Transitive and Co-Transitive caps

A. Cossidente
O.H. King

1 Introduction

Let $P G(r, q)$ be the projective space of dimension r over $G F(q)$. A $k-c a p \bar{K}$ in $P G(r, q)$ is a set of k points, no three of which are collinear [10], and a k-cap is said to be complete if it is maximal with respect to set-theoretic inclusion. The maximum value of k for which there is known to exist a k-cap in $P G(r, q)$ is denoted by $m_{2}(r, q)$. Some known bounds for $m_{2}(r, q)$ are given below.

Suppose that \bar{K} is a cap in $\operatorname{PG}(r, q)$ with automorphism group $\bar{G}_{0} \leq P \Gamma L(r+$ $1, q)$. Then \bar{K} is said to be transitive if \bar{G}_{0} acts transitively on \bar{K}, and co-transitive if \bar{G}_{0} acts transitively on $P G(r, q)-\bar{K}$.

Our main result is the following theorem.
Theorem 1. Suppose \bar{K} is a transitive, co-transitive cap in $P G(r, q)$. Then one of the following occurs:

1. \bar{K} is an elliptic quadric in $P G(3, q)$ and q is a square when q is odd;
2. \bar{K} is the Suzuki-Tits ovoid in $P G(3, q)$ and $q=2^{h}$, with h odd and ≥ 3;
3. \bar{K} is a hyperoval in $P G(2,4)$;
4. \bar{K} is an 11-cap in $P G(4,3)$ and $\bar{G}_{0} \simeq M_{11}$;
5. \bar{K} is the complement of a hyperplane in $P G(r, 2)$;
6. \bar{K} is a union of Singer orbits in $P G(r, q)$ and $G_{0} \leq \Gamma L\left(1, p^{d}\right) \leq G L(d, p)$.
[^0]In each of 1-5 \bar{K} is indeed a transitive co-transitive cap.
Our conclusion is that transitive, co-transitive caps are rare with the possible exception of unions of Singer cyclic orbits.

The origin of this problem are papers by Hill [8], [7], in which he studies such caps whose automorphism group acts 2 -transitively on the cap. [As he notes [8, Theorem 1], it is trivial to show that if \bar{K} is a subset of $P G(r, q)$ lying in no proper subspace and admitting a 3 -transitive group then \bar{K} must be a cap.] Hill gives a short list of possibilities (omitting Suzuki-Tits ovoids) but excludes caps in $P G(r, q)$ for $q>2$ and $r \geq 13$. We find no new caps but show that any other transitive, co-transitive cap is a union of Singer cyclic orbits.

The known upper bounds on cap sizes are summarised in the following Result.
Result 2. [10, Theorem 27.3.1]
$m_{2}(2, q)=q+1$ (for q odd);
$m_{2}(2, q)=q+2$ (for q even);
$m_{2}(3, q)=q^{2}+1$ for $q>2$;
$m_{2}(r, 2)=2^{r}$; and
$m_{2}(r, q) \leq q^{r-1}$ for $q>2$ and $r \geq 4$.
The bounds for $q>2$ and $r \geq 4$ are not the best known, but they are sufficient here.

We begin by showing that as a consequence of Result 2, a cap must be smaller than its complement (with one exception). It then follows that in considering subgroups of $P \Gamma L(r+1, q)$ having two orbits, we need only consider the smaller orbit when looking for transitive, co-transitive caps.

Lemma 3. Suppose that \bar{K} is a cap in $P G(r, q)$. Then either $|\bar{K}|<\left(q^{r+1}-1\right) / 2(q-$ $1)$, or $q=2$ and \bar{K} is the complement of a hyperplane.

Proof. It is easy to deduce from Result 2, that the result holds when $q \neq 2$. Thus suppose now that $q=2$ and that $|\bar{K}| \geq\left(2^{r+1}-1\right) / 2$. The only possiblity is that $|\bar{K}|=2^{2}$. Let $x \in \bar{K}$. For each $y \in \bar{K}-\{x\}$ there is a line through x and y and the $2^{r}-1$ such lines must be distinct since \bar{K} is a cap. However x lies on exactly $2^{r}-1$ lines in $P G(r, 2)$ and so every line in $P G(r, 2)$ through x meets \bar{K} in two points and $P G(r, q)-\bar{K}$ in one point. Therefore any line meeting $P G(r, q)-\bar{K}$ in at least two points is contained in $P G(r, q)-\bar{K}$. This shows that $P G(r, q)-\bar{K}$ is a subspace of $P G(r, 2)$ and its size shows that it is a hyperplane.

