
Transitive and Co–Transitive caps

A. Cossidente O.H. King

1 Introduction

Let PG(r, q) be the projective space of dimension r over GF (q). A k–cap K̄ in
PG(r, q) is a set of k points, no three of which are collinear [10], and a k–cap
is said to be complete if it is maximal with respect to set–theoretic inclusion. The
maximum value of k for which there is known to exist a k–cap in PG(r, q) is denoted
by m2(r, q). Some known bounds for m2(r, q) are given below.

Suppose that K̄ is a cap in PG(r, q) with automorphism group Ḡ0 ≤ PΓL(r +
1, q). Then K̄ is said to be transitive if Ḡ0 acts transitively on K̄, and co-transitive
if Ḡ0 acts transitively on PG(r, q)− K̄.

Our main result is the following theorem.

Theorem 1. Suppose K̄ is a transitive, co–transitive cap in PG(r, q). Then one of
the following occurs:

1. K̄ is an elliptic quadric in PG(3, q) and q is a square when q is odd;

2. K̄ is the Suzuki–Tits ovoid in PG(3, q) and q = 2h, with h odd and ≥ 3;

3. K̄ is a hyperoval in PG(2,4);

4. K̄ is an 11–cap in PG(4, 3) and Ḡ0 ' M11;

5. K̄ is the complement of a hyperplane in PG(r, 2);

6. K̄ is a union of Singer orbits in PG(r, q) and G0 ≤ ΓL(1, pd) ≤ GL(d, p).
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In each of 1–5 K̄ is indeed a transitive co–transitive cap.

Our conclusion is that transitive, co–transitive caps are rare with the possible
exception of unions of Singer cyclic orbits.

The origin of this problem are papers by Hill [8], [7], in which he studies such
caps whose automorphism group acts 2–transitively on the cap. [As he notes [8,
Theorem 1], it is trivial to show that if K̄ is a subset of PG(r, q) lying in no proper
subspace and admitting a 3–transitive group then K̄ must be a cap.] Hill gives a
short list of possibilities (omitting Suzuki–Tits ovoids) but excludes caps in PG(r, q)
for q > 2 and r ≥ 13. We find no new caps but show that any other transitive,
co–transitive cap is a union of Singer cyclic orbits.

The known upper bounds on cap sizes are summarised in the following Result.

Result 2. [10, Theorem 27.3.1]
m2(2, q) = q + 1 (for q odd);
m2(2, q) = q + 2 (for q even);
m2(3, q) = q2 + 1 for q > 2;
m2(r, 2) = 2r; and
m2(r, q) ≤ qr−1 for q > 2 and r ≥ 4.

The bounds for q > 2 and r ≥ 4 are not the best known, but they are sufficient
here.

We begin by showing that as a consequence of Result 2, a cap must be smaller
than its complement (with one exception). It then follows that in considering sub-
groups of PΓL(r + 1, q) having two orbits, we need only consider the smaller orbit
when looking for transitive, co-transitive caps.

Lemma 3. Suppose that K̄ is a cap in PG(r, q). Then either |K̄| < (qr+1−1)/2(q−
1), or q = 2 and K̄ is the complement of a hyperplane.

Proof. It is easy to deduce from Result 2, that the result holds when q 6= 2. Thus
suppose now that q = 2 and that |K̄| ≥ (2r+1 − 1)/2. The only possiblity is that
|K̄| = 22. Let x ∈ K̄. For each y ∈ K̄ −{x} there is a line through x and y and the
2r − 1 such lines must be distinct since K̄ is a cap. However x lies on exactly 2r − 1
lines in PG(r, 2) and so every line in PG(r, 2) through x meets K̄ in two points and
PG(r, q)− K̄ in one point. Therefore any line meeting PG(r, q)− K̄ in at least two
points is contained in PG(r, q)− K̄. This shows that PG(r, q)− K̄ is a subspace of
PG(r, 2) and its size shows that it is a hyperplane.

