On algebraic curves over a finite field with many rational points

A. Aguglia
G. Korchmáros *

Abstract

In [12], a new upper bound for the number of \mathbb{F}_{q}-rational points on an absolutely irreducible algebraic plane curve defined over a finite field \mathbb{F}_{q} of degree $d<\sqrt{q}-2$ was obtained. The present paper is a continuation of [12] and the main result is a similar upper bound for the case $d=\sqrt{q}-2$.

1 Introduction

Let X be a projective, geometrically irreducible, non-singular, algebraic curve of genus g defined over a finite field \mathbb{F}_{q}. By the Hasse-Weil theorem, the number N_{1} of the \mathbb{F}_{q}-rational points of X has the upper bound

$$
\begin{equation*}
N_{1} \leq q+1+2 g \sqrt{q} . \tag{1.1}
\end{equation*}
$$

Consider X over the algebraic closure $\overline{\mathbb{F}}_{q}$ equipped with the action of the Frobenius morphism associated to \mathbb{F}_{q}. Let g_{d}^{2} be a simple, not necessarily complete, base-point-free linear series on X cut out by a linear system defined over \mathbb{F}_{q}. The morphism π associated to g_{d}^{2} maps X into a (possible singular) plane curve $\pi(X)$ of degree d defined over \mathbb{F}_{q}. Every absolutely irreducible plane curve C can be obtained in this way, and g_{d}^{2} is cut out on C by the linear system Σ_{1} of all lines of the plane. The set $X\left(\mathbb{F}_{q}\right)$ of all \mathbb{F}_{q}-rational points of X turns out to be a subset of the possible

[^0]larger set $\tilde{X}\left(\mathbb{F}_{q}\right)$ consisting of all places of X centred at \mathbb{F}_{q}-rational points on the model $\pi(X)$. For the size N of the latter set,
\[

$$
\begin{equation*}
N \leq q+1+(d-1)(d-2) \sqrt{q} \tag{1.2}
\end{equation*}
$$

\]

which coincides with (1.1) when $\pi(X)$ is non-singular, see [13]. The problem of determining N_{1} and N have been considered in connection with coding theory, cyclotomy, graph colourings, finite geometry and Waring's problems, among others. In the last decade, several authors have used the Stöhr-Voloch method [15] to obtain improvements on (1.1) and (1.2) under some extra conditions on d or for special families of curves; see for instance [7], [9], [11], and [12].

The upper bound given in [12] (and quoted in the next section) is valid for $3 \leq d \leq \sqrt{q}-3$, and it improves (1.2) for $\frac{3}{4}(\sqrt{q}+2) \leq d \leq \sqrt{q}-3$. In this paper we show that the techniques used in [12] can be developed further to deal with the case $d=\sqrt{q}-2$. It remains to show whether such an upper bound holds true for $d=\sqrt{q}-1$. In the affirmative case, this will improve the constant term in the estimate on the size of the second largest k-arc in $P G(2, q), q$ odd, given in [12]; see also [10] and [17].

