On the continuous dependence on parameters of solutions of the second order periodic problem

Monika Bartkiewicz

1 Introduction

This paper is devoted to the continuous dependence on functional parameters of solutions of the second order periodic problem. Sufficient conditions for the existence of solutions of this problem and their continuous dependence on parameters are presented.

The question of the existence and uniqueness of solutions for the periodic problem was widely discussed by Mawhin and Willem in many monographs and papers ([3], [4], [5], [6]). Some interesting results about the existence of periodic solutions of ordinary differential equations we can be found in papers ([2],[9]). The problem of the continuous dependence on parameters for scalar equations was investigated in papers $([7],[8])$. In the case of the functional parameter from L^{∞}, sufficient conditions for the existence of solutions of the second order differential equations with Dirichlet-type boundary conditions and their continuous dependence on parameters, are given in paper ([10]).

In this paper we consider a periodic problem of the second order with functional

[^0]parameter of the form
\[

$$
\begin{align*}
\frac{d}{d t} f_{\dot{u}}(t, u, \dot{u}, \omega) & =f_{u}(t, u, \dot{u}, \omega) \tag{1.1}\\
u(0)-u(T) & =0 \\
v(0)-v(T) & =0
\end{align*}
$$
\]

where $v=f_{\dot{u}}(t, u, \dot{u}, \omega)$ for $t \in[0, T]$ a.e., the parameter ω belongs to L^{∞}, and $u \in H_{T}^{1}$. Under some suitable assumptions, we prove that the set \tilde{V}_{k} of solutions of (1.1) is not empty, for any $\omega_{k} \in W$ and $\tilde{V}_{\omega_{k}}$ tends to $\tilde{V}_{\omega_{0}}$ in the sense of PainlevéKuratowski as ω_{k} tends to ω_{0} in the strong topology of L^{∞}. In many situations, it is more natural to consider the normal form of (1.1)

$$
\begin{align*}
\ddot{u} & =\nabla F(t, u, \omega) \tag{1.2}\\
u(0)-u(T) & =\dot{u}(0)-\dot{u}(T)=0
\end{align*}
$$

We give sufficient conditions under which (1.2) continuously depends on the parameter ω. We occupy ourselves with cases when ∇F is bounded and F is convex.

2 Formulation of the second order problem

By H_{T}^{1} we shall denote the space of absolutely continuous functions $u:[0, T] \rightarrow \mathbb{R}^{n}$ such that $\dot{u} \in L^{2}\left([0, T], \mathbb{R}^{n}\right)$ and $u(0)=u(T)$, where $T>0$. In the space H_{T}^{1} the norm is given by the formula $\|u\|=\left(\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}$, but it is easy to calculate that :

Lemma 1. In the space H_{T}^{1} the following norms are equivalent:

1. $\|u\|_{1}=\left(\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}$,
2. $\|u\|_{2}=\left(\int_{0}^{T}|u(t)|^{2} d t\right)^{\frac{1}{2}}+\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}$,
3. $\|u\|_{3}=\left|u_{0}\right|+\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}, u_{0}=u(0)$,
4. $\|u\|_{4}=|\bar{u}|+\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}, \bar{u}=\frac{1}{T} \int_{0}^{T} u(s) d s$.

Lemma 2. If the sequence u_{k} converges weakly to u_{0} in H_{T}^{1}, then \dot{u}_{k} converges weakly to \dot{u}_{0} in $L^{2}\left([0, T], \mathbb{R}^{n}\right)$ and u_{k} converges uniformly to u_{0} on $[0, T]$.

Let M be a convex and bounded subset of \mathbb{R}^{r}. By W we shall denote the set $W=\left\{\omega \in L^{\infty}\left([0, T], \mathbb{R}^{r}\right): \omega(t) \in M\right\}$. The set W will be referred to as a set of parameters.

Let $f=f(t, x, p, w)$ be any scalar function defined on the set $[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times M$ which satisfies the following assumptions:

1-a the functions f, f_{x}, f_{p}, f_{w} are measurable with respect to $t \in[0, T]$ for any $(x, p, w) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times M$ and continuous with respect to $(x, p, w) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times M$ for $t \in[0, T]$ a.e.,

1-b $f(t, x, \cdot \cdot w)$ is convex for $t \in[0, T]$ a.e. and any $(x, w) \in \mathbb{R}^{n} \times M$,
1 -c there exist some functions $a(\cdot) \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b(\cdot) \in L^{1}([0, T], \mathbb{R})$ and $c(\cdot) \in$ $L^{2}([0, T], \mathbb{R})$, such that
$|f(t, x, p, w)| \leq a(|x|)\left(b(t)+|p|^{2}\right)$,
$\left|f_{x}(t, x, p, w)\right| \leq a(|x|)\left(b(t)+|p|^{2}\right)$,
$\left|f_{p}(t, x, p, w)\right| \leq a(|x|)(c(t)+|p|)$,
$\left|f_{w}(t, x, p, w)\right| \leq a(|x|)\left(b(t)+|p|^{2}\right)$
for all $(x, p, w) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times M, t \in[0, T]$ a.e. .
Now, let us consider a boundary value problem, with a parameter $\omega \in W$, of the form

