Weighted eigenfunctions and Gauss curvature of conical revolution surfaces

E. Lami Dozo
B. Toukourou

Abstract

We give a description of Gauss curvatures in revolution surfaces with conical singularities at the extreme opposite points thanks to positive eigenfunctions of an eigenvalue problem in dimension one with a prescribed singular weight.

1 Introduction

Given a revolution surface

$$
\begin{equation*}
S=\{(\alpha(v) \cos u, \alpha(v) \sin u, \beta(v)) ; 0<u<2 \pi, a<v<b\} \tag{1}
\end{equation*}
$$

where $\alpha(v)>0, \alpha, \beta$ regular functions and supposing the generating curve $\gamma=$ $(\alpha(v), 0, \beta(v))$ parametrized by arc-length, that is

$$
\left.\alpha^{\prime 2}+\beta^{\prime 2}=1 \text { in }\right] a, b[
$$

Then the Gauss curvature K of S is given by

$$
\begin{equation*}
\left.K=\frac{-\alpha^{\prime \prime}(v)}{\alpha(v)}, v \in\right] a, b[\tag{2}
\end{equation*}
$$

[DC, p. 162].
If α, β are regular up to $[a, b]$ and

$$
\left\{\begin{array}{l}
\alpha(a)=\alpha(b)=0,0<\alpha^{\prime}(a) \leq 1,-1 \leq \alpha^{\prime}(b)<0 \tag{3}\\
\beta(a)<\beta(b)
\end{array}\right.
$$

Received by the editors October 1999.
Communicated by J. Mawhin.
the surface S will have conical singularities at $P_{a}=(0,0, \beta(a))$ and $P_{b}=(0,0, \beta(b))$ with angles θ_{a} and θ_{b} determined by

$$
\left(\cos \theta_{a}, \sin \theta_{a}\right)=\left(\beta^{\prime}(a), \alpha^{\prime}(a)\right),\left(\cos \theta_{b}, \sin \theta_{b}\right)=\left(-\beta^{\prime}(b),-\alpha^{\prime}(b)\right)
$$

where θ_{a}, θ_{b} are in $] 0, \pi[$.
We describe the family of K^{\prime} s looking for solutions of the following boundary value problem

$$
\left\{\begin{array}{l}
\left.\alpha^{\prime \prime}+\lambda g(v) \alpha=0 \text { in }\right] a, b[\tag{4}\\
\alpha(a)=\alpha(b)=0 \\
\alpha(v)>0 \text { in }] a, b[
\end{array}\right.
$$

which are in $C^{2}(] a, b[) \cap C^{1}([a, b])$ and satisfy $\alpha^{\prime}(a)>0>\alpha^{\prime}(b)$. We do so because for a given weight $g(v)$, in the half-line $\{t g ; t>0\}$ there will be at most one $K=\lambda g$. Functions g will be allowed to have singularities at a and b like simple poles (if they were analytic) by considering natural examples. The main result on (4) for such a g is supplementary to those on the subject found in [DF, M-M].

In $[\mathrm{T}]$, M. Troyanov fixes a Riemann surface with a metric $d s_{0}^{2}$ having prescribed conical singularities at a prescribed finite numbers of points and gives rather complete results on the Gauss curvatures on metrics $d s^{2}$ conformal to $d s_{0}^{2}$, (i.e. $d s^{2}=e^{2 f} d s_{0}^{2}$). Here we describe curvatures associated to warped singular metrics $\alpha^{2}(v) d u^{2}+d v^{2}$ on $] a, b\left[\times S^{1}\right.$ which are not conformally equivalent.

In $\S 2$ we give a pointwise necessary condition on K, additional to the integralones given in $[\mathrm{E}-\mathrm{T}]$ and examples motivating the conditions on g which appear in the result on (4) in $\S 3$. Finally, building surfaces S having the same curvature $K=\lambda g$ associated to $\left\{s \alpha_{g} ; 0<s \leq 1\right\}$ where $\left\|\alpha_{g}^{\prime}\right\|_{\infty}=1$ is indicated.