2 The main result

The reader is assumed to be familiar with the terminology used in [15]. Let X be a projective, geometrically irreducible, non-singular, algebraic curve of genus g defined over a finite field \mathbb{F}_{q}, and let $\mathbb{F}_{q}(X)$ be the field of rational functions on X. We consider X as the algebraic curve $X\left(\overline{\mathbb{F}}_{q}\right) / \overline{\mathbb{F}}_{q}$ equipped with the action of the Frobenius map relative to \mathbb{F}_{q}. The order of a rational function h at a point $P \in X$ will be denoted by $\nu_{P}(h)$. Let Σ_{1} be a linear system cutting out on X a simple, base-point-free, linear series g_{d}^{2} defined over \mathbb{F}_{q}, and let $\pi: X \rightarrow P G\left(2, \mathbb{F}_{q}\right)$ be the morphism, say $\pi=\left(x_{0}, x_{1}, x_{2}\right)$, associated with Σ_{1}. For each point $P \in X$, we have the place (or branch) $\pi(P)=\left(\left(t^{e_{P}} x_{0}\right) P,\left(t^{e_{P}} x_{1}\right) P,\left(t^{e_{P}} x_{2}\right) P\right)$ on the model $\pi(X)$ where $e_{P}:=-\min \left\{\nu_{P}\left(x_{0}\right), \nu_{P}\left(x_{1}\right), \nu_{P}\left(x_{2}\right)\right\}$ and t is a local parameter of X at P. The centre of the place $\pi(P)$ is the point in $P G\left(2, \overline{\mathbb{F}}_{q}\right)$ whose coordinates are the constant terms of the components of $\pi(P)$. Clearly, the centre U of a place $\pi(P)$ is \mathbb{F}_{q}-rational (that is, U lies on $P G\left(2, \mathbb{F}_{q}\right)$) for any \mathbb{F}_{q}-rational point P of X, but the converse is not always true. If this happens then U is a \mathbb{F}_{q}-rational singular point of the plane curve $\pi(X)$, and more than one places of $\pi(X)$ is centred at U. As in [15], $\pi(X)$ will be considered as a parametrized curve in $P G\left(2, \overline{\mathbb{F}}_{q}\right)$ and points P of X will be viewed as places of $\pi(X)$.

The $\left(\Sigma_{1}, P\right)$ order sequence at a point $P \in X$ is defined as the triple $\left(j_{0}, j_{1}, j_{2}\right)$, where $j_{0}=0, j_{1}, j_{2}$ are, in increasing order, the intersection multiplicities at the place $\pi(P)$ of $\pi(X)$ with the lines of the plane. Almost all points of X have the same order sequence which is the Σ_{1}-order sequence of X and denoted by $\left(\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right)$.

If $\pi(X)$ is not the locus of its inflections, then the Σ_{1}-order sequence at a generic point is $(0,1,2)$ and X is said to be classical for Σ_{1}. The Σ_{1}-order sequence of X is also characterized as the sequence of smallest natural numbers, in increasing order, for which the Wronskian $\operatorname{det}\left(D_{t}^{\left(\varepsilon_{i}\right)} x_{j}\right) \neq 0$, where $D_{t}^{(j)}$ is the j-th Hasse derivative with respect to a separating variable t.

As in [12], two types of points P in X with respect to g_{d}^{2} are distinguished, namely regular points and inflections depending on whether the Σ_{1}-order sequence at P satisfies $j_{2}=2 j_{1}$ or not. In [12] a new technique was developed for counting the places of $\pi(X)$ centred at \mathbb{F}_{q}-rational points, in which regular points and inflections do not play a symmetrical role. For this, the set of all places of $\pi(X)$ centred at \mathbb{F}_{q}-rational points is split into two subset S_{1} and S_{2} consisting of all regular points and inflections of X, respectively. Now put

$$
\begin{aligned}
& \sum_{P \in S_{1}} j_{1}(P)=M_{q} \\
& \sum_{P \in S_{2}} j_{1}(P)=M_{q}^{\prime}
\end{aligned}
$$

Then $M_{q}+M_{q}^{\prime} \geq N$, and equality holds if and only if no place of $\pi(X)$ centred at a \mathbb{F}_{q}-rational point is singular; in particular $M_{q}+M_{q}^{\prime}=N_{1}$ for a non-singular plane model $\pi(X)$ of X. In [12] the following upper bound was obtained for $2 M_{q}+M_{q}^{\prime}$.

