
On algebraic curves over a finite field with many

rational points

A. Aguglia G. Korchmáros ∗

Abstract

In [12], a new upper bound for the number of Fq-rational points on an
absolutely irreducible algebraic plane curve defined over a finite field Fq of
degree d <

√
q − 2 was obtained. The present paper is a continuation of [12]

and the main result is a similar upper bound for the case d =
√
q − 2.

1 Introduction

Let X be a projective, geometrically irreducible, non-singular, algebraic curve of
genus g defined over a finite field Fq. By the Hasse-Weil theorem, the number N1 of
the Fq-rational points of X has the upper bound

N1 ≤ q + 1 + 2g
√
q. (1.1)

Consider X over the algebraic closure Fq equipped with the action of the Frobe-
nius morphism associated to Fq. Let g2

d be a simple, not necessarily complete,
base-point-free linear series on X cut out by a linear system defined over Fq . The
morphism π associated to g2

d maps X into a (possible singular) plane curve π(X) of
degree d defined over Fq . Every absolutely irreducible plane curve C can be obtained
in this way, and g2

d is cut out on C by the linear system Σ1 of all lines of the plane.
The set X(Fq) of all Fq-rational points of X turns out to be a subset of the possible
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larger set X̃(Fq) consisting of all places of X centred at Fq-rational points on the
model π(X). For the size N of the latter set,

N ≤ q + 1 + (d− 1)(d − 2)
√
q, (1.2)

which coincides with (1.1) when π(X) is non-singular, see [13]. The problem of
determining N1 and N have been considered in connection with coding theory, cy-
clotomy, graph colourings, finite geometry and Waring’s problems, among others. In
the last decade, several authors have used the Stöhr-Voloch method [15] to obtain
improvements on (1.1) and (1.2) under some extra conditions on d or for special
families of curves; see for instance [7], [9], [11], and [12].

The upper bound given in [12] (and quoted in the next section) is valid for
3 ≤ d ≤ √q − 3, and it improves (1.2) for 3

4
(
√
q + 2) ≤ d ≤ √q − 3. In this paper

we show that the techniques used in [12] can be developed further to deal with the
case d =

√
q − 2. It remains to show whether such an upper bound holds true for

d =
√
q − 1. In the affirmative case, this will improve the constant term in the

estimate on the size of the second largest k-arc in PG(2, q), q odd, given in [12]; see
also [10] and [17].

2 The main result

The reader is assumed to be familiar with the terminology used in [15]. Let X
be a projective, geometrically irreducible, non-singular, algebraic curve of genus g
defined over a finite field Fq, and let Fq(X) be the field of rational functions on X.
We consider X as the algebraic curve X(Fq)/Fq equipped with the action of the
Frobenius map relative to Fq . The order of a rational function h at a point P ∈ X
will be denoted by νP (h). Let Σ1 be a linear system cutting out on X a simple,
base-point-free, linear series g2

d defined over Fq , and let π : X → PG(2,Fq) be
the morphism, say π=(x0, x1, x2), associated with Σ1. For each point P ∈ X, we
have the place (or branch) π(P )=((tePx0)P, (t

eP x1)P, (t
eP x2)P ) on the model π(X)

where eP := −min{νP(x0), νP (x1), νP (x2)} and t is a local parameter of X at P .
The centre of the place π(P ) is the point in PG(2,Fq) whose coordinates are the
constant terms of the components of π(P ). Clearly, the centre U of a place π(P ) is
Fq-rational (that is, U lies on PG(2,Fq)) for any Fq-rational point P of X, but the
converse is not always true. If this happens then U is a Fq-rational singular point
of the plane curve π(X), and more than one places of π(X) is centred at U . As in
[15], π(X) will be considered as a parametrized curve in PG(2,Fq) and points P of
X will be viewed as places of π(X).

The (Σ1, P ) order sequence at a point P ∈ X is defined as the triple (j0, j1, j2),
where j0 = 0, j1, j2 are, in increasing order, the intersection multiplicities at the
place π(P ) of π(X) with the lines of the plane. Almost all points of X have the
same order sequence which is the Σ1-order sequence of X and denoted by (ε0, ε1, ε2).