�

Using Result 6 we shall know orbit lengths when looking at candidates for tran-
sitive, co-transitive caps. Lemma 5 below helps in eliminating a number of possibil-
ities.

Definition 4. Suppose that K̄ is a cap in PG(r, q). For any x ∈ PG(r, q), the
chord-number of x is the number of chords (2-secants) of K̄ passing through x.

Lemma 5. Suppose that K̄ is a tranistive, co-transitive cap in PG(r, q) and suppose
that x ∈ PG(r, q) − K̄ . Let k = |K̄| and m = |PG(r, q) − K̄|. Then the chord-
number, c, of x is given by
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c = k(k−1)(q−1)
2m

.

In particular the expression for c always yields an integer.

Proof. We count combinations of chords and points of PG(r, q)− K̄ in two ways.
Firstly there are k(k− 1)/2 chords of K̄ and each has q− 1 points not in K̄. There
is a subgroup Ḡ0 of ΓL(r+1, q) acting transitively on PG(r, q)− K̄, so each of these
m points has the same chord-number c and a second count gives mc chord-point
combinations. Thus mc = k(k − 1)(q − 1)/2 leading to the required expression for
c.

�

The main tool in our investigation is the substantial result by M.W. Liebeck [12],
where the affine permutation groups of rank three are classified.

Result 6. [12] Let G be a finite primitive affine permutation group of rank three
and of degree n = pd, with socle V , where V ' (Zd

p ) for some prime p, and let G0

be the stabilizer of the zero vector in V . Then G0 belongs to one of the following
families:
(A) 11 Infinite classes;
(B) Extraspecial classes with G0 ≤ NΓL(d,p)(R), where R is a 2–group or 3–group
irreducible on V ;
(C) Exceptional classes. Here the socle L of G0/Z(G0) is simple (where Z(G0)
denotes the centre of G0).

We shall recall the details of the groups belonging to the classes in (A), (B) and
(C) as we need them.

Suppose K̄ is a cap in PG(r, q) such that a subgroup Ḡ0 of PΓL(r + 1, q) acts
transitively on each of K̄ and its complement. Then Ḡ0 corresponds to a subgroup
G0 of GL(d, p) having three orbits on the vectors of V (d, p), where p is prime and
pd = qr+1. Moreover G0 will contain matrices corresponding to scalar multiplication
by elements of GF (q)∗. As we demonstrate shortly, with one exception, V (d, p) ·G0

is primitive as a permutation group, so Liebeck’s theorem may be applied. Notice
that since we are interested in groups G0 containing GF (q)∗ we avoid the possibility
of two orbits of vectors in V (d, p) giving rise to a single orbit of points in PG(r, q).

Clearly G0 may be embedded in ΓL(r + 1, q). At the beginning of Section 1 of
[12], Liebeck notes that in his result G0 ≤ GL(d, p) is embedded in ΓL(a, pd/a) with
a minimal. Thus r + 1 ≥ a i.e. q ≤ pd/a. Moreover in almost all cases it is clear
that the groups he identifies have orbits that are unions of 1–dimensional subspaces
of V (a, pd/a) (excluding the zero vector). If a 1-dimensional subspace over GF (pd/a)
does contains vectors u, v that are linearly independent over GF (q), then u, v and
u + v correspond to three collinear points in PG(r, q) and the orbit in PG(r, q)
cannot be a cap. Thus in our setting we usually have q = pd/a: there is just one
exception, the class A1, although we have to justify q = pd/a for the class A2.