$$
\begin{align*}
\frac{d}{d t} f_{\dot{u}}(t, u(t), \dot{u}(t), \omega(t)) & =f_{u}(t, u(t), \dot{u}(t), \omega(t)) \tag{2.1}\\
u(0)-u(T) & =0 \\
v(0)-v(T) & =0, \quad t \in[0, T] \text { a.e., }
\end{align*}
$$

where $u \in H_{T}^{1}$ and $v(t)=f_{\dot{u}}(t, u(t), \dot{u}(t), \omega(t))$ for $t \in[0, T]$ a.e..
For this problem, the corresponding functional φ is given by

$$
\begin{equation*}
\varphi_{\omega}(u)=\int_{0}^{T} f(t, u(t), \dot{u}(t), \omega(t)) d t \tag{2.2}
\end{equation*}
$$

It is easy to see that, under the above assumptions, (2.1) is a system of Euler equations for functional (2.2).
Definition 1. We say that the functional $\varphi_{\omega}(\cdot)$ defined by (2.2) is uniformly coercive with respect to ω when there exists $x_{0} \in X$ and number $K_{1}>0$, such that $\varphi_{\omega}\left(x_{0}\right)<$ K_{1} for $\omega \in W$ and

$$
\forall K>0 \quad \exists R \quad \forall|x|>R \quad \forall \omega \in W \quad \varphi_{\omega}(x)>K
$$

3 The principal Iemma

Let $\varphi_{k}(\cdot)=\varphi_{\omega_{k}}(\cdot), k=0,1,2, \ldots$, be a sequence of functionals defined by (2.2) with $\omega=\omega_{k}$, i.e.

$$
\varphi_{k}(u)=\int_{0}^{T} f\left(t, u(t), \dot{u}(t), \omega_{k}(t)\right) d t
$$

where $\left\{\omega_{k}\right\}$ is a sequence of admissible parameters. Denote by Z_{k} the set of all minimizers of the functional φ_{k}, i.e.

$$
\begin{equation*}
Z_{k}=\left\{x \in H_{T}^{1}: \varphi_{k}(x)=\min \varphi_{k}(h) \quad h \in H_{T}^{1}\right\} \tag{3.1}
\end{equation*}
$$

Definition 2. We say that the sequence of sets Z_{k} defined by (3.1) tends to Z_{0} in the weak topology of H_{T}^{1} if any sequence $\left\{x_{k}\right\}, x_{k} \in Z_{k}, k=1,2, \ldots$ possesses cluster points (in the sense of the weak topology of H_{T}^{1}) in the set Z_{0} only.

The set of all cluster points of the sequence $\left\{x_{k}\right\}$ is often referred to as the upper limit (in the sense of Painlevé - Kuratowski) of the sets Z_{k} and denoted by $\limsup Z_{k}$.

In the case when the sets Z_{k} are singletons i.e. $Z_{k}=\left\{x_{k}\right\}, k=0,1,2, \ldots$, the convergence of the sets is identical with the convergence of points in the weak topology of H_{T}^{1} (see lemma (2)).

Now, we prove
Lemma 3. If the sequence $\left\{\omega_{k}\right\} \subset W, k=1,2, \ldots$, tends to $\omega_{0} \in W$ in the strong topology of L^{∞}, then the sequence $\varphi_{k}(\cdot)$ tends to $\varphi_{0}(\cdot)$ uniformly on the ball $B(0, R) \subset H_{T}^{1}$ for any fixed $R>0$.

Proof. Let $\varepsilon_{1}>0$ be an arbitrary number. Since $\omega_{k} \rightarrow \omega_{0}$ in L^{∞}, we have that there exists some K such that, for $k>K$ and $t \in[0, T]$, we have

$$
\left|\omega_{k}(t)-\omega_{0}(t)\right|<\varepsilon_{1}
$$

From the mean value theorem and assumption (1-c) we obtain

$$
\begin{aligned}
\left|\varphi_{k}(u)-\varphi_{0}(u)\right| & \leq \int_{0}^{T}\left|f_{w}\left(t, u(t), \dot{u}(t), \tilde{\omega}_{k}(t)\right)\right|\left|\omega_{k}(t)-\omega_{0}(t)\right| d t \\
& \leq \int_{0}^{T} a(|u(t)|)\left(b(t)+|\dot{u}(t)|^{2}\right)\left|\omega_{k}(t)-\omega_{0}(t)\right| d t
\end{aligned}
$$

where $\tilde{\omega}_{k}(t)=\omega_{0}(t)+\Theta(t)\left(\omega_{k}(t)-\omega_{0}(t)\right)$ and $0 \leq \Theta(t) \leq 1$. Since $\|u\| \leq R$, there exists a constant $C>0$ such that $a(|u(t)|) \leq C$ and $\int_{0}^{T}|\dot{u}(t)|^{2} d t \leq\|u\|^{2} \leq R^{2}$ for any $u \in B(0, R)$.