Theorem 2.1. Let X be a projective, geometrically irreducible, non-singular, algebraic curve defined over a finite field \mathbb{F}_{q}. Assume that X admits a simple, not necessarily complete, base-point-free linear series g_{d}^{2} over \mathbb{F}_{q}. If \mathbb{F}_{q} has characteristic $p \geq 3$, and q is a square for $p=3$, and

$$
3 \leq d \begin{cases}\leq \sqrt{q}-3 & \text { for } q \neq 3^{6}, 5^{5} \\ \leq 22 & \text { for } q=3^{6}, \\ \leq 48 & \text { for } q=5^{5}, \\ \leq \min \left\{\frac{(q-5 \sqrt{q}+1)}{20}, \frac{(q-5 \sqrt{q}+57)}{24}\right\} & \text { for } q \leq 23^{2}\end{cases}
$$

then
(i) $2 M_{q}+M_{q}^{\prime} \leq d(q-\sqrt{q}+1)$;
(ii) $2 M_{q}+M_{q}^{\prime}=d(q-\sqrt{q}+1)$ if and only if $d=\frac{1}{2}(\sqrt{q}+1)$, in which case the curve is maximal.

It should be noticed that, in case (ii), $\pi(X)$ turns out to be \mathbb{F}_{q}-isomorphic to the Fermat curve of equation $X^{(\sqrt{q}+1) / 2}+Y^{(\sqrt{q}+1) / 2}+1=0$; see [2]. For further applications of the Stöhr-Voloch theory to maximal curves, see [3],[5], and [6].

In this paper we investigate the case $d=\sqrt{q}-2$. Our main result is the following theorem.

Theorem 2.2. Let X, q, g_{d}^{2} be as in Theorem 2.1, and let $q>23^{2}$. If $d=\sqrt{q}-2$, then

$$
2 M_{q}+M_{q}^{\prime} \leq d\left(q-\frac{1}{2} \sqrt{q}-\frac{9}{2}\right)-3
$$

As in [12], the above theorem may be phrased using classical terminology; see [14] and [16]. If C is an absolutely irreducible, plane curve of degree d defined over \mathbb{F}_{q}, two types of place are distinguished, both centred at \mathbb{F}_{q}-rational points: (a) the regular places of order r, that is, places of order and class equal to r; (b) the irregular places of order r, that is, places of order r and class different from r. Then M_{q} and M_{q}^{\prime} are the numbers of places of type (a) and type (b) respectively, each counted r times, and Theorem 2.2 is equivalent to the following result.

Theorem 2.3. Let C be an absolutely irreducible, plane curve of degree $d=\sqrt{q}-2$, defined over \mathbb{F}_{q}. If $q>23^{2}$ then

$$
2 M_{q}+M_{q}^{\prime} \leq d\left(q-\frac{1}{2} \sqrt{q}-\frac{9}{2}\right)-3 .
$$

3 Non-classical and Frobenius non-classical curves with respect to a linear series $g_{2 d}^{5}$

For the purposes of this paper we also need to consider the 5 -dimensional linear series on X, defined as the simple, not necessarily complete, base-point-free linear series $g_{2 d}^{5}$ cut out on $\pi(X)$ by the linear series Σ_{2} of all conics. Note that $\Sigma_{2}=2 \Sigma_{1}$. Hence $g_{2 d}^{5}$ contains g_{d}^{2}.

By the Σ_{2}-order sequence at $P \in X$ we mean the increasing sequence $\left(j_{0}, j_{1}, j_{2}, j_{3}\right.$, j_{4}, j_{5}) which gives the possible intersection numbers of $\pi(X)$ with conics at the place $\pi(P)$. All points, except for a finite number, have the same Σ_{2}-order sequence: $\left(\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}\right)$ and in general $\varepsilon_{i} \leq j_{i}(0 \leq i \leq 5)$ holds. If X is classical for Σ_{1}, the Σ_{2}-order sequence is ($0,1,2,3,4, \varepsilon_{5}$) where ε_{5} gives the intersection number at the place $\pi(P)$ associated to a generic point $P \in X$ with the osculating conic at $\pi(P)$. Then X is called classical or non-classical for Σ_{2} according as $\varepsilon_{5}=5$ or $\varepsilon_{5}>5$. By a result of [8], if $p \geq 5$ and X is non-classical for Σ_{2}, then $\varepsilon_{5}=p^{\nu}$.