Lemma 7. Suppose K̄ is a transitive, co-transitive cap in PG(r, q) with Ḡ0 ≤
PΓL(r + 1, q) acting transitively on each of K̄ and PG(r, q)− K̄ and suppose that
G0 is the pre-image of Ḡ0 in GL(d, p). Let H = V (d, p) ·G0. Then H is imprimitive
on V = V (d, p) if and only if q = 2 and K̄ is the complement of a hyperplane.
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Proof. Suppose that H is imprimitive on V . Let Ω be a block containing 0. Then
the two orbits of non–zero vectors of G0 are Ω \ 0 and V \ Ω. Let u and v be any
two vectors in Ω, then Ω + v is a block containing 0 + v and u + v so Ω + v = Ω.
In other words u + v is in Ω and so Ω is a GF (p)–subspace of V . More than this
G0 contains the scalars in GF (q)∗ and so Ω is actually a GF (q)–subspace. Thus
Ω cannot correspond to a cap. In PG(r, q) our two orbits consist of points in a
subspace and the complement. A line not in the subspace meets the subspace in at
most one point so the complement cannot form a cap except perhaps when p = q = 2
and the subspace has projective dimension r − 1. Conversely, as is well known, the
complement of a hyperplane is indeed a cap in PG(r, 2) and it is the only way in
which the complement of a subspace is a cap. It is easy to see that this cap is
transitive and co–transitive. �

We recall for the reader that the socle of a finite group is the product of its
minimal normal subgroups. In our setting V (d, p) ·G0 has V as its unique minimal
normal subgroup.

Liebeck’s theorem tells us the possibilities for G0 and gives two orbits ofG0 on the
non–zero vectors of V (d, p). We denote these by K1 and K2, and the corresponding
sets of points in PG(r, q) by K̄1 and K̄2. We assume that neither K1 nor K2 lies in
a subspace of V (r + 1, q); given GF (q)∗ ≤ G0 this means that neither K1 nor K2

lies in a subspace of V (d, p). We may henceforth assume that V (d, p) ·G0 is a finite
primitive affine permutation group of rank 3 and degree pd, so we may apply Result
6.

We begin with the case by case analysis. In many cases we use data from Result
6 and apply Lemmas 3, 5, but there are occasions when we need to look at the
structure of orbits in detail; there are also occasions when using the structure of the
orbits is more illuminating and yet no less efficient than the bound and chord-number
arguments.

2 The infinite cl asses A

2.1 The class A1

In this case G0 is a subgroup of ΓL(1, pd) containing GF (q)∗. Such a subgroup is
generated by ωN and ωeαs, for some N, e, s where ω is a primitive element of GF (pd)
andα is the generating automorphism x 7→ xp of GF (pd); if we write pd = qa, then
N divides (qa − 1)/(q − 1). Let H0 be the subgroup of ΓL(1, pd) generated by ωN .
Then H0 is a Singer subgroup of GL(1, pd) and the orbits of H0 in PG(r, q) are
called Singer orbits. Clearly if G0 has two orbits in PG(r, q), then each orbit is the
union of Singer orbits. If the smaller orbit is to be a cap, then each Singer orbit
must itself be a cap. A precise criterion for deciding when Singer orbits are caps in
PG(r, q) is given by Szőnyi [14, Proposition 1].

Precise criteria for there to be two orbits for G0 on non–zero vectors of V (d, p)
are given by Foulser and Kallaher [5]. These involve numbers m1 and v such that
the primes of m1 divide ps − 1, v is a prime 6= 2 and ordvp

sm1 = v − 1 (meaning
psm1 ≡ v − 1 mod v), (e,m1) = 1, m1s(v − 1)|d, N = vm1. The orbit lengths are
m1(p

d − 1)/N and (v − 1)m1(pd − 1)/N . Notice that when p = 2 the smaller orbit
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has odd size. Hill [8] suggests the possibility of transitive, co–transitive caps of size
78 in PG(5, 4) and 430 in PG(6, 4). It is now clear that these cannot be caps from
class A1 and our main theorem then shows that they cannot be caps at all.