2 Necessary condition, examples

The area element of S is $d A=\alpha(v) d u d v$. A curvature K given by (2) satisfies [cf E-T],

$$
\begin{equation*}
\int_{S} K d A=2 \pi\left(\alpha^{\prime}(a)-\alpha^{\prime}(b)\right)>0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S} K^{\prime} d A=-2 \pi\left(\alpha^{\prime}(a)+\alpha^{\prime}(b)\right)\left(\alpha^{\prime}(a)-\alpha^{\prime}(b)\right) \tag{6}
\end{equation*}
$$

(5) implies that K is positive somewhere. A pointwise necessary condition, independent of α, is given by Barta's inequality [B]

$$
\begin{equation*}
\sup _{j a, b[} K \geq\left(\frac{\pi}{b-a}\right)^{2} \geq \inf _{j a, b[} K \tag{7}
\end{equation*}
$$

For $\varphi_{1}=\sin \frac{\pi v}{b-a}$, we have

$$
\begin{equation*}
\int_{S}\left[K-\left(\frac{\pi}{b-a}\right)^{2}\right] \varphi_{1} d A=0 \tag{8}
\end{equation*}
$$

integrating $K \alpha \varphi_{1}=-\alpha^{\prime \prime} \varphi_{1}$ by parts. If we have one equality in (7), we deduce from (8) that $K \equiv\left(\frac{\pi}{b-a}\right)^{2}$ and $\alpha=\varphi_{1}$ is a solution which is unique modulo a
normalization. We remark that $\left(\frac{\pi}{b-a}\right)^{2}$ is the only positive constant curvature. This uniqueness of K in $\{t K ; t>0\}$ will also hold for non constant K 's.

The following examples are characteristic of the type of curvatures we will prescribe.
Example 1. (Small circle). The curve

$$
\gamma_{s}=(\sin v-\sin \delta, 0,-\cos v+\cos \delta), v \in[\delta, \pi-\delta]
$$

where $0<\delta<\frac{\pi}{2}$, describes a circular arc of length $\pi-2 \delta$ parametrized by arclength. The corresponding surface S_{s} has conical singularities with same angle at $(0,0,0)$ and $(0,0,2 \cos \delta)$. The curvature

$$
\left.K_{s}=\frac{\sin v}{\sin v-\sin \delta}, \quad\right] \delta, \pi-\delta[
$$

satisfies $K_{p}(v)>0$ and has simple poles at δ and $\pi-\delta$.
Example 2. (Big circle)

$$
\gamma_{b}=(\sin v+\sin \delta, 0, \cos \delta-\cos v), v \in[-\delta, \pi+\delta]
$$

describes the complementary circular arc to γ_{s}. The surface S_{b} has singularities at the same points than S_{s} with complementary angles to those of S_{s}. The Gauss curvature of S_{b} is

$$
\left.K_{b}=\frac{\sin v}{\sin v+\sin \delta}, v \in\right]-\delta, \pi+S[.
$$

K_{p} changes sign at $v=0$ and $v=\pi$ and has also simple poles at $-\delta$ and $\pi+\delta$.

3 A sufficient condition

Taking into account the examples in $\S 2$ we introduce a condition on g to obtain a positive eigenfunction α of (4) in the Sobolev space $H_{0}^{1}(] a, b[)$. We proced as in [M-M,DF], consequently we only detail the differences in our proof.

Theorem 3.1. Let $g \in C(] a, b[)$ be such that

$$
\begin{equation*}
d_{a}=\lim _{v \rightarrow a^{+}}(v-a) g(v), d_{b}=\lim _{v \rightarrow b^{-}}(b-v) g(v) \tag{9}
\end{equation*}
$$

exist. If g is positive at one point, then there is a unique positive λ such that (4) has a solution $\alpha \in H_{0}^{1}(] a, b[)$. Moreover $\alpha \in C^{1}([a, b])$ and if $d_{\alpha} d_{b} \neq 0$ we have $\alpha^{\prime}(a)>0>\alpha^{\prime}(b)$.

Proof. We may suppose $[a, b]=[0, L]$. Let $\varphi \in C_{c}^{1}(] 0, L[)$ and $\psi \in C_{0}^{1}([a, b])$, i.e. $\psi \in C^{1}([a, b]), \psi(0)=\psi(L)=0$. From

$$
\begin{align*}
\int_{0}^{L} g \psi \varphi d v= & \int_{0}^{L / 2} v g(v)\left(\frac{1}{v} \int_{0}^{v} \psi^{\prime}(t) d t\right) \varphi(v) d v \\
& +\int_{0}^{L / 2}(L-v) g(v)\left(\frac{1}{L-v} \int_{L-v}^{L} \psi^{\prime}(t) d t\right) \varphi(v) d v . \tag{10}
\end{align*}
$$

and from Hardy's inequality : $\left\|\frac{1}{v} \int_{0}^{v} w(t) d t\right\|_{L^{2}\left(\mathbb{R}_{+}\right)} \leq 2\|w\|_{L^{2}\left(\mathbb{R}_{+}\right)}$applied to ψ extended by 0 out of $[0, \mathrm{~L}]$ and to $\tilde{\varphi}(v)=\psi(L-v)$ on $[0, \mathrm{~L}]$ also extended by 0 to \mathbb{R}_{+}, we deduce

$$
\left|\int_{0}^{L} g \psi \varphi d v\right| \leq\|v g(v) \varphi(v)\|_{L^{2}} 2\left\|\psi^{\prime}\right\|_{L^{2}}+\|(L-v) g(v) \varphi(v)\|_{L^{2}} 2\left\|\psi^{\prime}\right\|_{L^{2}}
$$