Using Result 6 we shall know orbit lengths when looking at candidates for transitive, co-transitive caps. Lemma 5 below helps in eliminating a number of possibilities.

Definition 4. Suppose that \bar{K} is a cap in $P G(r, q)$. For any $x \in P G(r, q)$, the chord-number of x is the number of chords (2-secants) of \bar{K} passing through x.

Lemma 5. Suppose that \bar{K} is a tranistive, co-transitive cap in $P G(r, q)$ and suppose that $x \in P G(r, q)-\bar{K}$. Let $k=|\bar{K}|$ and $m=|P G(r, q)-\bar{K}|$. Then the chordnumber, c, of x is given by

$$
c=\frac{k(k-1)(q-1)}{2 m} .
$$

In particular the expression for c always yields an integer.
Proof. We count combinations of chords and points of $P G(r, q)-\bar{K}$ in two ways. Firstly there are $k(k-1) / 2$ chords of \bar{K} and each has $q-1$ points not in \bar{K}. There is a subgroup \bar{G}_{0} of $\Gamma L(r+1, q)$ acting transitively on $P G(r, q)-\bar{K}$, so each of these m points has the same chord-number c and a second count gives $m c$ chord-point combinations. Thus $m c=k(k-1)(q-1) / 2$ leading to the required expression for c.

The main tool in our investigation is the substantial result by M.W. Liebeck [12], where the affine permutation groups of rank three are classified.

Result 6. [12] Let G be a finite primitive affine permutation group of rank three and of degree $n=p^{d}$, with socle V, where $V \simeq\left(Z_{p}^{d}\right)$ for some prime p, and let G_{0} be the stabilizer of the zero vector in V. Then G_{0} belongs to one of the following families:
(A) 11 Infinite classes;
(B) Extraspecial classes with $G_{0} \leq N_{\Gamma L(d, p)}(R)$, where R is a 2-group or 3-group irreducible on V;
(C) Exceptional classes. Here the socle L of $G_{0} / Z\left(G_{0}\right)$ is simple (where $Z\left(G_{0}\right)$ denotes the centre of G_{0}).

We shall recall the details of the groups belonging to the classes in (A), (B) and (C) as we need them.

Suppose \bar{K} is a cap in $P G(r, q)$ such that a subgroup \bar{G}_{0} of $P \Gamma L(r+1, q)$ acts transitively on each of \bar{K} and its complement. Then \bar{G}_{0} corresponds to a subgroup G_{0} of $G L(d, p)$ having three orbits on the vectors of $V(d, p)$, where p is prime and $p^{d}=q^{r+1}$. Moreover G_{0} will contain matrices corresponding to scalar multiplication by elements of $G F(q)^{*}$. As we demonstrate shortly, with one exception, $V(d, p) \cdot G_{0}$ is primitive as a permutation group, so Liebeck's theorem may be applied. Notice that since we are interested in groups G_{0} containing $G F(q)^{*}$ we avoid the possibility of two orbits of vectors in $V(d, p)$ giving rise to a single orbit of points in $P G(r, q)$.

Clearly G_{0} may be embedded in $\Gamma L(r+1, q)$. At the beginning of Section 1 of [12], Liebeck notes that in his result $G_{0} \leq G L(d, p)$ is embedded in $\Gamma L\left(a, p^{d / a}\right)$ with a minimal. Thus $r+1 \geq a$ i.e. $q \leq p^{d / a}$. Moreover in almost all cases it is clear that the groups he identifies have orbits that are unions of 1-dimensional subspaces of $V\left(a, p^{d / a}\right)$ (excluding the zero vector). If a 1-dimensional subspace over $G F\left(p^{d / a}\right)$ does contains vectors u, v that are linearly independent over $G F(q)$, then u, v and $u+v$ correspond to three collinear points in $P G(r, q)$ and the orbit in $P G(r, q)$ cannot be a cap. Thus in our setting we usually have $q=p^{d / a}$: there is just one exception, the class A1, although we have to justify $q=p^{d / a}$ for the class A2.

Lemma 7. Suppose \bar{K} is a transitive, co-transitive cap in $P G(r, q)$ with $\bar{G}_{0} \leq$ $P \Gamma L(r+1, q)$ acting transitively on each of \bar{K} and $P G(r, q)-\bar{K}$ and suppose that G_{0} is the pre-image of \bar{G}_{0} in $G L(d, p)$. Let $H=V(d, p) \cdot G_{0}$. Then H is imprimitive on $V=V(d, p)$ if and only if $q=2$ and \bar{K} is the complement of a hyperplane.