2.2 The class A2

G0 preserves a direct sum V1 ⊕ V2, where V1, V2 are subspaces of V (d, p). One orbit
must be K1 = (V1 ∪ V2) − {0} and the other K2 = {v1 + v2 : 0 6= v1 ∈ V1, 0 6=
v2 ∈ V2}. We first show that V1, V2 are subspaces over GF (q). Observe that for any
λ ∈ GF (q)∗ ≤ G0, λV1 = V1 or V2 and let F = {λ ∈ GF (q)∗ : λV1 = V1} ∪ {0}.
Then F is a subfield of GF (q) having order greater than q/2 so must be GF (q).
It is now clear that V1, V2 are subspaces of V (r + 1, q) of dimension t = (r + 1)/2.
Given that r ≥ 2, we must have t ≥ 2, so K̄1 contains lines of PG(r, q) and cannot
be a cap. Moreover |K̄1| = 2(qt − 1)/(q − 1) < (qr+1 − 1)/2 so K̄1 is the smaller
orbit and therefore K̄2 cannot be a cap.

2.3 The class A3

G0 preserves a tensor product V1⊗V2 over GF (q), with V1 having dimension 2 over
GF (q). This means that if V1 and V2 have basis {x1, x2} and {yj}, respectively, then
V1 ⊗ V2 has basis xi ⊗ yj. A group stabilizing this tensor product fixes the sets of
subspaces {x ⊗ V2 : 0 6= x ∈ V1} and {V1 ⊗ 0 6= y ∈ V2}. Hence, from a projective
point of view, a group stabilizing such a tensor product preserves a Segre variety
S1,t with indices 1 and t [10], where t+1 is the dimension of V2. Here one orbit must
be K1 = {v1 ⊗ v2 : 0 6= v1 ∈ V1, 0 6= v2 ∈ V2} and the other K2 = V − (K1 ∪ {0}).

Consider the GF (q)–subspace V1⊗v2 of V for some 0 6= v2 ∈ V2. It has dimension
2 in V (r + 1, q) so corresponds to a line in PG(r, q) inside K̄1. Hence K̄1 is not a
cap.

Let b be the dimension of V2 over GF (q). Then r + 1 = 2b and |K̄1| = (q +
1)(qb− 1)/(q− 1) ([12, Table12]) so |K̄2| = q(qb− 1)(qb−1− 1)/(q− 1) > |K̄1| except
when q = 2, b = 2 (i.e., r+ 1 = d = 4). Thus there is only one case in which K̄2 can
possibly be a cap.

Suppose that q = p = 2 and d = 4, i.e. we are reduced to considering caps in
PG(3, 2). In PG(3, 2), we see that |K̄1| = 9 and |K̄2| = 6 . Thus here K̄1 is too
big and for K̄2 it is simplest to note that (6.5.1)/(2.9) /∈ Z, so neither is a cap (by
Lemmas 2 and 5).

2.4 The class A4

G0 � SL(a, s) and pd = s2a. Here q = s2, a = r + 1 and pd = qa with SL(a, s)
embedded in GL(d, p) as a subgroup of SL(a, q): let e1, e2, ..., ea be a basis for
V over GF (q) then with respect to this basis SL(a, s) consists of the matrices in
SL(a, q) having every entry in GF (s). If G0 has two orbits on non-zero vectors of V
then those orbits must be K1 = {γ∑λiei (λi ∈ GF (s), not all 0),0 6= γ ∈ GF (q)}
and K2 the set of all remaining non-zero vectors. In other words Ḡ0 preserves a
subgeometry of PG(r, q), and this is the subgeometry PG(a− 1, s) of PG(r, q). We
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have r > 1 so that a ≥ 3. Thus three collinear points of PG(r, s) are still three
collinear points in PG(r, q) and so K̄1 is not a cap.

Let us turn to K̄2. As noted above, r > 1 so a ≥ 3. Let u = e1+σe2, v = e2+σe3,
where σ ∈ GF (q)\GF (s). Then u, v and u+v = e1+(σ+1)e2+σe3 ∈ K2 correspond
to collinear points of PG(r, q), all in K̄2. Hence K̄2 is not a cap.