If π(X) is not the locus of its inflections, then the Σ1-order sequence at a generic
point is (0, 1, 2) and X is said to be classical for Σ1. The Σ1-order sequence of X is
also characterized as the sequence of smallest natural numbers, in increasing order,
for which the Wronskian det(D

(εi)
t xj) 6= 0, where D

(j)
t is the j-th Hasse derivative

with respect to a separating variable t.
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As in [12], two types of points P in X with respect to g2
d are distinguished,

namely regular points and inflections depending on whether the Σ1-order sequence
at P satisfies j2 = 2j1 or not. In [12] a new technique was developed for counting the
places of π(X) centred at Fq-rational points, in which regular points and inflections
do not play a symmetrical role. For this, the set of all places of π(X) centred at
Fq-rational points is split into two subset S1 and S2 consisting of all regular points
and inflections of X, respectively. Now put∑

P∈S1

j1(P ) = Mq,

∑
P∈S2

j1(P ) = M ′q.

Then Mq + M
′
q ≥ N , and equality holds if and only if no place of π(X) centred at

a Fq-rational point is singular; in particular Mq +M
′
q = N1 for a non-singular plane

model π(X) of X. In [12] the following upper bound was obtained for 2Mq + M
′
q.

Theorem 2.1. Let X be a projective, geometrically irreducible, non-singular, al-
gebraic curve defined over a finite field Fq. Assume that X admits a simple, not
necessarily complete, base-point-free linear series g2

d over Fq. If Fq has characteris-
tic p ≥ 3, and q is a square for p = 3, and

3 ≤ d


≤ √q − 3 for q 6= 36, 55,
≤ 22 for q = 36,
≤ 48 for q = 55,

≤ min{ (q−5
√
q+1)

20
,

(q−5
√
q+57)

24
} for q ≤ 232,

then
(i) 2Mq +M

′
q ≤ d(q −√q + 1);

(ii) 2Mq +M
′
q = d(q−√q+ 1) if and only if d = 1

2
(
√
q+ 1), in which case the curve

is maximal.

It should be noticed that, in case (ii), π(X) turns out to be Fq-isomorphic to
the Fermat curve of equation X(

√
q+1)/2 + Y (

√
q+1)/2 + 1 = 0; see [2]. For further

applications of the Stöhr-Voloch theory to maximal curves, see [3],[5], and [6].
In this paper we investigate the case d =

√
q−2. Our main result is the following

theorem.

Theorem 2.2. Let X, q, g2
d be as in Theorem 2.1, and let q > 232. If d =

√
q − 2,

then
2Mq +M

′
q ≤ d(q − 1

2

√
q − 9

2
)− 3.

As in [12], the above theorem may be phrased using classical terminology; see
[14] and [16]. If C is an absolutely irreducible, plane curve of degree d defined over
Fq, two types of place are distinguished, both centred at Fq-rational points: (a) the
regular places of order r, that is, places of order and class equal to r; (b) the irregular
places of order r, that is, places of order r and class different from r. Then Mq and
M
′
q are the numbers of places of type (a) and type (b) respectively, each counted r

times, and Theorem 2.2 is equivalent to the following result.
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Theorem 2.3. Let C be an absolutely irreducible, plane curve of degree d =
√
q−2,

defined over Fq. If q > 232 then

2Mq +M
′
q ≤ d(q − 1

2

√
q − 9

2
)− 3.

3 Non-classical and Frobenius non-cl assical curves with respect

to a linear series g5
2d

For the purposes of this paper we also need to consider the 5-dimensional linear
series on X, defined as the simple, not necessarily complete, base-point-free linear
series g5

2d cut out on π(X) by the linear series Σ2 of all conics. Note that Σ2 = 2Σ1.
Hence g5

2d contains g2
d.