Proof. Suppose that H is imprimitive on V. Let Ω be a block containing 0 . Then the two orbits of non-zero vectors of G_{0} are $\Omega \backslash 0$ and $V \backslash \Omega$. Let u and v be any two vectors in Ω, then $\Omega+v$ is a block containing $0+v$ and $u+v$ so $\Omega+v=\Omega$. In other words $u+v$ is in Ω and so Ω is a $G F(p)$-subspace of V. More than this G_{0} contains the scalars in $G F(q)^{*}$ and so Ω is actually a $G F(q)$-subspace. Thus Ω cannot correspond to a cap. In $P G(r, q)$ our two orbits consist of points in a subspace and the complement. A line not in the subspace meets the subspace in at most one point so the complement cannot form a cap except perhaps when $p=q=2$ and the subspace has projective dimension $r-1$. Conversely, as is well known, the complement of a hyperplane is indeed a cap in $P G(r, 2)$ and it is the only way in which the complement of a subspace is a cap. It is easy to see that this cap is transitive and co-transitive.

We recall for the reader that the socle of a finite group is the product of its minimal normal subgroups. In our setting $V(d, p) \cdot G_{0}$ has V as its unique minimal normal subgroup.

Liebeck's theorem tells us the possibilities for G_{0} and gives two orbits of G_{0} on the non-zero vectors of $V(d, p)$. We denote these by K_{1} and K_{2}, and the corresponding sets of points in $P G(r, q)$ by \bar{K}_{1} and \bar{K}_{2}. We assume that neither K_{1} nor K_{2} lies in a subspace of $V(r+1, q)$; given $G F(q)^{*} \leq G_{0}$ this means that neither K_{1} nor K_{2} lies in a subspace of $V(d, p)$. We may henceforth assume that $V(d, p) \cdot G_{0}$ is a finite primitive affine permutation group of rank 3 and degree p^{d}, so we may apply Result 6.

We begin with the case by case analysis. In many cases we use data from Result 6 and apply Lemmas 3, 5, but there are occasions when we need to look at the structure of orbits in detail; there are also occasions when using the structure of the orbits is more illuminating and yet no less efficient than the bound and chord-number arguments.

2 The infinite classes A

2.1 The class A1

In this case G_{0} is a subgroup of $\Gamma L\left(1, p^{d}\right)$ containing $G F(q)^{*}$. Such a subgroup is generated by ω^{N} and $\omega^{e} \alpha^{s}$, for some N, e, s where ω is a primitive element of $G F\left(p^{d}\right)$ and α is the generating automorphism $x \mapsto x^{p}$ of $G F\left(p^{d}\right)$; if we write $p^{d}=q^{a}$, then N divides $\left(q^{a}-1\right) /(q-1)$. Let H_{0} be the subgroup of $\Gamma L\left(1, p^{d}\right)$ generated by ω^{N}. Then H_{0} is a Singer subgroup of $G L\left(1, p^{d}\right)$ and the orbits of H_{0} in $P G(r, q)$ are called Singer orbits. Clearly if G_{0} has two orbits in $P G(r, q)$, then each orbit is the union of Singer orbits. If the smaller orbit is to be a cap, then each Singer orbit must itself be a cap. A precise criterion for deciding when Singer orbits are caps in $P G(r, q)$ is given by Szőnyi [14, Proposition 1].

Precise criteria for there to be two orbits for G_{0} on non-zero vectors of $V(d, p)$ are given by Foulser and Kallaher [5]. These involve numbers m_{1} and v such that the primes of m_{1} divide $p^{s}-1, v$ is a prime $\neq 2$ and $\operatorname{ord}_{v} p^{s m_{1}}=v-1$ (meaning $\left.p^{s m_{1}} \equiv v-1 \bmod v\right),\left(e, m_{1}\right)=1, m_{1} s(v-1) \mid d, N=v m_{1}$. The orbit lengths are $m_{1}\left(p^{d}-1\right) / N$ and $(v-1) m_{1}\left(p^{d}-1\right) / N$. Notice that when $p=2$ the smaller orbit
has odd size. Hill [8] suggests the possibility of transitive, co-transitive caps of size 78 in $P G(5,4)$ and 430 in $P G(6,4)$. It is now clear that these cannot be caps from class $A 1$ and our main theorem then shows that they cannot be caps at all.