2.5 The class A5

G0 � SL(2, s) and pd = s6. Here q = s3 and pd = q2 with SL(2, s) embedded in
GL(d, p) as a subgroup of SL(2, q). However r = 1 in this case so it does not concern
us.

2.6 The class A6

G0 � SU(a, q′) and pd = ((q′)2)a. In this case q = (q′)
2

and a = r + 1. Here one
orbit K1 consists of the non-zero isotropic vectors and the other orbit K2 consists of
the non-isotropic vectors with respect to an appropriate non-degenerate hermitian
form. Each orbit is a union of 1–dimensional subspaces of V (a, q) (excluding the
zero vector). To begin with, a non–isotropic line of PG(r, q) contains at least three
isotropic points, i.e., three points of K̄1. Therefore K̄1 cannot be a cap.

Now consider K̄2. Given a ≥ 3, consider a line of PG(r, q) that is isotropic but
not totally isotropic, then it contains one point of K̄1 and q ≥ 4 points of K̄2. Hence
K̄2 is not a cap.

2.7 The class A7

G0 � Ω±(a, q) and pd = (q)a with a even (and if q is odd , G0 contains an auto-
morphism interchanging the two orbits of Ω±(a, q) on non-singular 1-spaces). The
arguments here are similar to the Unitary case. K1 consists of the non-zero singular
vectors and K2 consists of the non-singular vectors. Let b be the Witt index of the
appropriate quadratic form on V (a, q) i.e., the dimension of a maximal totally sin-
gular subspace. Then a is one of 2b, 2b+ 2. Any totally singular line would be a line
of PG(r, q) lying inside K̄1. Given that a ≥ 3, it follows that the only possibility for
K̄1 being a cap is when K̄1 is an elliptic quadric in PG(3, q). In passing we note that
for odd q, the necessary automorphism is contained in G0 only when q is square; in
this case and in the case q even, the elliptic quadric gives a well known cap.

Let us turn to K̄2. Any line skew to the quadric of PG(r, q) lies inside K̄2 so K̄2

can never be a cap.

2.8 The class A8

G0 � SL(5, q) and pd = (q)10 (from the action of SL(5, q) on the skew square∧2(V (5, q)). From a projective point of view, a group stabilizing
∧2(V (5, q)) pre-

serves the Grassmannian of lines of PG(4, q) in PG(9, q) [10]. Here one orbit of
non-zero vectors must be K1 = {0 6= u

∧
v : u, v ∈ V (5, q)} with the other non-

zero vectors belonging to K2. One can argue in a similar manner to the case of
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the tensor product. However it is quicker here to note that the orbits of Ḡ0 on
PG(r, q) have sizes k = (q5 − 1)(q2 + 1)/(q − 1) and m = q2(q5 − 1)(q3 − 1)/(q − 1)
([12, Table12]) with k < m for all values of q. The chord-number is then given by
c = k(k − 1)(q − 1)/2m by Lemma 5 i.e., c = (q2 + 1)(q3 + q + 1)/2q /∈ Z. Hence
neither K̄1 nor K̄2 is a cap.

2.9 The class A9

G0/Z(G0)�Ω(7, q) ·Z(2,q−1) and pd = q8 (from the action of B3(q) on a spin module)
[3], [11]. The study of Clifford algebras leads to the construction of ”spin modules”
for PΩ(m, q). When m = 8 this leads to the triality automorphism of PΩ+(8, q).
One finds that it is possible (via this automorphism) to embed Ω(7, q) ∼= PΩ(7, q)
inside PΩ+(8, q) as an irrdeucible subgroup. The important thing from our point
of view is that two non–trivial orbits of G0 must be the set of all non–zero singular
vectors and the set of all non–singular vectors with respect to a non–degenerate
quadratic form on V (8, q). In this setting the arguments employed for class A7
apply: neither orbit can be a cap.

