and so if our curve \mathcal{X} satisfies property (1.1) one could obtain *s*-span of PG(3,q), with s > q + 1.

Remark 3.4. Here we show the existence of a large number of space curves satisfying all the assumptions of Remark 3.2.

All the possible order sequences of projective curves are "known".

A sequence $\{b_i\}_{0 \le i \le 3}$ is the order sequence of a curve if and only if the *p*-adic criterion, stated for instance in the introduction of [8] is satisfied; for the proof of the necessity of the *p*-adic criterion, see [19, Cor. 1.9]; for the existence part when the *p*-adic criterion is satisfied use a monomial curve $t \to (t^{b_0}, \ldots, t^{b_N})$ as in the introduction of [8].

The example just given shows that for every prime p, for every integer $e \ge 0$ and for every integer $b_3 > 2$ such that the order sequence $\{b_i\}_{1\le i\le 3}$ satisfies the p-adic criterion, we may find a rational singular curve of degree b_3 with $b_2 = p^e$. For instance we may take $b_3 = b_2 + 1$. If $b_3 \le 2p^e - 2$, this is an example satisfying all the assumptions of Remark 3.2. Notice that we find singular curves with the same order sequence and degree as the smooth curve D considered in Theorem 3.1.

Remark 3.5. Assume $\mathbb{K} = GF(q), q = 2^h$. Then

$$\mathcal{C}(2^n) = \{ P(t) = (t^{m+1}, t^m, t, 1), t \text{ in } GF(q) \cup \{ \infty \} \}$$

with $m = 2^n$ is a (q+1)-arc of PG(3,q) if and only if (n,h) = 1[10]. Also, $\mathcal{C}(2^n)$ is a twisted cubic if and only if n = 1 or n = h - 1.

Regarding $\mathcal{C}(2^n)$ as curve (over the algebraic closure of GF(q)) we obtain another example for Theorem 3.3. On the other hand, from [3, Lemma 5] the set of tangent lines to $\mathcal{C}(2^n)$ is a (q+1)-span and form a regulus of a hyperbolic quadric [10]. **Remark 3.6.** All strange curves in $PG(n, \mathbb{K})$, $n \geq 3$ are completely described in [1]. In particular, [1] contains a complete description of all space curves (without any restriction on their singularities) and such that their tangent developable is a quadric cone.

Moreover, the methods of [1] give the corresponding result for a smooth quadric surface. We will write explicitly this description.

Let $\mathcal{H} = PG(1, \mathbb{K}) \times PG(1, \mathbb{K}) \subset PG(3, \mathbb{K})$ be a smooth quadric surface (hyperbolic quadric) and let $\pi : PG(1, \mathbb{K}) \times PG(1, \mathbb{K}) \to PG(1, \mathbb{K})$ be the projection onto the first factor. We will use bihomogeneous coordinates (w_0, w_1, z_0, z_1) on $PG(1, \mathbb{K}) \times PG(1, \mathbb{K})$, i.e. we will use homogeneous coordinates (w_0, w_1) on the first factor and homogeneous coordinates (z_0, z_1) on the second factor.

Every curve $\mathcal{X} \subset PG(1, \mathbb{K}) \times PG(1, \mathbb{K})$ (even not irreducible or unreduced) has a bidegree, say (a, b) (see [6, Chapter III ex. 5.6]), and \mathcal{X} may be described by an equation (unique up to a non-zero multiplicative constant) $f(w_0, w_1, z_0, z_1) = 0$ with f a homogeneous polynomial of degree a in the variables w_0, w_1 and of degree b in the variables z_0, z_1 . The curve \mathcal{X} is union of disjoint lines if and only if ab = 0. From now on we assume that \mathcal{X} has no multiple component. Every tangent line to a smooth point of \mathcal{X} is contained in the quadric \mathcal{H} as a line of the form $\pi^{-1}(P)$, $P \in PG(1, \mathbb{K})$, if and only if the restriction of π to every irreducible component Dof \mathcal{X} is not separable. In particular, $p := \operatorname{char}(\mathbb{K}) > 0$. Let f be the bihomogeneous equation of \mathcal{X} .

The proof of [2, Sec. 3, Cor. 1], shows that this is the case if and only if every monomial of f contains both w_0 and w_1 with exponents divisible by p. Fix an integer $e \ge 1$ and set $r := p^e$. If all these exponents are divisible by r, then the tangent line to \mathcal{X} at every smooth point Q of \mathcal{X} has order of contact at least r with \mathcal{X} at Q, i.e. (assuming \mathcal{X} irreducible) \mathcal{X} has $b_1 \ge r$. If \mathcal{X} is irreducible and r is the maximal integer with that property, then indeed $r = b_1$.

Example 3.7. Here we assume $char(\mathbb{K}) = p > 0$.