From the Σ_{2}-order sequence $\left(\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}\right)$ it is possible to extract an increasing subsequence of five elements $\nu_{0}=0, \nu_{1}, \ldots, \nu_{4}$ for which the following determinant does not vanish:

$$
\left|\begin{array}{ccc}
x_{0}^{q} & \ldots & x_{5}^{q} \\
D_{t}^{\left(\nu_{0}\right)}\left(x_{0}\right) & & D_{t}^{\left(\nu_{0}\right)}\left(x_{5}\right) \\
\vdots & & \vdots \\
D_{t}^{\left(\nu_{4}\right)}\left(x_{0}\right) & \ldots & D_{t}^{\left(\nu_{4}\right)}\left(x_{5}\right)
\end{array}\right|,
$$

where $D_{t}^{(i)}$ is the i-th Hasse derivative and x_{0}, \ldots, x_{5} are the coordinate functions of the morphism associated to Σ_{2}. The sequence $\nu_{0}=0, \nu_{1}, \ldots, \nu_{4}$, in increasing order, is called the \mathbb{F}_{q}-Frobenius Σ_{2}-order sequence. There is a further notion of classical curve associated to Frobenius order sequences: X is called Frobenius classical for Σ_{2} if the \mathbb{F}_{q}-Frobenius Σ_{2}-order sequence is $(0,1,2,3,4)$; otherwise the curve is called Frobenius non-classical.

4 Preliminary results

Let X, π, Σ_{1} and g_{d}^{2} be as in the previous sections. Assume that X is classical for Σ_{1}, and consider the ramification divisor R of Σ_{1} which is given by

$$
R=\operatorname{div}\left(\operatorname{det}\left(\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
D_{t}\left(x_{0}\right) & D_{t}\left(x_{1}\right) & D_{t}\left(x_{2}\right) \\
D_{t}^{(2)}\left(x_{0}\right) & D_{t}^{(2)}\left(x_{1}\right) & D_{t}^{(2)}\left(x_{2}\right)
\end{array}\right)\right)+3 \operatorname{div}(d t)+3 E,
$$

where $E=\sum e_{P} P$, and t is a separating variable. To compute $\nu_{P}(R)$ take a local parameter t at P. We may assume that one of the coordinate functions, say x_{0}, satisfies $\nu_{P}\left(x_{0}\right)=0$. Then $e_{P}=0$ and $\nu_{P}(\operatorname{div}(d t))=0$. Put $x=x_{1} / x_{0}, y=x_{2} / x_{0}$. Then

$$
\begin{equation*}
\nu_{P}(R)=\nu_{P}\left[D_{t}(x) D_{t}^{2}(y)-D_{t}^{2}(x) D_{t}(y)\right] ; \tag{4.3}
\end{equation*}
$$

by [15] Cor. 1.7,

$$
\begin{equation*}
\nu_{P}(R)=j_{1}+j_{2}-3 \text { when } j_{1} j_{2}\left(j_{2}-j_{1}\right) \not \equiv 0 \quad(\bmod p) . \tag{4.4}
\end{equation*}
$$

Since X is classical for Σ_{1}, the generalized Plücker formula counting the Weierstrass points gives $\operatorname{deg} R=3(2 g-2)+3 d$; see [15] p.6. Hence

$$
\begin{equation*}
\sum_{P \in X} \nu_{P}(R)=3(2 g-2)+3 d \tag{4.5}
\end{equation*}
$$

Since the curve X is defined over \mathbb{F}_{q}, we can also consider the divisor S, as in [15] Section 2, defined by:

$$
S=\operatorname{div}\left(\operatorname{det}\left(\begin{array}{ccc}
x_{0}^{q} & x_{1}^{q} & x_{2}^{q} \\
x_{0} & x_{1} & x_{2} \\
D_{t}\left(x_{0}\right) & D_{t}\left(x_{1}\right) & D_{t}\left(x_{2}\right)
\end{array}\right)\right)+\operatorname{div}(d t)+(q+2) E .
$$