2.10 The class A10

G0/Z(G0) � PΩ+(10, q) and pd = q16 (from the action of D5(q) on a spin module)
[3], [11]. Once again we have a spin representation, this time of PΩ+(10, q) on
PG(15, q). On this occasion it is quickest to work from the orbit lengths.

The orbits of Ḡ0 on PG(r, q) have sizes k = (q8−1)(q3+1)/(q−1) andm = q3(q8−
1)(q5−1)/(q−1) ([12, Table12]) with k < m for all values of q. The chord-number is
then given by c = k(k−1)(q−1)/2m by Lemma 5 i.e., c = (q3+1)(q5+q2+1)/2q2 /∈ Z.
Hence neither K̄1 nor K̄2 is a cap.

2.11 The class A11

G0 � Sz(q) and pd = (q)4, with q ≥ 8 an odd power of 2 (from the embedding
Sz(q) ≤ Sp(4, q)). Here the smaller orbit K̄1 on PG(3, q) is a Suzuki–Tits ovoid
containing q2 + 1 points and this is indeed a cap [15], [9, 16.4.5].

3 The Extraspecial classes

In most cases here G0 ≤ M where M is the normalizer in ΓL(a, q) of a 2–group R,
where pd = (q)a and a = 2m for some m ≥ 1; either R is an extraspecial group 21+2m

or R is isomorphic to Z4 ◦ 21+2m. In all cases here p is odd. There are two types of
extraspecial group 21+2m, denoted Rm

1 and Rm
2 ; the first of these has the structure

D8◦D8◦ . . .D8 (m copies) and the second D8◦D8◦· · ·◦D8◦Q8 (m−1 copies of D8),
where D8 and Q8 are respectively the dihedral and quaternion groups of order 8,
and ’◦’ indicates a central product. The group Z4 ◦21+2m is again a central product,
this time Z4 ◦ D8 ◦ D8 ◦ · · · ◦ D8 (m copies of D8) and is denoted by Rm

3 . Notice
that R modulo its centre is an elementary abelian 2–group, i.e. a 2m–dimensional
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vector space over GF (2) and in fact M/RZ (Z being the centre of ΓL(a, q)) may
be embedded in GSp(2m, 2). In just one case G0 ≤ M with M the normalizer in
ΓL(3, 4) of a 3–group of order 27. We record from [12, Table 13] that in this case
the non–trivial orbit sizes of G0 on V (3, 4) are 27 and 36, i.e. the point orbit sizes in
PG(2, 4) are 9 and 12, but the largest possible size of a cap (here better termed an
arc) in PG(2, 4) is 6. Hence there are no caps here and we may henceforth assume
that R is a 2–group, with p odd.

There are sixteen instances where G0 has two non–trivial orbits on V (d, p) '
V (a, q), but ten of these have a = 2 (i.e. m = 1) and so refer to action on a
projective line, i.e. r < 2; note that two of these cases have q > p. Thus we
concentrate on the remaining six cases. In each of these cases q = p and in all but
the last case the vector space is V (4, p). In the last case the vector space is V (8, 3).
Four cases follw immediately from known bounds - they are listed in the table below.

p=q r R smaller orbit size max. cap size
3 3 R2

1 16 10
5 3 R2

2 60 26
5 3 R2

3 60 26
7 3 R2

2 80 50

The case p = q = 3, r = 7, R = R3
2.

In this case smaller orbit of Ḡ0 on PG(7, 3) has size 720, while the maximum
size for a cap in PG(7, 3) is only known to be ≤ 729. Instead we use Lemma 5: the
larger orbit has size 2560 and (720.719.2)/(2.2560) /∈ Z.

The case p = q = 3, r = 3, R = R2
2.