Recall that the Hirzebruch surface F_1 has an embedding into PG(4, K) as a minimal degree rational normal scroll [6, V, Cor. 2.19], and that the unique section A of F_1 with self-intersection -1 is sent by this embedding into a plane conic A'.

Let S be the cubic surface with a double line obtained by projecting the smooth rational scroll $F_1 \subset PG(4, \mathbb{K})$ from a general point of the plane spanned by A'. Hence S is ruled by lines and we will describe explicitly all integral space curves with S as tangent developable.

The description here is related to the description given in [1, 2.0] for a similar problem.

Any such curve is the image by the linear projection $F_1 \to S$ of an integral curve $Y \subset F_1$ such that all the lines of the ruling $\pi : F_1 \to PG(1, \mathbb{K})$ are tangent to Y.

We will describe "the equations" of all such curves Y. Fix homogeneous coordinates x_0, x_1 on the base $PG(1, \mathbb{K})$ and take another variable, say w (the coordinate along the fibers taking as origin of the fiber the point of intersection of the fiber with A). Give weight 1 to the variables x_0 and x_1 , and weight -1 to the variable w. Every curve of F_1 is described by a unique polynomial (up to a multiplicative constant) $f(x_0, x_1, w)$ such that there is an integer $t \ge 0$ with the property that for every monomial $\lambda x_0^a x_1^b w^c$ of f with $\lambda \ne 0$ we have a + b - c = t, i.e. every monomial appearing in f has weight t.

The curve $Y : f(x_0, x_1, w) = 0$ is tangent to all lines of the ruling if and only if c is divisible by p. More precisely, if we want that the the linear projection C of Y into $PG(3, \mathbb{K})$ has $b_2 = p^e$, we just assume that every c appearing in this way is divisible by p^e , and that p^e is the maximal power of p with this property. Let $f: F_1 \to PG(2, \mathbb{K})$ be the blowing-down of A. Every curve Y just described, i.e. every curve Y tangent at each smooth point to the fibers of the ruling, has as image f(Y) a strange plane curve of degree t with the point f(A) as center. Viceversa, every such strange curve is the image of a unique curve Y such that, every fiber of the ruling of F_1 is tangent to Y.

Example 3.8. Here we assume $p := \operatorname{char}(\mathbb{K}) > 0$.

As in [1, 2.0], we may extend the previous example and obtain for every integer $a \geq 4$ a singular rational ruled surface $S \subset PG(3, \mathbb{K})$ with $\deg(S) = a$, and such that there are perfectly described (in terms of equations) curves $C \subset S$ with S as tangent developable. Such surface S will be a projection of a smooth minimal degree rational normal scroll $S' \subset PG(a+1, \mathbb{K})$.

As abstract surface, S' is isomorphic to a Hirzebruch surface F_e and all integers e, with e - a even and $0 \le e \le a - 2$, may occur in this way. As in [1, 2.0] and the above example, we introduce coordinates x_0 , x_1 and w, and give weight 1 to x_0 and x_1 and weight -c to w; we fix an integer t > 0 and consider polynomials $f(x_0, x_1, w)$ in which each monomial $\lambda x_0^a x_1^b w^c$ of f with $\lambda \ne 0$ of f has weight t; then f = 0 is one of such curves if and only if, for each such monomial, p divides c.

In particular, we obtain large families of singular curves whose tangent developable has degree four.

Remark 3.9. Here we assume $char(\mathbb{K}) = 0$.

We will check that the rational normal curve is the only integral curve $\mathcal{X} \subset PG(3, \mathbb{K})$ such that its tangent developable, say S, has degree four.

Fix any such \mathcal{X} . Since an integral plane curve of degree four has at most three singular points, the degree of the one-dimensional part of $\operatorname{Sing}(S)$ is at most three.

Thus to check that \mathcal{X} is a rational normal curve, it is sufficient to check that S is singular along \mathcal{X} . Let $\pi : \mathcal{Y} \to \mathcal{X}$ be the normalization. Set $L := \pi^*(\mathcal{O}_{\mathcal{X}}(1))$. Let $P^1(L)$ the principal bundle of order 1 of L in the sense of [16]. The rank 2 vector bundle $P^1(L)$ fits into an exact sequence

$$0 \to \Omega_{\mathcal{Y}} \otimes L \to P^1(L) \to L \to 0.$$
(3.9)

Hence, if g is the genus of \mathcal{X} and d the degree of \mathcal{X} , we have $\deg(P^1(L)) = 2g-2+2d$. Let F be the projectivization of $P^1(L)$. There is a rational map (everywhere defined except over the cusps of \mathcal{X} , i.e. over the cuspidal locus of π) $\alpha : F \to PG(3, \mathbb{K})$ whose image is S and sending the fibers of the ruling $f : F \to \mathcal{X}$ into the lines tangent to \mathcal{X} ; this is the reason for the classical formula $\deg(S) = 2g - 2 + 2d - \kappa$, where κ is the number of cusps (counting multiplicities) [5, p. 454].