To compute $\nu_{P}(S)$ we assume as before that $\nu_{P}\left(x_{0}\right)=0$. Then $e_{P}=0, \nu_{P}(\operatorname{div}(d t))=$ 0 , and hence:

$$
\begin{equation*}
\nu_{P}(S)=\nu_{P}\left[\left(x-x^{q}\right) D_{t}(y)-\left(y-y^{q}\right) D_{t}(x)\right] \tag{4.6}
\end{equation*}
$$

where $x=x_{1} / x_{0}, y=x_{2} / x_{0}$. The Stöhr-Voloch theorem applied to Σ_{1} states that $\operatorname{deg} S=(2 g-2)+(q+2) d$; hence

$$
\begin{equation*}
\sum_{P \in X} \nu_{P}(S)=(2 g-2)+(q+2) d \tag{4.7}
\end{equation*}
$$

Next we give a useful formula for $\nu_{P}(S)$.
For a point $P \in X$ choose a local parameter t. Without loss of generality, we may again assume that $\nu_{P}\left(x_{0}\right)=0$. Then $e_{P}=0, \nu_{P}(\operatorname{div}(d t))=0$. Put $x=x_{1} / x_{0}, y=x_{2} / x_{0}$. Then a parametrization of the place $\pi(P)$ is given by:

$$
\left\{\begin{array}{l}
x(t)=a+m_{11} t^{j_{1}}+\cdots \tag{4.8}\\
y(t)=b+m_{21} t^{j_{1}}+b_{j_{2}} t^{j_{2}}+\cdots
\end{array}\right.
$$

where (a, b) is the centre of the place $\pi(P)$, the tangent l to $\pi(P)$ has equation: $m_{21}(x-a)-m_{11}(y-b)=0$, and $\left(0, j_{1}, j_{2}\right)$ is the Σ_{1}-order sequence at P. To quote
the result of the computation of $\nu_{p}(S)$ given in [12], Section 7, two sets of points of X need to be distinguished, namely:

$$
\begin{aligned}
& B_{1}=\left\{P \in X \backslash \tilde{X}\left(\mathbb{F}_{q}\right): m_{21}\left(a-a^{q}\right)-m_{11}\left(b-b^{q}\right)=0\right\} ; \\
& B_{2}=\left\{P \in X \backslash \tilde{X}\left(\mathbb{F}_{q}\right): m_{21}\left(a-a^{q}\right)-m_{11}\left(b-b^{q}\right) \neq 0\right\} .
\end{aligned}
$$

Assume that $j_{1} j_{2} \not \equiv 0(\bmod p)$. Then, by [11] Prop. 4.4 (see also [12] Prop. 7.4), and [15] Prop. 2.4.(a)),

$$
\nu_{P}(S)= \begin{cases}j_{1}+j_{2}-1 & \text { for } P \in \tilde{X}\left(\mathbb{F}_{q}\right), \tag{4.9}\\ j_{2}-1 & \text { for } P \in B_{1} \\ j_{1}-1 & \text { for } P \in B_{2}\end{cases}
$$

5 Proof of Theorem 2.2

We keep all previous notation. The starting point of the proofs of Theorem 2.2 are five lemmas stated in [12].