Let us take $\varepsilon>0$ sufficiently small. For $k>K$ and $u \in B(0, R)$ we have

$$
\left|\varphi_{k}(u)-\varphi_{0}(u)\right| \leq C \varepsilon_{1} \int_{0}^{T} b(t) d t+C \varepsilon_{1} \int_{0}^{T}|\dot{u}(t)|^{2} d t \leq C_{1} \varepsilon_{1}+C \varepsilon_{1} R^{2}<\varepsilon
$$

for some constant C_{1}. This ends the proof.
We shall prove the main lemma
Lemma 4. If

1. the function f satisfies assumptions (1-a)-(1-c),
2. $\varphi_{k}(\cdot)$ are weakly lower semicontinuous and uniformly coercive with respect to ω_{k} for $k=0,1,2, \ldots$,
then
a) for any admissable parameter ω_{k}, the set Z_{k} of minimizers of the functional $\varphi_{k}(\cdot)$ is not empty ,
b) there exists a ball $B(0, R) \subset H_{T}^{1}$ such that $Z_{k} \subset B(0, R)$ for $k=0,1,2, \ldots$.

Proof. Since, by assumption 2, there exists at least one minimizer u_{k} of $\varphi_{k}(\cdot)$, therefore $Z_{k}, k=0,1,2, \ldots$ is a non-empty set. Hence $\varphi_{k}\left(u_{k}\right) \leq \varphi_{k}(0)$ for $\omega_{k} \in W$. Let us put $P=\sup _{\omega_{k} \in W} \varphi_{k}(0)<\infty$. So there exists an $R>0$, such that for all $\omega_{k} \in W$

$$
\begin{equation*}
u_{k} \in Z_{k} \subset A_{k}=\left\{u \in H_{T}^{1}: \varphi_{k}(u) \leq P\right\} \subset B(0, R) \tag{3.2}
\end{equation*}
$$

Indeed, suppose that the second inclusion in (3.2) does not hold. Then, for all $R>0$ say $R=n, n=1,2, \ldots$, there exists a parameter $\omega_{n} \in W$ such that $A_{n} \nsubseteq B(0, R)$.. Thus there exists a sequence $\left\{u_{n}\right\}$ of elements from A_{n} such that $\left\|u_{n}\right\|>R=n, n=1,2, \ldots$. Since $\varphi_{n}(\cdot)$ is uniformly coercive, therefore for $\left\|u_{n}\right\| \rightarrow \infty, n \rightarrow \infty$, we have $\varphi_{n}\left(u_{n}\right) \rightarrow \infty$. Hence $u_{n} \notin A_{n}$ for $n>P$ and we have got a contradiction. It means that $A_{n} \subset B(0, R)$ for some $R>0$ and $k=0,1,2, \ldots$.

4 Theorem on the continuous dependence on parameters for the second order equation

Let $\left\{\omega_{k}\right\} \subset W$ be an arbitrary sequence and let us denote by $\tilde{V}_{k} \subset H_{T}^{1}$ a set of solutions of the periodic problem

$$
\begin{gather*}
\frac{d}{d t} f_{\dot{u}}\left(t, u(t), \dot{u}(t), \omega_{k}(t)\right)=f_{u}\left(t, u(t), \dot{u}(t), \omega_{k}(t)\right) \tag{4.1}\\
u(0)-u(T)=0 \\
v(0)-v(T)=0 \\
t \in[0, T] \text { a.e., } \quad k=0,1,2, \ldots
\end{gather*}
$$

and by

$$
V_{k}=\left\{u \in H_{T}^{1}: \varphi_{\omega_{k}}(u)=\min \varphi_{\omega_{k}}(x) \quad x \in H_{T}^{1}\right\}, \quad k=0,1,2, \ldots
$$

the set of minimizers of the functional $\varphi_{\omega_{k}}(\cdot)$ for $k=0,1,2, \ldots$. Now, we prove
Theorem 1. If

1. f satisfies assumptions (1-a)-(1-c),
2. for any admissible parameter ω_{k}, the set V_{k} of minimizers of the functional $\varphi_{\omega_{k}}(\cdot)$ is not empty ,
3. there exists a ball $B(0, R) \subset H_{T}^{1}$ such that $V_{k} \subset B(0, R)$ for $k=0,1,2, \ldots$,
4. $\varphi_{\omega_{k}}(\cdot)$ is convex for any $\omega_{k} \in W, k=0,1,2, \ldots$,
5. the sequence $\left\{\omega_{k}\right\} \subset W$ tends to $\omega_{0} \in W$ in the strong topology of L^{∞},
then $\limsup \tilde{V}_{k}$ is a non-empty set and $\lim \sup \tilde{V}_{k} \subset \tilde{V}_{0}$.
Proof. Let $\left\{u_{k}\right\} \subset H_{T}^{1}$ be a sequence such that $u_{k} \in V_{k}$ for $k=1,2, \ldots$. Since $V_{k} \subset B(0, R), k=1,2, \ldots$, with some $R>0$, we may assume that u_{k} tends to u_{0} in H_{T}^{1}. Denote

$$
m_{k}=\varphi_{k}\left(u_{k}\right)=\inf \left\{\varphi_{k}(x): x \in H_{T}^{1}\right\}=\inf \left\{\varphi_{k}(x): x \in B(0, R)\right\}
$$