Furthermore, there is an embedding, say β , of \mathcal{Y} in F, induced by the surjection in (3.9). Since a general line of S is tangent to \mathcal{X} , we see that either all fibers of fare tangent to $\beta(\mathcal{Y})$ or f has differential of rank at most 1 at each point of $\beta(\mathcal{Y})$ and hence S is singular along $\mathcal{X} = \alpha(\beta(\mathcal{Y}))$. Alternatively, by the Lefschetz principle we may assume $\mathbb{K} = \mathbb{C}$, the field of complex numbers. Take a complex variable u on \mathbb{C} and a local parametrization $\alpha : \Delta \to \mathbb{C}^3$ (Δ the unit disk of \mathbb{C}). Then, the parametrization of S is given by $x(u, v) : U \to \mathbb{C}^3$ (U an open neighborhood of $0 \in \mathbb{C}^2$) with $x(u, v) = \alpha(u) + \alpha'(u)v$ whose Jacobian determinant vanishes when v = 0, i.e. at the points sent onto the curve \mathcal{X} ; for more details, see e.g. [14, pp. 216-217]. The same proof gives that if the ground field has characteristic zero, no integral space curve has tangent developable of degree two or three.

Acknowledgement. This research was carried out within the activity of G.N.S.A.G.A. of the Italian C.N.R. with the support of the Italian Ministry for Research and Technology.

AMS Mathematics Subject Classification: 14N,51E Keywords and Phrases: twisted cubic, tangent developable, strange curve

References

- E. Ballico, On strange projective curves, Revue Roumaine Math. Pures Appl. 37 (1992), 741-745.
- [2] V. Bayer, A. Hefez, Strange curves, Comm. Algebra 19 (1991), 3041-3059.
- [3] A.A. Bruen, J.W.P. Hirschfeld, Applications of line geometry over finite fields, I. The twisted cubic, Geom. Dedicata 7 (1978), 333-353.
- [4] A. Cossidente, J.W.P. Hirschfeld, L. Storme, Applications of line geometry, III. The quadric Veronesean and the chords of a twisted cubic, Australas. J. of Combin. 16 (1997), 99-111.
- [5] D. Eisenbud, A. Van de Ven, On the normal bundle of smooth rational space curves, Math. Ann. 256 (1981), 453-463.
- [6] R. Hartshorne, Algebraic Geometry, Springer–Verlag, 1977.
- [7] A. Hefez, S.L. Kleiman, Notes on the duality of projective varieties, in: Geometry Today, pp. 143-183, Progr. Math. 60, Birkäuser, 1985.
- [8] A. Hefez, N. Kakuta, Duality of osculating developables of projective curves, to appear.
- [9] A. Hefez, J.F. Voloch, Frobenius nonclassical curves, Arch. Math. 54 (1990), 263-273.
- [10] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
- [11] J.W.P. Hirschfeld, Projective geometries over finite fields, Second Edition, Oxford University Press, Oxford, 1998.

- [12] J.W.P. Hirschfeld, Classical configurations over finite fields, I. The Double–Six and the cubic surface with 27 lines, Rend. Mat. e Appl. 26, (1967), 115-152.
- [13] J.W.P. Hirschfeld, Rational curves on quadrics over finite fields of characteristic two, Rend. Mat. e Appl. 4, (1971), 773-795.
- [14] C.-C. Hsiung, A first course in differential geometry, John Wiley & Sons, 1981.
- [15] D. Laksov, Wronskians and Plücker formulas for linear systems on curves, Ann. Scient. École. Norm. Sup. 17 (1984), 45-66.
- [16] R. Piene, Numerical characters of a curve in projective *n*-space, in: Real and Complex Singularities, Oslo 1976 (P. Holm, editor), pp. 475-495, Sijthoff and Noordhoff, Groningen, 1978.
- [17] B. Segre, Curve razionali normali e k-archi negli spazi finiti, Ann. Mat. Pura Appl. 39 (1955), 357-379.
- [18] B. Segre, Intorno alla geometria sopra un campo di caratteristica due, Rev. Fac. Sci. Univ. Instanbul Sér. A. 21 (1956), 97-123.
- [19] K.O. Stöhr, J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1-19.

Edoardo Ballico Dipartimento di Matematica Università di Trento 38050 Povo (TN), Italy e-mail: ballico@science.unitn.it

Antonio Cossidente Dipartimento di Matematica Università della Basilicata Via Nazario Sauro, 85 85100 Potenza, Italy E-mail: cossidente@unibas.it