From (10) we obtain

$$
\begin{equation*}
\left|\int_{0}^{L} g \psi \varphi d v\right| \leq M\|\varphi\|_{L^{2}}\left\|\psi^{\prime}\right\|_{L^{2}}, \varphi \in C_{c}^{1}(] 0, L[), \psi \in C_{0}^{1}([0, L]) \tag{11}
\end{equation*}
$$

where $M=2\left(\|v g(v)\|_{\infty}+\|(L-v) g(v)\|_{\infty}\right)$.
As in [M-M,DF] the map $\varphi \rightarrow T \varphi: H_{0}^{1}(] 0, L[) \rightarrow H_{0}^{1}(] 0, L[)$ defined by

$$
\int_{0}^{L}(T \varphi)^{\prime} \psi^{\prime} d v=\int_{0}^{L} g \varphi \psi d v, \psi \in H_{0}^{1}(] 0, L[)
$$

is then linear, compact and symmetric for the scalar product $\int_{0}^{L} \varphi^{\prime} \psi^{\prime} d v$ in $H_{0}^{1}(] 0, L[)$. Non zero eigenvalues μ of T correspond to eigenvalues $\lambda=\mu^{-1}$ of (4). The hypothesis $g\left(v_{0}\right)>0$ for some $\left.v_{0} \in\right] 0, L[$ gives that the eigenvalues $\lambda \geq 0$ of (4) form a sequence $0<\lambda_{k}<\lambda_{k+1}, k=1,2, \ldots$ with $\lim _{k \rightarrow \infty} \lambda_{k}=\infty$. The first one λ_{1} called principal eigenvalue is simple and is the only λ_{k} with a positive eigenfunction $\varphi_{1}(v)>0$ on $] 0, L\left[\right.$. Besides $\varphi_{1}(v)>0$ on $] 0, L\left[\right.$ and $\varphi_{1} \in C_{0}([0, L])$.

The type of singularity of $K(v) \equiv \lambda_{1} g(v)$ at $v=0$ implies for $\alpha=\varphi_{1}$ that $\lim _{v \rightarrow 0^{+}} v \alpha^{\prime \prime}(v)=-\lim K(v) \alpha(v)=0$, so $v \alpha^{\prime \prime}(v) \in C\left(\left[0, \frac{L}{2}\right]\right.$ and $v a^{\prime \prime}(v)=h^{\prime}(v)$ on $] 0, L[$, where $h(v)=v \alpha^{\prime}(v)-\alpha(v)$. Hence $\lim _{v \rightarrow 0^{+}} \frac{h(v)}{v}=\lim _{v \rightarrow 0^{+}} \alpha^{\prime}(v)-\frac{\alpha(v)}{v}=0$ also, so $\alpha^{\prime}\left(0^{+}\right) \equiv \alpha^{\prime}(0)$ exists. Analogously $\alpha^{\prime}\left(L^{-}\right) \equiv \alpha^{\prime}(L)$ exists and $\alpha \in C_{0}^{1}([a, b])$. Finally $\lambda=\lambda_{1}, \alpha=\varphi_{1}$ is our solution.

If $d_{a} \equiv \lim _{v \rightarrow 0^{+}} v g(v) \neq 0$, we have a $\delta>0$ such that $g(v)>0$ on $] 0, \delta[$ and $v g(v)$ is continuous and bounded on $] 0, \delta\left[\right.$ and $\alpha^{\prime \prime}+\lambda g \alpha=0$ on $] 0, \delta[$ with $-\alpha$ having a as maximum value attained at 0 . These four properties and a well adapted maximum principle for (9) [P-W, Th. 4, p. 7] insure $\alpha^{\prime}(0)>0$. Also $\alpha^{\prime}(L)<0$ follows. Q. E. D.

Remark 3.2. The existence of λ and α holds if $(v-a) g(v)(b-v)$ is bounded in $] a, b\left[\right.$. Conditions (9) with $d_{a} d_{b} \neq 0$ are meaningful for $g(v)$ unbounded. If $g(v)$ is bounded (so $d_{a}=d_{b}=0$), from $g=g^{+}-g^{-}$and $-\alpha^{\prime \prime}-\lambda g^{+} \alpha=\lambda g^{-} \alpha$ we have $\alpha^{\prime}(a)>0>\alpha^{\prime}(b)$. [DF, Th. 1.17].