Since, by assumption, $5, \varphi_{k}(\cdot)$ tends to $\varphi_{0}(\cdot)$ uniformly on ball $B(0, R)$ therefore

$$
\begin{equation*}
m_{k} \rightarrow m_{0} \tag{4.2}
\end{equation*}
$$

Suppose that u_{0} does not belong to V_{0}. The set is not empty, thus there exists $x \in V_{0}$ such that $u_{0} \neq x$. We have

$$
\begin{equation*}
m_{k}-m_{0}=\varphi_{k}\left(u_{k}\right)-\varphi_{0}(x)=\left[\varphi_{k}\left(u_{k}\right)-\varphi_{0}\left(u_{k}\right)\right]+\left[\varphi_{0}\left(u_{k}\right)-\varphi_{0}(x)\right] \tag{4.3}
\end{equation*}
$$

It is easy to notice that $\varphi_{0}\left(u_{k}\right)-\varphi_{0}(x)>0$. So, letting $k \rightarrow \infty$ in (4.3), we get a contradiction with (4.2). Hence $\limsup V_{k} \subset V_{0}$.

Moreover, the functionals $\varphi_{\omega_{k}}(\cdot)$ are convex and Gâteaux-differentiable, therefore $\tilde{V}_{k}=V_{k}, \quad k=0,1,2, \ldots$. This ends the proof.

Corollary 1. If the functional $\varphi_{\omega_{k}}(\cdot)$ is strictly convex, then problem (4.1) possesses a unique solution, i.e. the set $\tilde{V}_{k}=\left\{u_{k}\right\}$ is a singleton for $k=0,1,2, \ldots$ and u_{k} tends to u_{0} in the weak topology of H_{T}^{1}.

Theorem 2. If

1. f satisfies assumptions (1-a)-(1-c),
2. there exist some constants $a_{1}, b_{1}>0, a_{0}, b_{0} \geq 0$ and a function $c_{0} \in L^{1}([0, T], \mathbb{R})$, such that

$$
f(t, x, p, w) \geq a_{1}|p|^{2}-a_{0}|p|+b_{1}|x|^{2}-b_{0}|x|-c_{0}(t)
$$

for all $(x, p, w) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times M$,
3. $\varphi_{\omega_{k}}(\cdot)$ is convex for any $\omega_{k} \in W$,
4. the sequence $\left\{\omega_{k}\right\} \subset W$ tends to $\omega_{0} \in W$ in the strong topology of L^{∞},
then $\lim \sup \tilde{V}_{k}$ is a non-empty set and $\lim \sup \tilde{V}_{k} \subset \tilde{V}_{0}$.

Proof. To prove this theorem, we must show that $\varphi_{\omega_{k}}(\cdot)$ is uniformly coercive with respect to $\omega_{k} \in W, k=0,1,2, \ldots$, and weakly lower semicontinuous. By assumption (2)

$$
\begin{equation*}
f\left(t, u(t), \dot{u}(t), \omega_{k}(t)\right) \geq a_{1}|\dot{u}(t)|^{2}-a_{0}|\dot{u}(t)|+b_{1}|u(t)|^{2}-b_{0}|u(t)|-c_{0}(t) \tag{4.4}
\end{equation*}
$$

for any $\omega_{k} \in W$. So,

$$
\varphi_{\omega_{k}}(u) \geq a_{\min }\|u\|^{2}-\left(a_{0}-b_{0}\right) \sqrt{T}\|u\|-\bar{c},
$$

where $\|u\|=\left(\int_{0}^{T}|u(t)|^{2} d t+\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}, a_{\min }=\min \left\{a_{1}, b_{1}\right\}, \bar{c}=\int_{0}^{T} c_{0}(t) d t .$.
Since $a_{1}, b_{1}>0$, the functional $\varphi_{\omega_{k}}(\cdot)$ is uniformly coercive with respect to ω_{k}.
Our next step is to prove that the functional $\varphi_{\omega_{k}}(\cdot)$ is weakly lower semicontinuous. By assumption (2),

$$
f(t, x, p, w) \geq-\psi(t)
$$

for some positive and integrable function ψ. So the fact that $\varphi_{\omega_{k}}(\cdot)$ is weakly lower semicontinuous is obtained from theorem 10.8.i (see [1]).

By lemma (4), the set V_{k} of minimizers of the functional $\varphi_{\omega_{k}}(\cdot)$ for $k=0,1,2, \ldots$ is not empty and there exists a ball $B(0, R) \subset H_{T}^{1}$ such that $V_{k} \subset B(0, R)$ for $k=0,1,2, \ldots$. Now, we may apply theorem (1) to obtain the assertion of this theorem.

5 The normal form of the second order equation

Now, let $W=\left\{w \in L^{\infty}\left([0, T], \mathbb{R}^{r}\right): w(t) \in M\right\}$ where M is any convex and bounded subset of \mathbb{R}^{r} and let $F:[0, T] \times \mathbb{R}^{n} \times M \rightarrow \mathbb{R}$ be a function which satisfies the following assumptions :

4-a $F(t, x, w)$ is measurable with respect to $t \in[0, T]$ for any $(x, w) \in \mathbb{R}^{n} \times M$ and continuously differentiable in x for $t \in[0, T]$,

4-b there exist functions $a(\cdot) \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$and $b(\cdot) \in L^{1}([0, T], \mathbb{R})$ such that

$$
|F(t, x, w)| \leq a(|x|) b(t)
$$

$|\nabla F(t, x, w)| \leq a(|x|) b(t)$, for all $(x, w) \in \mathbb{R}^{n} \times M, t \in[0, T]$ a.e.