Lemma 5.1. ([12] Prop. 1.1) Assume that X satisfies the following conditions:
(h1) $2 M_{q}+M_{q}^{\prime} \geq d(q-\sqrt{q}+1)$;
(h2)

$$
3 \leq d \begin{cases}\leq \sqrt{q} & \text { when } q>23^{2}, q \neq 3^{6}, 5^{5}, \\ \leq 22 & \text { when } q=3^{6}, \\ \leq 48 & \text { when } q=5^{5}, \\ \leq \min \left\{\frac{(q-5 \sqrt{q}+1)}{20}, \frac{(q-5 \sqrt{q}+57)}{24}\right\} & \text { when } q \leq 23^{2} ;\end{cases}
$$

(h3) $q \geq 16$;
(h4) $p \geq 3$, and q is a square when $p=3$.
Then
(i) g_{d}^{2} is classical;
(ii) q is a square;
(iii) the Σ_{2}-order sequence is $(0,1,2,3,4, \sqrt{q})$;
(iv) the \mathbb{F}_{q}-Frobenius Σ_{2}-order sequence is $(0,1,2,3, \sqrt{q})$;
(v) $d \geq \frac{1}{2}(\sqrt{q}+1)$.

Lemma 5.2. ([12] Prop. 4.1)
Suppose that both $d<\sqrt{q}$ and (h4) hold. If X has the above properties (i),(ii),(iii), and (iv), then the order sequence $\left(0, j_{1}, j_{2}\right)$ at $P \in X$ with respect to g_{d}^{2} satisfies either $j_{2}=2 j_{1}$, or $j_{2}=\frac{1}{2}\left(\sqrt{q}+j_{1}\right)$, or $j_{2}=\sqrt{q}-j_{1}$.

Lemma 5.3. ([12] Prop. 9.2) Suppose that both $d<\sqrt{q}$ and (h1) hold. If X has property (iv), then the set of points P of X splits into three types according of order sequence $\left(j_{0}, j_{1}, j_{2}\right)$ at P with respect to g_{d}^{2} :

$$
\begin{gather*}
(0,1,2),(0,2,4) ; \tag{5.1}\\
\left(0,1, \frac{1}{2}(\sqrt{q}+1)\right) ; \tag{5.2}\\
(0,1, \sqrt{q}-1),(0,2, \sqrt{q}-2) . \tag{5.3}
\end{gather*}
$$

The above possibilities were also described in terms of the model $\pi(X)$ in [12] Section 5. As before, let (4.8) be a parametrization of the place $\pi(P)$.

Lemma 5.4. (i) If (5.1) holds and $a \neq a^{q}$ or $b \neq b^{q}$, then $m_{21}\left(a-a^{q}\right)-m_{11}\left(b-b^{q}\right) \neq 0$.
(ii) If (5.2) holds and $a \neq a^{q}$ or $b \neq b^{q}$, then $m_{21}\left(a-a^{q}\right)-m_{11}\left(b-b^{q}\right)=0$.
(iii) If (5.3) holds then $a \neq a^{q}$ or $b \neq b^{q}$ and $m_{21}\left(a-a^{q}\right)-m_{11}\left(b-b^{q}\right) \neq 0$.

In [12] Section 8, an \mathbb{F}_{q}-birational model \mathcal{Z} of X defined in 5 -dimensional space was considered and some of its properties were established. Here we limit ourselves to quoting two results. First, [12] Prop. 8.5 states that if $\pi(X)$ has a singular point then $\operatorname{deg} \mathcal{Z} \geq 2 \sqrt{q}$. Another result on \mathcal{Z} is that $3 \operatorname{deg} \mathcal{Z}=2 \tau+\rho$, where τ and ρ denote the number of points $P \in X$ of type (5.3) and (5.2) each counted j_{1} times; see [12] Prop. 9.3. From these results we deduce the following.

Lemma 5.5. If $\pi(X)$ is a singular curve, then $\tau+2 \rho \geq 6 \sqrt{q}$.
From now on let $d=\sqrt{q}-2$ and $q>23^{2}$. To prove Theorem 2.2, assume on the contrary that X satisfies the condition:

$$
\begin{equation*}
2 M_{q}+M_{q}^{\prime}>d\left(q-\frac{1}{2} \sqrt{q}-\frac{9}{2}\right)-3 . \tag{5.4}
\end{equation*}
$$

Since (5.4) implies (h1), the above lemmas are valid for X, and have the following corollary.