By the Σ2-order sequence at P ∈ X we mean the increasing sequence (j0, j1, j2, j3,
j4, j5) which gives the possible intersection numbers of π(X) with conics at the place
π(P ). All points, except for a finite number, have the same Σ2-order sequence:
(ε0, ε1, ε2, ε3, ε4, ε5) and in general εi ≤ ji (0 ≤ i ≤ 5) holds. If X is classical for
Σ1, the Σ2-order sequence is (0, 1, 2, 3, 4, ε5) where ε5 gives the intersection number
at the place π(P ) associated to a generic point P ∈ X with the osculating conic
at π(P ). Then X is called classical or non-classical for Σ2 according as ε5 = 5 or
ε5 > 5. By a result of [8], if p ≥ 5 and X is non-classical for Σ2, then ε5 = pν .

From the Σ2-order sequence (ε0, ε1, ε2, ε3, ε4, ε5) it is possible to extract an in-
creasing subsequence of five elements ν0 = 0, ν1, ..., ν4 for which the following deter-
minant does not vanish: ∣∣∣∣∣∣∣∣∣∣∣

xq0 ... xq5
D

(ν0)
t (x0) D

(ν0)
t (x5)

...
...

D
(ν4)
t (x0) ... D

(ν4)
t (x5)

∣∣∣∣∣∣∣∣∣∣∣
,

where D
(i)
t is the i-th Hasse derivative and x0, ..., x5 are the coordinate functions of

the morphism associated to Σ2. The sequence ν0 = 0, ν1, ..., ν4, in increasing order,
is called the Fq-Frobenius Σ2-order sequence. There is a further notion of classical
curve associated to Frobenius order sequences: X is called Frobenius classical for Σ2

if the Fq-Frobenius Σ2-order sequence is (0, 1, 2, 3, 4); otherwise the curve is called
Frobenius non-classical.
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4 Preliminary results

Let X, π, Σ1 and g2
d be as in the previous sections. Assume that X is classical for

Σ1, and consider the ramification divisor R of Σ1 which is given by

R = div

det

 x0 x1 x2

Dt(x0) Dt(x1) Dt(x2)

D
(2)
t (x0) D

(2)
t (x1) D

(2)
t (x2)


 + 3 div(dt) + 3E,

where E =
∑
ePP , and t is a separating variable. To compute νP (R) take a local

parameter t at P . We may assume that one of the coordinate functions, say x0,
satisfies νP (x0) = 0. Then eP = 0 and νP (div(dt)) = 0. Put x = x1/x0, y = x2/x0.
Then

νP (R) = νP [Dt(x)D2
t (y)−D2

t (x)Dt(y)]; (4.3)

by [15] Cor. 1.7,

νP (R) = j1 + j2 − 3 when j1j2(j2 − j1) 6≡ 0 (mod p). (4.4)

Since X is classical for Σ1, the generalized Plücker formula counting the Weierstrass
points gives deg R = 3(2g − 2) + 3d; see [15] p.6. Hence∑

P∈X
νP (R) = 3(2g − 2) + 3d. (4.5)

Since the curve X is defined over Fq, we can also consider the divisor S, as in
[15] Section 2, defined by:

S = div

det

 xq0 xq1 xq2
x0 x1 x2

Dt(x0) Dt(x1) Dt(x2)


+ div(dt) + (q + 2)E.

To compute νP (S) we assume as before that νP (x0) = 0. Then eP = 0, νP (div(dt)) =
0, and hence:

νP (S) = νP [(x− xq)Dt(y)− (y − yq)Dt(x)] (4.6)

where x = x1/x0, y = x2/x0. The Stöhr-Voloch theorem applied to Σ1 states that
deg S = (2g − 2) + (q + 2)d; hence∑

P∈X
νP (S) = (2g − 2) + (q + 2)d. (4.7)

Next we give a useful formula for νP (S).
For a point P ∈ X choose a local parameter t. Without loss of generality,

we may again assume that νP (x0) = 0. Then eP = 0, νP (div(dt)) = 0. Put
x = x1/x0, y = x2/x0. Then a parametrization of the place π(P ) is given by:{

x(t) = a+m11t
j1 + · · · ,

y(t) = b+m21t
j1 + bj2t

j2 + · · · , (4.8)

where (a, b) is the centre of the place π(P ), the tangent l to π(P ) has equation:
m21(x− a)−m11(y− b) = 0, and (0, j1, j2) is the Σ1-order sequence at P . To quote



338 A. Aguglia – G. Korchmáros

the result of the computation of νp(S) given in [12], Section 7, two sets of points of
X need to be distinguished, namely:

B1 =
{
P ∈ X\X̃(Fq) : m21(a− aq)−m11(b− bq) = 0

}
;

B2 =
{
P ∈ X\X̃(Fq) : m21(a− aq)−m11(b− bq) 6= 0

}
.