Let us consider the functional

$$
\begin{equation*}
\Phi_{\omega}(u)=\int_{0}^{T}\left(\frac{1}{2}|\dot{u}(t)|^{2}+F(t, u(t), \omega(t))\right) d t \tag{5.1}
\end{equation*}
$$

By corollary 1.1 (see [5]), the corresponding Euler equations are of the form

$$
\begin{align*}
& \ddot{u}(t)=\nabla F(t, u(t), \omega(t)), \quad t \in[0, T] \text { a.e. } \tag{5.2}\\
& u(T)-u(0)=\dot{u}(T)-\dot{u}(0)=0
\end{align*}
$$

where $u \in H_{T}^{1}$ and $\omega \in W$.

Lemma 5. The functional $\Phi_{\omega}(\cdot)$ given by (5.1) is weakly lower semicontinuous in H_{T}^{1}.

Proof. Since the functional

$$
H_{T}^{1} \ni u \longmapsto \int_{0}^{T} \frac{1}{2}|\dot{u}(t)|^{2} d t
$$

is convex and continuous, then it is weakly lower semicontinuous, and the functional

$$
H_{T}^{1} \ni u \longmapsto \int_{0}^{T} F(t, u(t), \omega(t)) d t
$$

is weakly continuous (see lemma (2)). Thus the functional $\Phi_{\omega}(\cdot)$, as the sum of weak lower semicontinuous functionals, is weakly lower semicontinuous in H_{T}^{1}.

For our later considerations, in the space H_{T}^{1} we shall use the norm given by

$$
\|u\|=|\bar{u}|+\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}, \bar{u}=\frac{1}{T} \int_{0}^{T} u(s) d s
$$

Let us denote by $\tilde{V}_{k} \subset H_{T}^{1}$ the set of solutions of the periodic problem of the form

$$
\begin{align*}
& \ddot{u}(t)=\nabla F\left(t, u(t), \omega_{k}(t)\right), \quad t \in[0, T] \text { a.e. } \\
& u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \tag{5.3}
\end{align*}
$$

where $\omega_{k} \in W, k=0,1,2, \ldots$, and by

$$
V_{k}=\left\{u \in H_{T}^{1}: \Phi_{\omega_{k}}(u)=\min \Phi_{\omega_{k}}(v) \quad v \in H_{T}^{1}\right\}, \quad k=0,1,2, \ldots
$$

the set of minimizers of the functional $\Phi_{\omega_{k}}(\cdot)$ for $k=0,1,2, \ldots$.
Now, we make some assumptions about F under which, we can prove some sufficient conditions for the continuous dependence on the parameters $\omega_{k} \in W$ for problem (5.3). The first - when ∇F is bounded by an integrable function (theorem (3)) and the second - in case when F is convex (theorem (4)).

Theorem 3. If

1. F satisfies assumptions (4-a)-(4-b),
2. there exists $g \in L^{1}\left([0, T], \mathbb{R}^{+}\right)$such that $\left|\nabla F\left(t, x, \omega_{k}\right)\right| \leq g(t) \quad \forall x \in \mathbb{R}^{n}$ and $\omega_{k} \in M, k=0,1,2, \ldots$,
3. $\int_{0}^{T} F\left(t, x, \omega_{k}(t)\right) d t \rightarrow \infty$ uniformly with respect to $\omega_{k} \in W$ as $|x| \rightarrow \infty$, for $k=0,1,2, \ldots$,
4. $\Phi_{\omega_{k}}(\cdot)$ is convex for any $\omega_{k} \in W$,
5. the sequence $\left\{\omega_{k}\right\} \subset W$ tends to $\omega_{0} \in W$ in the strong topology of L^{∞},
then $\lim \sup \tilde{V}_{k}$ is a non-empty set and $\lim \sup \tilde{V}_{k} \subset \tilde{V}_{0}$..
Proof. We have to prove that $\Phi_{\omega_{k}}(\cdot)$ is uniformly coercive with respect to ω_{k}. Let $\omega_{k} \in W$. For $u \in H_{T}^{1}$, we have $u=\bar{u}+\tilde{u}$ where $\bar{u}=\int_{0}^{T} u(s) d s$. From Sobolev's inequality we obtain that