Corollary 5.4. If $P \in \tilde{X}\left(\mathbb{F}_{q}\right)$, then either $\nu_{P}(S) \in\{2,5\}$ or $\nu_{P}(S)=\frac{1}{2}(\sqrt{q}+1)$, according as (5.1) or (5.2) holds. If $P \in X \backslash \tilde{X}\left(\mathbb{F}_{q}\right)$, then either $\nu_{P}(S)=\frac{1}{2}(\sqrt{q}-1)$ or $\nu_{P}(S)=1$ according as $P \in B_{1}$ or $P \in B_{2}$.

Our next step is to show that $\pi(X)$ is actually a non-singular plane model of X. We need the following result.

Proposition 5.1. Let C be an irreducible plane curve of degree $d \leq \sqrt{q}-2$ and genus g. If C has at least τ places with Σ_{1}-order sequence $(0,2, \sqrt{q}-2)$ where Σ_{1} is the linear series of all lines, then

$$
\begin{equation*}
2 g-2 \leq d(d-3)-(\sqrt{q}-3) \tau \tag{5.5}
\end{equation*}
$$

Proof. Since $d \leq \sqrt{q}-2$, each of the τ places is centred at a double point of C. Hence C has at least τ double points. On the other hand, $g=(n-1)(n-2) / 2-$ $\sum r_{i}\left(r_{i}-1\right) / 2$ where C has the singular points P_{1}, \ldots, P_{s} with multiplicity r_{1}, \ldots, r_{s} including the infinitely near points. For the concept of infinitely near point, the reader is referred to [4] Cap. 20, [14] Chapters 14 and 23, and [1]. In particular, the method in [4] p. 447, or in [1] Section 3.2, shows that each double point of C which is the centre of a place with $\left(\Sigma_{1}, P\right)$ order sequence $\left(0,2, j_{2}\right), j_{2}$ odd, has at least $\frac{1}{2}\left(j_{2}-3\right)$ infinitely near double points. Applying this for the case $j_{2}=\sqrt{q}-2$ gives the proposition.
Proposition 5.2. The curve $\pi(X)$ has no singular points. In particular, $\tau=0$.
Proof. Let λ denote the number of all points $P \in X$ with order sequence $(0,2,4)$. From Proposition 5.4,

$$
\sum_{P \in X} \nu_{P}(S)=2 M_{q}+M_{q}^{\prime}+\frac{1}{2}(\sqrt{q}-1) \rho+\tau+\lambda,
$$

which together with (4.7) gives the following result:

$$
\begin{equation*}
2 M_{q}+M_{q}^{\prime} \leq 2 g-2+(q+2) d-\frac{1}{2}(\sqrt{q}-1) \rho-\tau . \tag{5.6}
\end{equation*}
$$

Taking into account (5.5) we obtain:

$$
2 M_{q}+M_{q}^{\prime} \leq d(d-3)+(q+2) d-\frac{1}{4}(\sqrt{q}-1)(2 \rho+\tau)-\frac{3}{4}\left(\sqrt{q}-\frac{7}{3}\right) \tau .
$$

By (5.5), this yields:

$$
2 M_{q}+M_{q}^{\prime} \leq d(q+d-1)-\frac{3}{2}(q-\sqrt{q}) .
$$

Since $d=\sqrt{q}-2$, the expression on the right-hand side can also be written as $d\left(q-\frac{1}{2} \sqrt{q}-\frac{9}{2}\right)-3$, and this shows that (5.4) cannot hold.