2.2 The class A2

G_{0} preserves a direct sum $V_{1} \oplus V_{2}$, where V_{1}, V_{2} are subspaces of $V(d, p)$. One orbit must be $K_{1}=\left(V_{1} \cup V_{2}\right)-\{0\}$ and the other $K_{2}=\left\{v_{1}+v_{2}: 0 \neq v_{1} \in V_{1}, 0 \neq\right.$ $\left.v_{2} \in V_{2}\right\}$. We first show that V_{1}, V_{2} are subspaces over $G F(q)$. Observe that for any $\lambda \in G F(q)^{*} \leq G_{0}, \lambda V_{1}=V_{1}$ or V_{2} and let $F=\left\{\lambda \in G F(q)^{*}: \lambda V_{1}=V_{1}\right\} \cup\{0\}$. Then F is a subfield of $G F(q)$ having order greater than $q / 2$ so must be $G F(q)$. It is now clear that V_{1}, V_{2} are subspaces of $V(r+1, q)$ of dimension $t=(r+1) / 2$. Given that $r \geq 2$, we must have $t \geq 2$, so \bar{K}_{1} contains lines of $P G(r, q)$ and cannot be a cap. Moreover $\left|\bar{K}_{1}\right|=2\left(q^{t}-1\right) /(q-1)<\left(q^{r+1}-1\right) / 2$ so \bar{K}_{1} is the smaller orbit and therefore \bar{K}_{2} cannot be a cap.

2.3 The class A3

G_{0} preserves a tensor product $V_{1} \otimes V_{2}$ over $G F(q)$, with V_{1} having dimension 2 over $G F(q)$. This means that if V_{1} and V_{2} have basis $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{j}\right\}$, respectively, then $V_{1} \otimes V_{2}$ has basis $x_{i} \otimes y_{j}$. A group stabilizing this tensor product fixes the sets of subspaces $\left\{x \otimes V_{2}: 0 \neq x \in V_{1}\right\}$ and $\left\{V_{1} \otimes 0 \neq y \in V_{2}\right\}$. Hence, from a projective point of view, a group stabilizing such a tensor product preserves a Segre variety $\mathcal{S}_{1, t}$ with indices 1 and $t[10]$, where $t+1$ is the dimension of V_{2}. Here one orbit must be $K_{1}=\left\{v_{1} \otimes v_{2}: 0 \neq v_{1} \in V_{1}, 0 \neq v_{2} \in V_{2}\right\}$ and the other $K_{2}=V-\left(K_{1} \cup\{0\}\right)$.

Consider the $G F(q)$-subspace $V_{1} \otimes v_{2}$ of V for some $0 \neq v_{2} \in V_{2}$. It has dimension 2 in $V(r+1, q)$ so corresponds to a line in $P G(r, q)$ inside \bar{K}_{1}. Hence \bar{K}_{1} is not a cap.

Let b be the dimension of V_{2} over $G F(q)$. Then $r+1=2 b$ and $\left|\bar{K}_{1}\right|=(q+$ 1) $\left(q^{b}-1\right) /(q-1)\left([12\right.$, Table12] $)$ so $\left|\bar{K}_{2}\right|=q\left(q^{b}-1\right)\left(q^{b-1}-1\right) /(q-1)>\left|\bar{K}_{1}\right|$ except when $q=2, b=2$ (i.e., $r+1=d=4$). Thus there is only one case in which \bar{K}_{2} can possibly be a cap.

Suppose that $q=p=2$ and $d=4$, i.e. we are reduced to considering caps in $P G(3,2)$. In $P G(3,2)$, we see that $\left|\bar{K}_{1}\right|=9$ and $\left|\bar{K}_{2}\right|=6$. Thus here \bar{K}_{1} is too big and for \bar{K}_{2} it is simplest to note that $(6.5 .1) /(2.9) \notin \mathbb{Z}$, so neither is a cap (by Lemmas 2 and 5).

2.4 The class A4

$G_{0} \unrhd S L(a, s)$ and $p^{d}=s^{2 a}$. Here $q=s^{2}, a=r+1$ and $p^{d}=q^{a}$ with $S L(a, s)$ embedded in $G L(d, p)$ as a subgroup of $S L(a, q)$: let $e_{1}, e_{2}, \ldots, e_{a}$ be a basis for V over $G F(q)$ then with respect to this basis $S L(a, s)$ consists of the matrices in $S L(a, q)$ having every entry in $G F(s)$. If G_{0} has two orbits on non-zero vectors of V then those orbits must be $K_{1}=\left\{\gamma \sum \lambda_{i} e_{i}\left(\lambda_{i} \in G F(s)\right.\right.$, not all 0$\left.), 0 \neq \gamma \in G F(q)\right\}$ and K_{2} the set of all remaining non-zero vectors. In other words \bar{G}_{0} preserves a subgeometry of $P G(r, q)$, and this is the subgeometry $P G(a-1, s)$ of $P G(r, q)$. We
have $r>1$ so that $a \geq 3$. Thus three collinear points of $P G(r, s)$ are still three collinear points in $P G(r, q)$ and so \bar{K}_{1} is not a cap.