$$
\begin{aligned}
& \Phi_{\omega_{k}}(u)= \\
& \quad=\int_{0}^{T}\left(\frac{1}{2}|\dot{u}(t)|^{2}+F\left(t, \bar{u}, \omega_{k}(t)\right)\right) d t+\int_{0}^{T}\left(F\left(t, u(t), \omega_{k}(t)\right)-F\left(t, \bar{u}, \omega_{k}(t)\right)\right) d t \\
& \quad=\int_{0}^{T}\left(\frac{1}{2}|\dot{u}(t)|^{2}+F\left(t, \bar{u}, \omega_{k}(t)\right)\right) d t+\int_{0}^{T} \int_{0}^{1}\left(\nabla F\left(t, \bar{u}+s \tilde{u}(t), \omega_{k}(t)\right), \tilde{u}(t)\right) d s d t \\
& \quad \geq \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-\int_{0}^{T} g(t) d t| | \tilde{u} \|_{\infty}+\int_{0}^{T} F\left(t, \bar{u}, \omega_{k}(t)\right) d t \\
& \quad \geq \frac{1}{2} \int_{0}^{T}|\dot{u}(t)|^{2} d t-C\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t\right)^{\frac{1}{2}}+\int_{0}^{T} F\left(t, \bar{u}, \omega_{k}(t)\right) d t \\
& \quad=\frac{1}{2}\|\dot{u}\|_{L^{2}}^{2}-C\|\dot{u}\|_{L^{2}}+\int_{0}^{T} F\left(t, \bar{u}, \omega_{k}(t)\right) d t
\end{aligned}
$$

where C is some constant. So if $\|u\| \rightarrow \infty$, then $\Phi_{\omega_{k}}(u) \rightarrow \infty$ uniformly with respect to ω_{k}.. By lemma (5) and lemma (4), the set V_{k} of minimizers of the functional $\Phi_{\omega_{k}}(\cdot)$ for $k=0,1,2, \ldots$ is not empty and there exists a ball $B(0, R) \subset H_{T}^{1}$ such that $V_{k} \subset B(0, R)$ for $k=0,1,2, \ldots$. Now, we can apply theorem (1) and get the proposition of this theorem.

Theorem 4. If

1. F satisfies assumptions (4-a)-(4-b),
2. $F\left(t, \cdot, \omega_{k}\right)$ is convex for $t \in[0, T]$ a.e. and for all $\omega_{k} \in M, k=0,1,2, \ldots$,
3. $F\left(t, x, \omega_{k}\right) \geq \alpha|x|-\beta$ for all $x \in \mathbb{R}^{n}$ and $\omega_{k} \in M, k=0,1,2, \ldots$, where $\alpha>0$ and $\beta \geq 0$ are some constants,
4. the sequence $\left\{\omega_{k}\right\} \subset W$ tends to $\omega_{0} \in W$ in the strong topology of L^{∞},
then $\limsup \tilde{V}_{k}$ is a non-empty set and $\lim \sup \tilde{V}_{k} \subset \tilde{V}_{0} .$.
Proof. Let $\omega_{k} \in W, k=0,1,2, \ldots$. Directly from the assumptions we can conclude that the real function

$$
g_{k}: \mathbb{R}^{n} \ni x \rightarrow \int_{0}^{T} F\left(t, x, \omega_{k}(t)\right) d t, \quad k=0,1,2, \ldots
$$

has a minimum at some point $\bar{x}_{\omega_{k}}$ for which

$$
\int_{0}^{T} \nabla F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right) d t=0, \quad k=0,1,2, \ldots
$$

and

$$
\int_{0}^{T} F\left(t, x, \omega_{k}(t)\right) d t \rightarrow \infty \quad \text { as }|x| \rightarrow \infty \quad k=0,1,2, \ldots
$$

Moreover,

$$
g_{k}(x)=\int_{0}^{T} F\left(t, x, \omega_{k}(t)\right) d t \geq \int_{0}^{T}(\alpha|x|-\beta) d t=\alpha_{0}|x|-\beta_{0}
$$

where $\alpha_{0}>0$.
Let us denote $A=a(0) \int_{0}^{T} b(t) d t$ and $B(0, \rho)=\left\{x \in \mathbb{R}^{n}: \alpha_{0}|x|-\beta_{0} \leq A\right\}$. By assumption (4-b)

$$
g_{k}\left(\bar{x}_{\omega_{k}}\right) \leq g_{k}(0) \leq A, \quad k=0,1,2, \ldots
$$

Note that all minimizers $\bar{x}_{\omega_{k}} \in B(0, \rho)$ for $k=0,1,2, \ldots$ Indeed,

$$
\bar{x}_{\omega_{k}} \in\left\{x \in \mathbb{R}^{n}: g_{k}(x) \leq A\right\} \subset\left\{x \in \mathbb{R}^{n}: \alpha_{0}|x|-\beta_{0} \leq A\right\}=B(0, \rho)
$$

Moreover, by Theorem 1.7. [5], the problem (5.3) has at least one solution which minimizes $\Phi_{\omega_{k}}$ on H_{T}^{1} for $k=0,1,2, \ldots$ Thus the set of minimizers V_{k} of $\Phi_{\omega_{k}}(\cdot)$ is not empty for $k=0,1,2, \ldots$

Now, let $u_{k}=\bar{u}_{k}+\tilde{u}_{k}$ be a minimizer of $\Phi_{\omega_{k}}(\cdot)$. We have to show that there exists a ball $B(0, R)$ such that $V_{k} \subset B(0, R), k=0,1,2, \ldots$.