Note that Proposition 5.2 together with Corollary 5.4 have the following corollary.
Corollary 5.6. If $P \in \tilde{X}\left(\mathbb{F}_{q}\right)$, then either $\nu_{P}(S)=2$ or $\nu_{P}(S)=\frac{1}{2}(\sqrt{q}+1)$, according as (5.1) or (5.2) holds. If $P \in X \backslash \tilde{X}\left(\mathbb{F}_{q}\right)$, then $P \in B_{1}$ and $\nu_{P}(S)=$ $\frac{1}{2}(\sqrt{q}-1)$. In particular, B_{2} is empty.

Next we compute the exact value of ρ. Since $\pi(X)$ is non-singular, the only points $P \in X$ for which $\nu_{P}(R)$ is positive are the ρ points with order sequence $\left(0,1, \frac{1}{2}(\sqrt{q}+1)\right)$. Since by (4.4) each of them has weight $\nu_{P}(R)=\frac{1}{2}(\sqrt{q}-3)$, from (4.5) it follows that

$$
\begin{equation*}
\rho=6 d(d-2) /(\sqrt{q}-3) . \tag{5.7}
\end{equation*}
$$

Since $d=\sqrt{q}-2$ we find that

$$
\begin{equation*}
\rho=6(\sqrt{q}-3)-6 /(\sqrt{q}-3) ; \tag{5.8}
\end{equation*}
$$

but this is a contradiction, as ρ must be integer. Thus (5.4) is impossible, and Theorem 2.2 has been proved.

References

[1] A. Campillo, Algebroid curves in positive characteristic, Lecture Notes in Math. 813, Springer Verlag, 1980.
[2] A. Cossidente, J.W.P. Hirschfeld ,G. Korchmáros and F. Torres, On plane maximal curves, Compositio Math 121 (2000), 163-181.
[3] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1999), 56-76.
[4] F. Enriques Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche vol. II, Zanichelli Editore, 1918, 729 pp. (edited by O. Chisini).
[5] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory 67 (1997), 29-51.
[6] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.
[7] A. Garcia and J.F. Voloch, Fermat curves over finite fields, J. Number Theory 30 (1988), 345-356.
[8] A. Garcia and J.F. Voloch, Wronskians and independence in fields of prime characteristic, Manuscripta Math. 59 (1987), 457-469.
[9] A. Hefez and J.F. Voloch, Frobenius non classical curves, Arch. Math. 54 (1990), 263-273.
[10] J. W. P. Hirschfeld, "Projective Geometries Over Finite Fields," Second edition, Oxford University Press, Oxford, 1998, 555 pp.
[11] J.W.P. Hirschfeld and G. Korchmáros, Embedding an arc into a conic in a finite plane, Finite Fields Appl. 2 (1996), 274-292.
[12] J.W.P. Hirschfeld and G. Korchmáros, The number of rational points on an algebraic curve over a finite field, Bull. Belg. Math. Soc. Simon Stevin 5 (1988), 313-340.
[13] D.B. Leep and C.C. Yeomans, The number of points on a singular curve over a finite field, Arch. Math. 63 (1994), 420-426.
[14] A. Seidenberg, Elements of the theory of algebraic curves, Addison-Wesley, Reading, Mass., 1968, 216 pp.
[15] K.O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52 (1986), 1-19
[16] R.J. Walker, Algebraic curves, Princeton University Press, Princeton, 1950, 201 pp. (Dover 1972, Springer Verlag 1978).
[17] J. A. Thas, Complete arcs and algebraic curves in $P G(2, q)$, J. Algebra 106 (1987), 451-464.

A. Aguglia
Dipartimento di Mat. e Appl. "R. Caccioppoli"
Università di Napoli "Federico II"
80126 Napoli
Italy
aguglia@matna2.dma.unina.it
G. Korchmáros
Dipartimento di Matematica
Università della Basilicata
85100 Potenza
Italy
korchmaros@unibas.it

[^0]: *Research supported by NATO and the Italian Ministry MURST, PRIN, Strutture geometriche, combinatoria e loro applicazioni

 Received by the editors March 1999.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : 11G20,51E21.
 Key words and phrases : Algebraic curve, finite field, arc.