Assume that j1j2 6≡ 0 (mod p). Then, by [11] Prop. 4.4 (see also [12] Prop. 7.4),
and [15] Prop. 2.4.(a)),

νP (S) =


j1 + j2 − 1 for P ∈ X̃(Fq),
j2 − 1 for P ∈ B1,
j1 − 1 for P ∈ B2.

(4.9)

5 Proof of Theorem 2.2

We keep all previous notation. The starting point of the proofs of Theorem 2.2 are
five lemmas stated in [12].

Lemma 5.1. ([12] Prop. 1.1) Assume that X satisfies the following conditions:
(h1) 2Mq +M ′q ≥ d(q −√q + 1);
(h2)

3 ≤ d


≤ √q when q > 232, q 6= 36, 55,
≤ 22 when q = 36,
≤ 48 when q = 55,

≤ min{ (q−5
√
q+1)

20
,

(q−5
√
q+57)

24
} when q ≤ 232;

(h3) q ≥ 16;
(h4) p ≥ 3, and q is a square when p = 3.
Then
(i) g2

d is classical;
(ii) q is a square;
(iii) the Σ2-order sequence is (0, 1, 2, 3, 4,

√
q);

(iv) the Fq-Frobenius Σ2-order sequence is (0, 1, 2, 3,
√
q);

(v) d ≥ 1
2
(
√
q + 1).

Lemma 5.2. ([12] Prop. 4.1)
Suppose that both d <

√
q and (h4) hold. If X has the above properties (i),(ii),(iii),

and (iv), then the order sequence (0, j1, j2) at P ∈ X with respect to g2
d satisfies either

j2 = 2j1, or j2 = 1
2
(
√
q + j1), or j2 =

√
q − j1.
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Lemma 5.3. ([12] Prop. 9.2) Suppose that both d <
√
q and (h1) hold. If X has

property (iv), then the set of points P of X splits into three types according of order
sequence (j0, j1, j2) at P with respect to g2

d:

(0, 1, 2), (0, 2, 4); (5.1)

(0, 1, 1
2
(
√
q + 1)); (5.2)

(0, 1,
√
q − 1), (0, 2,

√
q − 2). (5.3)

The above possibilities were also described in terms of the model π(X) in [12]
Section 5. As before, let (4.8) be a parametrization of the place π(P ).

Lemma 5.4. (i) If (5.1) holds and a 6= aq or b 6= bq, then
m21(a− aq)−m11(b− bq) 6= 0.
(ii) If (5.2) holds and a 6= aq or b 6= bq, then m21(a− aq)−m11(b− bq) = 0.
(iii) If (5.3) holds then a 6= aq or b 6= bq and m21(a− aq)−m11(b− bq) 6= 0.

In [12] Section 8, an Fq-birational model Z of X defined in 5-dimensional space
was considered and some of its properties were established. Here we limit ourselves
to quoting two results. First, [12] Prop. 8.5 states that if π(X) has a singular point
then deg Z≥ 2

√
q. Another result on Z is that 3 degZ=2τ + ρ, where τ and ρ

denote the number of points P ∈ X of type (5.3) and (5.2) each counted j1 times;
see [12] Prop. 9.3. From these results we deduce the following.

Lemma 5.5. If π(X) is a singular curve, then τ + 2ρ≥ 6
√
q.

From now on let d =
√
q− 2 and q > 232. To prove Theorem 2.2, assume on the

contrary that X satisfies the condition:

2Mq +M
′

q > d(q − 1
2

√
q − 9

2
)− 3. (5.4)

Since (5.4) implies (h1), the above lemmas are valid for X, and have the following
corollary.