By the assumption (4-b)

$$
\Phi_{\omega_{k}}(0) \leq A, \quad k=0,1,2, \ldots
$$

Since u_{k} is a minimizer of $\Phi_{\omega_{k}}(\cdot)$, we obtain

$$
\begin{aligned}
& A \geq \Phi_{\omega_{k}}\left(u_{k}\right) \\
& \begin{aligned}
\geq & \frac{1}{2} \int_{0}^{T}\left|\dot{u}_{k}(t)\right|^{2} d t
\end{aligned} \quad+\int_{0}^{T} F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right) d t \\
&+\int_{0}^{T}\left(\nabla F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right), u_{k}(t)-\bar{x}_{\omega_{k}}\right) d t \\
& \geq \frac{1}{2} \int_{0}^{T}\left|\dot{u}_{k}(t)\right|^{2} d t+\int_{0}^{T} F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right) d t \\
& \quad-\int_{0}^{T}\left|\nabla F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right)\right| d t| | \tilde{u}_{k} \|_{\infty} \\
& \geq \frac{1}{2} \int_{0}^{T}\left|\dot{u}_{k}(t)\right|^{2} d t+\int_{0}^{T} F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right) d t-\left\|\tilde{u}_{k}\right\|_{\infty}\left|\int_{0}^{T} \nabla F\left(t, \bar{x}_{\omega_{k}}, \omega_{k}(t)\right) d t\right| \\
& \geq \frac{1}{2}\left\|\dot{u}_{k}\right\|_{L^{2}}^{2}-C_{1}
\end{aligned}
$$

where $C_{1}>0$ and $k=0,1,2, \ldots$.
We have proved $(\operatorname{by}(5.4))$ that

$$
\left\|\dot{u}_{k}\right\|_{L^{2}} \leq D_{1}, \quad k=0,1,2, \ldots
$$

for some constant $D_{1}>0$.
Sobolev's inequality implies that there exists a constant $C_{2}>0$ such that $\left\|\tilde{u}_{k}\right\|_{\infty} \leq$ C_{3}. From the convexity of F we obtain :

$$
\begin{aligned}
F\left(t, \frac{1}{2} \bar{u}_{k}, \omega_{k}(t)\right) & =F\left(t, \frac{1}{2}\left(u_{k}(t)-\tilde{u}_{k}(t)\right), \omega_{k}(t)\right) \leq \frac{1}{2} F\left(t, u_{k}(t), \omega_{k}(t)\right) \\
& +\frac{1}{2} F\left(t,-\tilde{u}_{k}(t), \omega_{k}(t)\right)
\end{aligned}
$$

for $t \in[0, T]$ a.e. and $k=0,1,2, \ldots$ Hence

$$
\begin{align*}
A & \geq \Phi_{\omega_{k}}\left(u_{k}\right) \\
& \geq \frac{1}{2} \int_{0}^{T}\left|\dot{u}_{k}(t)\right|^{2} d t+2 \int_{0}^{T} F\left(t, \frac{1}{2} \bar{u}_{k}, \omega_{k}(t)\right) d t-\int_{0}^{T} F\left(t,-\tilde{u}_{k}(t), \omega_{k}(t)\right) d t \tag{5.5}\\
& \geq 2 \int_{0}^{T} F\left(t, \frac{1}{2} \bar{u}_{k}, \omega_{k}(t)\right) d t-C_{4} \geq \alpha\left|\bar{u}_{k}\right|-C_{5}
\end{align*}
$$

for some $C_{4}, C_{5}>0$.
From (5.5) we have $\left|\bar{u}_{k}\right| \leq D_{2}$ for $k=0,1,2, \ldots$ So,

$$
\left\|u_{k}\right\| \leq D_{1}+D_{2}=R
$$

Hence V_{k} is bounded for $k=0,1,2, \ldots$. Of course by assumption $2, \Phi_{\omega_{k}}(\cdot)$ is convex for any $\omega_{k} \in W$. From theorem (1) we get the assertion.

Basing ourselves on theorems (2) and (4), we consider two examples.
Example 1. Let $f:[0, T] \times \mathbb{R}^{2} \times \mathbb{R}^{2} \times M \rightarrow \mathbb{R}$ be a function defined by the formula

$$
\begin{align*}
f(t, x, p, w) & =\left(p^{1}\right)^{2}+\left(p^{2}\right)^{2}+p^{2} \sin t+4(1+|w|)\left[\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}\right]^{2} \\
& +\frac{1}{2}\left[\left(p^{1}\right)^{2}+\left(p^{2}\right)^{2}\right]\left[\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}\right]+w \sin x^{1} \sin x^{2}+t x^{2} w \tag{5.6}\\
& =|p|^{2}+p^{2} \sin t+4(1+|w|)|x|^{2}+\frac{1}{2}|p|^{2}|x|^{2}+w \sin x^{1} \sin x^{2}+t x^{2} w
\end{align*}
$$

where $p=\left(p^{1}, p^{2}\right), x=\left(x^{1}, x^{2}\right), M=[-1,1]$. Let us notice that

$$
f(t, x, p, w) \geq|p|^{2}-|p|+4|x|^{2}-T|x|-1
$$

Consider the functional

$$
\varphi_{\omega}(u)=\int_{0}^{T} f(t, u(t), \dot{u}(t), \omega(t)) d t
$$

where f is given by (5.6). One can show that φ_{ω} is strictly convex for any $w \in W=$ $\left\{\omega \in L^{\infty}\left([0, T], \mathbb{R}^{r}\right): \omega(t) \in M\right\}$. Let $\left\{\omega_{k}\right\} \subset W$ be any sequence strongly converging to $\omega_{0} \in W$. Consider a periodic problem with parameters $\omega_{k}, k=0,1,2, \ldots$.