Let us turn to \bar{K}_{2}. As noted above, $r>1$ so $a \geq 3$. Let $u=e_{1}+\sigma e_{2}, v=e_{2}+\sigma e_{3}$, where $\sigma \in G F(q) \backslash G F(s)$. Then u, v and $u+v=e_{1}+(\sigma+1) e_{2}+\sigma e_{3} \in K_{2}$ correspond to collinear points of $\operatorname{PG}(r, q)$, all in \bar{K}_{2}. Hence \bar{K}_{2} is not a cap.

2.5 The class A5

$G_{0} \unrhd S L(2, s)$ and $p^{d}=s^{6}$. Here $q=s^{3}$ and $p^{d}=q^{2}$ with $S L(2, s)$ embedded in $G L(d, p)$ as a subgroup of $S L(2, q)$. However $r=1$ in this case so it does not concern us.

2.6 The class A6

$G_{0} \unrhd S U\left(a, q^{\prime}\right)$ and $p^{d}=\left(\left(q^{\prime}\right)^{2}\right)^{a}$. In this case $q=\left(q^{\prime}\right)^{2}$ and $a=r+1$. Here one orbit K_{1} consists of the non-zero isotropic vectors and the other orbit K_{2} consists of the non-isotropic vectors with respect to an appropriate non-degenerate hermitian form. Each orbit is a union of 1-dimensional subspaces of $V(a, q)$ (excluding the zero vector). To begin with, a non-isotropic line of $P G(r, q)$ contains at least three isotropic points, i.e., three points of \bar{K}_{1}. Therefore \bar{K}_{1} cannot be a cap.

Now consider \bar{K}_{2}. Given $a \geq 3$, consider a line of $P G(r, q)$ that is isotropic but not totally isotropic, then it contains one point of \bar{K}_{1} and $q \geq 4$ points of \bar{K}_{2}. Hence \bar{K}_{2} is not a cap.

2.7 The class A7

$G_{0} \unrhd \Omega^{ \pm}(a, q)$ and $p^{d}=(q)^{a}$ with a even (and if q is odd, G_{0} contains an automorphism interchanging the two orbits of $\Omega^{ \pm}(a, q)$ on non-singular 1-spaces). The arguments here are similar to the Unitary case. K_{1} consists of the non-zero singular vectors and K_{2} consists of the non-singular vectors. Let b be the Witt index of the appropriate quadratic form on $V(a, q)$ i.e., the dimension of a maximal totally singular subspace. Then a is one of $2 b, 2 b+2$. Any totally singular line would be a line of $P G(r, q)$ lying inside \bar{K}_{1}. Given that $a \geq 3$, it follows that the only possibility for \bar{K}_{1} being a cap is when \bar{K}_{1} is an elliptic quadric in $P G(3, q)$. In passing we note that for odd q, the necessary automorphism is contained in G_{0} only when q is square; in this case and in the case q even, the elliptic quadric gives a well known cap.

Let us turn to \bar{K}_{2}. Any line skew to the quadric of $P G(r, q)$ lies inside \bar{K}_{2} so \bar{K}_{2} can never be a cap.

2.8 The class A8

$G_{0} \unrhd S L(5, q)$ and $p^{d}=(q)^{10}$ (from the action of $S L(5, q)$ on the skew square $\bigwedge^{2}(V(5, q))$. From a projective point of view, a group stabilizing $\bigwedge^{2}(V(5, q))$ preserves the Grassmannian of lines of $P G(4, q)$ in $P G(9, q)$ [10]. Here one orbit of non-zero vectors must be $K_{1}=\{0 \neq u \wedge v: u, v \in V(5, q)\}$ with the other nonzero vectors belonging to K_{2}. One can argue in a similar manner to the case of
the tensor product. However it is quicker here to note that the orbits of \bar{G}_{0} on $P G(r, q)$ have sizes $k=\left(q^{5}-1\right)\left(q^{2}+1\right) /(q-1)$ and $m=q^{2}\left(q^{5}-1\right)\left(q^{3}-1\right) /(q-1)$ ([12, Table12]) with $k<m$ for all values of q. The chord-number is then given by $c=k(k-1)(q-1) / 2 m$ by Lemma 5 i.e., $c=\left(q^{2}+1\right)\left(q^{3}+q+1\right) / 2 q \notin \mathbb{Z}$. Hence neither \bar{K}_{1} nor \bar{K}_{2} is a cap.