4 Building S

Given g fulfilling the hypothesis of the preceding theorem, there is only one $\alpha=$ $\alpha_{g} \in C^{2}(] a, b[) \cap C^{1}([a, b])$ such that $\left\|\alpha_{g}^{\prime}\right\|_{\infty}=1, \alpha(v)>0$.

If $g(v)>0$ on $] a, b\left[\right.$, then $K(v)=\lambda g(v)>0$ and $-\alpha^{\prime \prime}(v)=K(v) \alpha(v)>0$ also. Hence α is concave on $[a, b]$ and

$$
\lim _{v \rightarrow a^{+}} K(v) \alpha(v)=\lim _{v \rightarrow a^{+}} K(v)(v-a) \frac{a(v)}{v-a}=\lambda d_{a} \alpha^{\prime}(a)
$$

implies $\alpha \in C^{2}([a, b])$ and α^{\prime} strictly decreasing in $[a, b]$ with $\left\|\alpha^{\prime}\right\|_{\infty}=1$. If $0<$ $\alpha^{\prime}(a)<1$ we deduce $\alpha^{\prime}(b)=-1$. Defining

$$
\begin{equation*}
\beta(x)=\int_{a}^{v}\left(1-\alpha^{\prime}(t)^{2}\right)^{1 / 2} d t, \tag{12}
\end{equation*}
$$

the surface generated by $(\alpha, 0, \beta)$ will have a conical singularity at $(0,0,0)$ with angle $\left.\theta_{a} \in\right] 0, \frac{\pi}{2}\left[\right.$ and of angle $\theta_{b}=\frac{\pi}{2}$ at $(0,0, \beta(b))$ i.e. no singularity. If we consider $\rho \alpha, 0<\rho<1$, (12) gives β_{ρ} and we obtain a family of surfaces S_{ρ} with conical singularities with the same curvature $K(v)=\lambda g(v)$. If $\alpha^{\prime}(a)=-\alpha^{\prime}(b)=1, S$ will have no singularities, however S_{ρ} will have.

Two examples illustrating this case are $g \equiv 1$ on $[c, b]=[0, L]$, then $\lambda=\left(\frac{\pi}{L}\right)^{2}$, $K=\left(\frac{\pi}{L}\right)^{2}$ and $\alpha_{1}=\frac{L}{\pi} \sin \frac{\pi}{L} v$ satisfies $\alpha_{1}^{\prime}(0)=-\alpha^{\prime}(L)=1$. The surface S is a sphere of radius $\frac{L}{\pi}$. The other example is $g(v)=[v(L-v)]^{-1}$ on $] 0, L[$, then $\lambda=2$ and $\alpha_{g}=\frac{1}{L} v(L-v)$.

Finally, if g changes sign a finite number of times (hence K, as in the "big circle") that is if g has a finite number of zeros in $\left[a, b\left[\right.\right.$ and at each zero v_{0}, we have $g^{\prime}\left(v_{0}\right) \neq 0$, then $-\alpha_{g}^{\prime \prime}=\lambda g \alpha_{g}$ has the same zeros, so $\left|\alpha_{g}^{\prime}(v)\right|=1$ has a finite number of solutions. For the associated partition of $] a, b[, \alpha$ will be successively convex then concave or vice-versa on contiguous subintervals. A convenient choice of the sign in $\pm\left(1-\alpha^{\prime}(t)^{2}\right)^{1 / 2}$ at each subinterval and (12) define β and we obtain $S=S_{g}$ of class C^{1}.

References

[1] BARTA, J. Sur la vibration fondamentale d'une membrane. CRAS 204 (1937) 472-473.
[2] DO CARMO, M. R. Differential Geometry of Curves and Surfaces. Prentice Hall (1976).
[3] TROYANOV, M. Prescribing curvature on compact surfaces with conical singularities. Trans. AMS 324 (1991) 793-821.
[4] DE FIGUEIREDO, D. Positive Solutions of Semilinear Elliptic Problems. "Differential Equations". Proc. Saõ Paulo 1981. Lect. Notes in Math. 957, Springer, 1982.
[5] MANES, A. ; MICHELETTI, A. M. Un'esstensione della teoria variazionale classica degli autovalori per operatori ellitici de secondo ordini. Boll. U.M.I vol. 7 (1973) 285-301.
[6] TOUKOUROU, B. ; EZIN, J.-P. Courbure scalaire prescrite sur une surface de révolution à singularités coniques. Preprint.

Enrique LAMI DOZO
CONICET - Univ. de Buenos Aires and Univ. Libre de Bruxelles.

Bouraïma TOUKOUROU
Univ. Nationale du Bénin
Institut de Mathématiques et de Sciences Physiques
B. P. 613 PORTO-NOVO