Corollary 5.4. If P ∈ X̃(Fq), then either νP (S) ∈ {2, 5} or νP (S) = 1
2
(
√
q + 1),

according as (5.1) or (5.2) holds. If P ∈ X\X̃(Fq), then either νP (S) = 1
2
(
√
q − 1)

or νP (S) = 1 according as P ∈ B1 or P ∈ B2.

Our next step is to show that π(X) is actually a non-singular plane model of X.
We need the following result.
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Proposition 5.1. Let C be an irreducible plane curve of degree d ≤ √q − 2 and
genus g. If C has at least τ places with Σ1-order sequence (0, 2,

√
q − 2) where Σ1

is the linear series of all lines, then

2g − 2 ≤ d(d − 3) − (
√
q − 3)τ. (5.5)

Proof. Since d ≤ √q− 2, each of the τ places is centred at a double point of C .
Hence C has at least τ double points. On the other hand, g = (n − 1)(n − 2)/2 −∑
ri(ri − 1)/2 where C has the singular points P1, ..., Ps with multiplicity r1, ..., rs

including the infinitely near points. For the concept of infinitely near point, the
reader is referred to [4] Cap. 20, [14] Chapters 14 and 23, and [1]. In particular,
the method in [4] p. 447, or in [1] Section 3.2, shows that each double point of C
which is the centre of a place with (Σ1, P ) order sequence (0, 2, j2), j2 odd, has at
least 1

2
(j2 − 3) infinitely near double points. Applying this for the case j2 =

√
q− 2

gives the proposition.

Proposition 5.2. The curve π(X) has no singular points. In particular, τ = 0.

Proof. Let λ denote the number of all points P ∈ X with order sequence (0, 2, 4).
From Proposition 5.4,

∑
P∈X

νP (S) = 2Mq +Mq
′ + 1

2
(
√
q − 1)ρ+ τ + λ,

which together with (4.7) gives the following result:

2Mq +M
′

q ≤ 2g − 2 + (q + 2)d − 1
2
(
√
q − 1)ρ − τ. (5.6)

Taking into account (5.5) we obtain:

2Mq +M
′
q ≤ d(d − 3) + (q + 2)d − 1

4
(
√
q − 1)(2ρ + τ )− 3

4
(
√
q − 7

3
)τ.

By (5.5), this yields:

2Mq +M
′

q ≤ d(q + d− 1)− 3
2
(q −√q).

Since d =
√
q − 2, the expression on the right-hand side can also be written as

d(q − 1
2

√
q − 9

2
)− 3, and this shows that (5.4) cannot hold.

Note that Proposition 5.2 together with Corollary 5.4 have the following corol-
lary.

Corollary 5.6. If P ∈ X̃(Fq), then either νP (S) = 2 or νP (S) = 1
2
(
√
q + 1),

according as (5.1) or (5.2) holds. If P ∈ X\X̃(Fq), then P ∈ B1 and νP (S) =
1
2
(
√
q − 1). In particular, B2 is empty.

Next we compute the exact value of ρ. Since π(X) is non-singular, the only
points P ∈ X for which νP (R) is positive are the ρ points with order sequence
(0, 1, 1

2
(
√
q + 1)). Since by (4.4) each of them has weight νP (R) = 1

2
(
√
q − 3), from

(4.5) it follows that
ρ = 6d(d − 2)/(

√
q − 3). (5.7)

Since d =
√
q − 2 we find that

ρ = 6(
√
q − 3) − 6/(

√
q − 3); (5.8)

but this is a contradiction, as ρ must be integer. Thus (5.4) is impossible, and
Theorem 2.2 has been proved.



On algebraic curves over a finite field with many rational points 341

References

[1] A. Campillo, Algebroid curves in positive characteristic, Lecture Notes in Math.
813, Springer Verlag, 1980.

[2] A. Cossidente, J.W.P. Hirschfeld ,G. Korchmáros and F. Torres, On plane max-
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