2.9 The class A9

$G_{0} / Z\left(G_{0}\right) \unrhd \Omega(7, q) \cdot Z_{(2, q-1)}$ and $p^{d}=q^{8}$ (from the action of $B_{3}(q)$ on a spin module) [3], [11]. The study of Clifford algebras leads to the construction of "spin modules" for $P \Omega(m, q)$. When $m=8$ this leads to the triality automorphism of $P \Omega^{+}(8, q)$. One finds that it is possible (via this automorphism) to embed $\Omega(7, q) \cong P \Omega(7, q)$ inside $P \Omega^{+}(8, q)$ as an irrdeucible subgroup. The important thing from our point of view is that two non-trivial orbits of G_{0} must be the set of all non-zero singular vectors and the set of all non-singular vectors with respect to a non-degenerate quadratic form on $V(8, q)$. In this setting the arguments employed for class $A 7$ apply: neither orbit can be a cap.

2.10 The class A10

$G_{0} / Z\left(G_{0}\right) \unrhd P \Omega^{+}(10, q)$ and $p^{d}=q^{16}\left(\right.$ from the action of $D_{5}(q)$ on a spin module) [3], [11]. Once again we have a spin representation, this time of $P \Omega^{+}(10, q)$ on $P G(15, q)$. On this occasion it is quickest to work from the orbit lengths.

The orbits of \bar{G}_{0} on $P G(r, q)$ have sizes $k=\left(q^{8}-1\right)\left(q^{3}+1\right) /(q-1)$ and $m=q^{3}\left(q^{8}-\right.$ 1) $\left(q^{5}-1\right) /(q-1)([12$, Table12]) with $k<m$ for all values of q. The chord-number is then given by $c=k(k-1)(q-1) / 2 m$ by Lemma 5 i.e., $c=\left(q^{3}+1\right)\left(q^{5}+q^{2}+1\right) / 2 q^{2} \notin \mathbb{Z}$. Hence neither \bar{K}_{1} nor \bar{K}_{2} is a cap.

2.11 The class A11

$G_{0} \unrhd S z(q)$ and $p^{d}=(q)^{4}$, with $q \geq 8$ an odd power of 2 (from the embedding $S z(q) \leq S p(4, q))$. Here the smaller orbit \bar{K}_{1} on $P G(3, q)$ is a Suzuki-Tits ovoid containing $q^{2}+1$ points and this is indeed a cap [15], [9, 16.4.5].

3 The Extraspecial classes

In most cases here $G_{0} \leq M$ where M is the normalizer in $\Gamma L(a, q)$ of a 2 -group R, where $p^{d}=(q)^{a}$ and $a=2^{m}$ for some $m \geq 1$; either R is an extraspecial group $2^{1+2 m}$ or R is isomorphic to $Z_{4} \circ 2^{1+2 m}$. In all cases here p is odd. There are two types of extraspecial group $2^{1+2 m}$, denoted R_{1}^{m} and R_{2}^{m}; the first of these has the structure $D_{8} \circ D_{8} \circ \ldots D_{8}\left(m\right.$ copies) and the second $D_{8} \circ D_{8} \circ \cdots \circ D_{8} \circ Q_{8}\left(m-1\right.$ copies of $\left.D_{8}\right)$, where D_{8} and Q_{8} are respectively the dihedral and quaternion groups of order 8 , and 'o' indicates a central product. The group $Z_{4} \circ 2^{1+2 m}$ is again a central product, this time $Z_{4} \circ D_{8} \circ D_{8} \circ \cdots \circ D_{8}\left(m\right.$ copies of $\left.D_{8}\right)$ and is denoted by R_{3}^{m}. Notice that R modulo its centre is an elementary abelian 2 -group, i.e. a $2 m$-dimensional
vector space over $G F(2)$ and in fact $M / R Z$ (Z being the centre of $\Gamma L(a, q))$ may be embedded in $\operatorname{GSp}(2 m, 2)$. In just one case $G_{0} \leq M$ with M the normalizer in $\Gamma L(3,4)$ of a 3 -group of order 27 . We record from [12, Table 13] that in this case the non-trivial orbit sizes of G_{0} on $V(3,4)$ are 27 and 36 , i.e. the point orbit sizes in $P G(2,4)$ are 9 and 12 , but the largest possible size of a cap (here better termed an arc) in $P G(2,4)$ is 6 . Hence there are no caps here and we may henceforth assume that R is a $2-$ group, with p odd.