Here Liebeck notes that R has five orbits of size 16 on V (4, 3) and M permutes
these orbits acting as S5, the symmetric group of degree 5. Thus there are a num-
ber of possibilities for G0 having two non–trivial orbits on V (4, 3). However it is
straightforward to construct generating matrices for R and we see immediately that
one orbit of size 16 on V (4, 3) cannot correspond to a cap in PG(3, 3). Therefore
none of the orbits of size 16 can correspond to a cap and hence no possible choices
of G0 can give rise to a cap.

4 The Exceptional classes

Finally we turn to the exceptional classes where the socle L of G0/Z(G0) is simple.
There are just thirteen different possibilities for L, although on occasion more than
one possibility for G0 corresponds to a given L. For example for L = A5 there are
seven different possibilities for G0 (one of which leads to a single orbit in PG(d −
1, p)); however all of these lead to r < 2 and so do not concern us.

We employ a variety of techniques to tackle these cases. Liebeck [12, Table 14]
gives the orbit sizes in V (d, p) and sometimes we can use these to rule out the pos-
sibility of caps. On other occasions we can use the fact that the chord-number is
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an integer. On two occasions, neither of these appraoches works and we have to
investigate the known structure of the smaller orbit. There remain two cases where
a cap does occur.

The cases where caps occur.
When L = A6 and (d, p) = (6, 2), L admits an embedding in PSL(3, 4) (so here

q = 4) and G0 has an orbit of size 6. In fact this in a hyperoval in PG(2, 4) [2],[6]
so we do have a cap.

When L = M11 and (d, p) = (5, 3) there is a representation of L in which one
orbit has size 11 and in fact this is a cap. In passing we note that this cap arises as
an orbit of a Singer cyclic subgroup of PG(4, 3) [4]; moreover PG(4, 3) is partitioned
into eleven 11–caps (the eleven orbits of the Singer cyclic subgroup). Note also that
there is a second representation of L = M11 on PG(4, 3) (see below). In fact both
representations appear in the context of the ternary Golay code [1, Ch. 6].

Cases where known bounds rule out caps.
In each of the following cases the smaller orbit is larger than the known upper

bound for a cap size, so cannot be a cap. In the table k is the smaller orbit size.

L (d, p) r q k max. cap size
A6 (4, 5) 3 5 36 26
A7 (4, 7) 3 7 120 50
M11 (5, 3) 4 3 55 ≤ 27
J2 (6, 5) 5 5 1890 ≤ 625
J2 (12, 2) 5 4 525 ≤ 256

Cases where c an integer rules out caps.
In each of the following cases a calculation c = k(k − 1)(q − 1)/2m yields a non-

integer and so by Lemma 5, the smaller orbit does not correspond to a cap. In the
table k is the smaller orbit size and m the larger orbit size.

L (d, p) r q k m
A9 (8, 2) 7 2 120 135
A10 (8, 2) 7 2 45 210

L2(17) (8, 2) 7 2 102 153
M24 (11, 2) 10 2 276 1771
M24 (11, 2) 10 2 759 1288

Suz or J4 (12, 3) 11 2 65520 465920

The case L = A7 and (d,p) = (8, 2).
Here L is embedded in PSL(4, 4) (so q = 4). In fact L may actually embedded

in A8 ' PSL(4, 2) ≤ PSL(4, 4). The group A8 and therefore A7 preserve a sub-
geometry whose 15 points form the smaller orbit. There are numerous examples of
three points on a line in the subgeometry. Thus we have no caps.
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The case L = PSU(4, 2) and (d,p) = (4, 7).
The vectors in the smaller orbit are given by Liebeck [12, Lemma 3.4]:

(θ; 0, 0, 0), (0; θ, 0, 0), (0;ωa, ωb, ωc), (ωa; 0, ωb,−ωc),

(together with all scalar multiples) where θ = ω = 2; a, b, c take any integral values;
and the last three coordinates may be permuted cyclically. It suffices here to observe
that (1; 0, 0, 0), (1; 0, 1, 6) and (2; 0, 1, 6) all lie in this orbit and give three collinear
points in PG(3, 7). So no cap arises here.
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