$$
\begin{gathered}
\frac{d}{d t}\left(2 \dot{u}^{1}+|u|^{2} \dot{u}^{1}\right)=8 u^{1}\left(1+\left|\omega_{k}\right|\right)+u^{1}|\dot{u}|^{2}+\omega_{k} \cos u^{1} \sin u^{2} \\
\frac{d}{d t}\left(2 \dot{u}^{2}+|u|^{2} \dot{u}^{2}+\sin t\right)=8 u^{2}\left(1+\left|\omega_{k}\right|\right)+u^{2}|\dot{u}|^{2}+\omega_{k} \sin u^{1} \cos u^{2}+t \omega_{k} \\
u(0)-u(T)=0 \\
\dot{u}^{1}(0)-\dot{u}^{1}(T)=0, \quad \dot{u}^{2}(0)-\dot{u}^{2}(T)=\left(2+|u(0)|^{2}\right)^{-1} \sin T
\end{gathered}
$$

From theorem(2) and corollary(1) it follows that, for each $\omega_{k}, k=0,1,2, \ldots$, this problem possesses a uniquely defined solution $u_{k} \in H_{T}^{1}$, and that the sequence $\left\{u_{k}\right\}$ tends to u_{0} in the weak topology of H_{T}^{1}.
Example 2. Let $W=\left\{\omega \in L^{\infty}([0, T], \mathbb{R}): 0 \leq \omega(t) \leq 1\right\}$ and let $\left\{\omega_{k}\right\} \subset W, k=$ $1,2, \ldots$ be any sequence strongly converging to ω_{0}. For $k=0,1,2, \ldots$, consider the scalar problem

$$
\begin{gather*}
\ddot{u}=u e^{|u|^{2}+\omega_{k}}+2 u\left[2+\omega_{k}\right]^{2}+u^{2} \cos u+2 u \sin u+e(t) \tag{5.7}\\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{gather*}
$$

where function $e:[0, T] \rightarrow \mathbb{R}$ is bounded. In this case, F is of the form

$$
F(t, x, w)=\frac{1}{2} e^{|x|^{2}+w}+[2+w]^{2}|x|^{2}+|x|^{2} \sin x+e(t) x
$$

Let us notice that

$$
F(t, x, w) \geq 3|x|^{2}-K|x| \geq K|x|-\frac{K^{2}}{3}
$$

where $K=\max |e(t)|$ for $t \in[0, T]$. If $e \equiv 0$, then $F(t, x, w) \geq 6|x|-3$. Of course, F is strictly convex, so, using theorem(4) and corollary(1), we have that problem (5.7) has a unique solution $u_{k} \in H_{T}^{1}$, and that the sequence $\left\{u_{k}\right\}$ tends to u_{0} in the weak topology of H_{T}^{1}.

References

[1] L.Cesari, Optimization - Theory and Applications, Springer-Verlag, New York, 1983.
[2] D.Idczak, M-periodic problem of order 2k, Topological Methods, Nonlinear Analysis, 11 (1998) no. 1, 169-185.
[3] J.Mawhin, Nonlinear variational two-point boundary value problems, Variational methods (Paris 1988), 209-218, Progr.Nonlinear Differential Equations Appl., 4, Birkhäuser Boston, Boston, MA, 1990,
[4] -, W.Ge, Positive solutions to boundary value problems for second order ordinary differential equations with singular nonlinearities, Results Math. 34 (1998), no 1-2, 108-119,
[5] J.Mawhin, M.Willem, Critical Point Theory and Hamiltonian System, SpringerVerlag, New York, 1989.
[6] -, Variational methods and boundary value problems for vector second order equations and applications to the pendulum equation, Nonlinear analysis and optimization (Bologna, 1982), 181-192, Lecture Notes in Math., 1107, Springer, Berlin-New York, 1984,
[7] S.K.Ingram, Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems, Pacific J. Math. 41 (1972), 395-408.
[8] A.Lepin, W.Ponomariev, Continuous dependence on parameters of solutions of the boundary value problem for ordinary differential equations, Differential equations 9, no. 4 (1973), 626-629. (in Russian).
[9] A.Nowakowski, A.Rogowski, Periodic solutions the calculus of variations and differential equations, Nonlinear Anal. 21 (1993), no. 7, 537-546.
[10] S.Walczak, On the continuous dependence on parameters of solutions of the Dirichlet problem, Part I. Coercive case, Part II. The case of saddle points, Bulletin de la Classe des Sciences de l'Académic Royale de Belguiqe, 7-12 (1995) Part I 247-261, Part II 263-273.

Faculty of Mathematics,
University of Łódź, ul. S.Banacha 22, 90-238
Łódź,
Poland.
email : bartkiew@imul.uni.lodz.pl.

[^0]: Received by the editors January 2000.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 34B15,34B25,49J45.
 Key words and phrases : Periodic problem, variational methods, continuous dependence on parameters.