There are sixteen instances where G_{0} has two non-trivial orbits on $V(d, p) \simeq$ $V(a, q)$, but ten of these have $a=2$ (i.e. $m=1$) and so refer to action on a projective line, i.e. $r<2$; note that two of these cases have $q>p$. Thus we concentrate on the remaining six cases. In each of these cases $q=p$ and in all but the last case the vector space is $V(4, p)$. In the last case the vector space is $V(8,3)$. Four cases follw immediately from known bounds - they are listed in the table below.

$\mathrm{p}=\mathrm{q}$	r	R	smaller orbit size	max. cap size
3	3	R_{1}^{2}	16	10
5	3	R_{2}^{2}	60	26
5	3	R_{3}^{2}	60	26
7	3	R_{2}^{2}	80	50

The case $\mathrm{p}=\mathrm{q}=3, \mathrm{r}=7, \mathrm{R}=\mathrm{R}_{2}^{3}$.
In this case smaller orbit of \bar{G}_{0} on $P G(7,3)$ has size 720 , while the maximum size for a cap in $P G(7,3)$ is only known to be ≤ 729. Instead we use Lemma 5: the larger orbit has size 2560 and $(720.719 .2) /(2.2560) \notin \mathbb{Z}$.

The case $\mathrm{p}=\mathrm{q}=3, \mathrm{r}=3, \mathrm{R}=\mathrm{R}_{2}^{2}$.
Here Liebeck notes that R has five orbits of size 16 on $V(4,3)$ and M permutes these orbits acting as S_{5}, the symmetric group of degree 5 . Thus there are a number of possibilities for G_{0} having two non-trivial orbits on $V(4,3)$. However it is straightforward to construct generating matrices for R and we see immediately that one orbit of size 16 on $V(4,3)$ cannot correspond to a cap in $P G(3,3)$. Therefore none of the orbits of size 16 can correspond to a cap and hence no possible choices of G_{0} can give rise to a cap.

4 The Exceptional classes

Finally we turn to the exceptional classes where the socle L of $G_{0} / Z\left(G_{0}\right)$ is simple. There are just thirteen different possibilities for L, although on occasion more than one possibility for G_{0} corresponds to a given L. For example for $L=A_{5}$ there are seven different possibilities for G_{0} (one of which leads to a single orbit in $P G(d-$ $1, p)$); however all of these lead to $r<2$ and so do not concern us.

We employ a variety of techniques to tackle these cases. Liebeck [12, Table 14] gives the orbit sizes in $V(d, p)$ and sometimes we can use these to rule out the possibility of caps. On other occasions we can use the fact that the chord-number is
an integer. On two occasions, neither of these appraoches works and we have to investigate the known structure of the smaller orbit. There remain two cases where a cap does occur.

The cases where caps occur.

When $L=A_{6}$ and $(d, p)=(6,2), L$ admits an embedding in $\operatorname{PSL}(3,4)$ (so here $q=4)$ and G_{0} has an orbit of size 6 . In fact this in a hyperoval in $P G(2,4)[2],[6]$ so we do have a cap.

When $L=M_{11}$ and $(d, p)=(5,3)$ there is a representation of L in which one orbit has size 11 and in fact this is a cap. In passing we note that this cap arises as an orbit of a Singer cyclic subgroup of $P G(4,3)$ [4]; moreover $P G(4,3)$ is partitioned into eleven 11-caps (the eleven orbits of the Singer cyclic subgroup). Note also that there is a second representation of $L=M_{11}$ on $\operatorname{PG}(4,3)$ (see below). In fact both representations appear in the context of the ternary Golay code [1, Ch. 6].

Cases where known bounds rule out caps.

In each of the following cases the smaller orbit is larger than the known upper bound for a cap size, so cannot be a cap. In the table k is the smaller orbit size.

L	(d, p)	r	q	k	max. cap size
A_{6}	$(4,5)$	3	5	36	26
A_{7}	$(4,7)$	3	7	120	50
M_{11}	$(5,3)$	4	3	55	≤ 27
J_{2}	$(6,5)$	5	5	1890	≤ 625
J_{2}	$(12,2)$	5	4	525	≤ 256

Cases where c an integer rules out caps.

In each of the following cases a calculation $c=k(k-1)(q-1) / 2 m$ yields a noninteger and so by Lemma 5 , the smaller orbit does not correspond to a cap. In the table k is the smaller orbit size and m the larger orbit size.

L	(d, p)	r	q	k	m
A_{9}	$(8,2)$	7	2	120	135
A_{10}	$(8,2)$	7	2	45	210
$L_{2}(17)$	$(8,2)$	7	2	102	153
M_{24}	$(11,2)$	10	2	276	1771
M_{24}	$(11,2)$	10	2	759	1288
Suz or J_{4}	$(12,3)$	11	2	65520	465920

The case $\mathrm{L}=\mathrm{A}_{\mathbf{7}}$ and $(\mathrm{d}, \mathrm{p})=(\mathbf{8}, \mathbf{2})$.
Here L is embedded in $\operatorname{PSL}(4,4)$ (so $q=4$). In fact L may actually embedded in $A_{8} \simeq P S L(4,2) \leq P S L(4,4)$. The group A_{8} and therefore A_{7} preserve a subgeometry whose 15 points form the smaller orbit. There are numerous examples of three points on a line in the subgeometry. Thus we have no caps.

The case $\mathrm{L}=\operatorname{PSU}(4,2)$ and $(\mathrm{d}, \mathrm{p})=(4,7)$.
The vectors in the smaller orbit are given by Liebeck [12, Lemma 3.4]:

$$
(\theta ; 0,0,0), \quad(0 ; \theta, 0,0), \quad\left(0 ; \omega^{a}, \omega^{b}, \omega^{c}\right), \quad\left(\omega^{a} ; 0, \omega^{b},-\omega^{c}\right),
$$

(together with all scalar multiples) where $\theta=\omega=2 ; a, b, c$ take any integral values; and the last three coordinates may be permuted cyclically. It suffices here to observe that $(1 ; 0,0,0),(1 ; 0,1,6)$ and $(2 ; 0,1,6)$ all lie in this orbit and give three collinear points in $P G(3,7)$. So no cap arises here.

References

[1] M. Aschbacher, Sporadic groups, Cambridge Tract in Mathematics, Cambridge University Press, Cambridge, 1994
[2] A. Beutelspacher, $21-6=15$: A connection between two distinguished geometries, Amer. Math. Monthly 93, (1986), 29-41.
[3] C.C. Chevalley, The algebraic theory of spinors, New York, 1954.
[4] A. Cossidente, O.H. King, Caps and cap partitions in Galois projective spaces, Europ. J. of Combinatorics (1998) 19, 787-799.
[5] D.A. Foulser, M.J. Kallaher, Solvable, flag-transitive rank 3 collineation groups, Geom. Dedicata, 7, (1978), 111-130.
[6] G. Glauberman, On the Suzuki groups and the outer automorphisms of S_{6}, in: Groups, difference sets, and the monster, Proceedings of a special research quarter at the Ohio State University, Spring 1993, Eds. K.T. Arasu et al. W. de Gruyter, Berlin, New York, 1996.
[7] R. Hill, Rank 3 permutation groups with a regular normal subgroup, Ph.D. Thesis, Nottingham 1971.
[8] R. Hill Caps and groups, in: Teorie Combinatorie, volume II, Accad. Naz. dei Lincei, Rome, 1976, (Rome 1973), 389-394.
[9] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
[10] J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Oxford University Press, Oxford, 1991.
[11] P.B. Kleidman, M.W. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lecture Notes Series 129, Cabridge University Press, Cambridge 1990.
[12] M.W. Liebeck, The affine permutation groups of rank three, Proc. London. Math. Soc. (3) 54 (1987), 477-516.
[13] B. Mortimer, The modular permutation representations of the known doubly transitive group, Proc. London. Math. Soc. 41, (1980), 1-20.
[14] T. Szőnyi, On cyclic caps in projective spaces, Designs, codes and Cryptography, 8, (1996), 327-332.
[15] J. Tits, Ovoides et groupes de Suzuki, Arch. Math., 13, (1962), 187-198.

A. Cossidente,

Dipartimento di Matematica, Università della Basilicata, via N.Sauro 85, 85100 Potenza, Italy.
e-mail: cossidente@unibas.it

O.H. King,

Department of Mathematics, The University of Newcastle, Newcastle Upon Tyne,
NE1 7RU, United Kingdom.
e-mail: o.h.kink@ncl.ac.uk

[^0]: Received by the editors March 1999.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : Primary 51E22; Secondary 20B15, 20 B 25.
 Key words and phrases : Caps, Rank 3 permutation groups.

