Flag-transitive hyperplane complements in
classical generalized quadrangles

A. Pasini S. Shpectorov

Abstract

Let H be a geometric hyperplane of a classical finite generalized quad-
rangle @ and let C' = @ \ H be its complement in @, viewed as a point-line
geometry. We shall prove that C admits a flag-transitive automorphism group
if and only if H spans a hyperplane of the projective space in which @ is nat-
urally embedded (but with @ viewed as Q(4,q) when Q = W(q), g even).
Furthermore, if Q is the dual of H(4,¢?) and H, C are as above, then C is
flag-transitive if and only if H = p* for some point p of Q.

1 Introduction

Recall that a geometric hyperplane H of a point-line geometry I' = (P, L) is a proper
subset of P such that every line of I' meets H in one or all points. Suppose H is
a geometric hyperplane of I'. Define a new (possibly disconnected) geometry C by
taking as its set of points P\ H and as its lines the intersections with P\ H of those
lines of I' that are not fully contained in H. The most well-known example of this
construction is the affine space wich is constructed in this way from a projective
space of the same dimension. Because of this example we call the construction
(generalized) affinization.

Let now I' be a diagram geometry and ¢ be one of the types of I'.  With T'
and ¢ we can associate a point-line geometry I'; by taking as points of I'; all the
elements of type ¢. The lines of I'; are defined as follows: each flag of ' of co-
type ¢ defines a line, which is the set of points incident to that flag. Let H be a
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geometric hyperplane in T';. In [BP] it is discussed how the affinization of T'; by
H can be unfolded into a full rank diagram geometry. We will not go into details
of this, as they are in general somewhat complicated. It suffices to mention that
the affinization for diagram geometries constitutes a natural way of constructing
new diagram geometries from old ones. It is especially interesting to apply this
construction to such classical geometries as spherical buildings.

There have been a number of papers studying the geometries obtained from thick
spherical building geometries by affinization. For example, if I' is a building of type
B,, or C,, with n > 3, then with the following choice of ¢

1

the affinization gives us a geometry called an affine polar space and belonging to the
following diagram

Af

The affine polar spaces were characterized as point-line geometries in [CS].
As another example we can mention [C], in which the geometries with the dia-
gram

e e -.... Y 'y e ... Y ®

were classified modulo a minor assumption that there are enough points on each line.
Notice that this diagram appears when affinization is applied to the A, building

1
e e ..... ® ® e ..... ® ®

There are a few more results in the same spirit. However, in all the cases considered
so far the effect of the affinization on the diagram was to replace one or more simple

Af Af”

bonds by strokes e e, 0re e . which is the dual of the first one.
Consider now the situation where I' is a building of type B,, or C, and 7 is chosen
as follows:

1
«—0 @— ... ] @

Then the geometry I'; is called a dual polar space. If we apply affinization in this
case, we end up with a geometry which we call an affine dual polar space and which
has a diagram of the following kind.

Af

o - . . (1)

The leftmost stroke in the diagram is a new one and it represents a rank two geometry
obtained from a generalized quadrangle by affinization. (This kind of rank two
geometries was briefly mentioned in [P], Chapter 8, where they were called affine
generalized quadrangles.)

The class of affine dual polar spaces is interesting on its own. However, it is even
more remarkable that a number of sporadic geometries belong to the same kind
of diagram. For example, one of the affine generalized quadrangles arriving from



Flag-transitive hyperplane complements in classical generalized quadrangles 573

the generalized quadrangle W (2) of order 2 is the Petersen graph geometry, usually
denoted by P. (This geometry is the complement of the elliptic quadric, which is a
geometric hyperplane of W (2).) The geometries with the diagram

P

. e e ..... Y S

are called the Petersen type geometries. The flag-transitive Petersen type geometries

were classified in [IS]. They are 8 geometries related to sporadic groups, ranging

from the Mathieu group Mass to the Baby Monster BM and its non-split extension

3137 . BM. As a second example, notice that the complete bipartite graph Kgg

minus a matching (call this graph U) arises as a hyperplane complement in the

generalized quadrangle Q~(5,2). The flag-transitive geometries with the diagram
U

are all known as a corollary to [PTs|. There are two such geometries, with the
automorphism groups 2 x Aut My, and U4(3).22.

All this makes the classification of (flag-transitive) geometries with the diagram
(1) a very interesting problem. As a first step, we classify in this paper all finite
flag-transitive affine generalized quadrangles arising from classical generalized quad-
rangles. Our result is as follows.

Theorem 1. Suppose an affine generalized quadrangle C' is obtained by removing a
geometric hyperplane H from a thick finite classical generalized quadrangle Q). Then
C' s flag-transitive if and only if one of the following holds.

(1) @ is embeddable and if V' is the universal embedding space for Q) then H is the
intersection of QQ with a hyperplane of V;

(2) Q is the dual of H(4,q*) and H = p* for some point p of Q.

Notice that, according to (2), we consider the dual of the Hermitian quadrangle
H (4, ¢*) (the notation of [PT]) a classical generalized quadrangle. Also, for a classical
@ and a point p € @, one can show that p is always a geometric hyperplane
whose complement is flag-transitive (cf. Proposition 2.1 (1)). However, when @ is
embeddable, the hyperplane p' is, in fact, included in (1).

Let @ be a generalized quadrangle of order (s,t). According to Lemma 2.2, every
hyperplane H of ), which is not of the type p* is either a subquadrangle of order
(s,t") (a full subquadrangle), or an ovoid. Tables 1 and 2 give explicit lists of the
hyperplanes from Theorem 1 of these two kinds.

It is, of course, interesting to list also all the flag-transitive groups of auto-
morphisms of affine generalized quadrangles. However, in some cases a complete
description would be somewhat tedious. Instead, we only consider the groups that
are of primary interest to us, namely, those which might show up in the classification
of flag-transitive geometries of rank at least 3, with the diagram (f). Without loss,
we may restrict ourselves to the rank 3 case:

0 Af1 2

sv—l t 1?
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Q H
Q(5,9) Q4,9)
Q(4,q) Q(3,9) (a grid)

W(q), q odd none
H(4,¢%) H(3,¢%)
H(3,q%) none

dual of H(4,¢?) none

Table 1: Full subquadrangles

Q H
Q6.q) none
Q4,q) elliptic quadric

W(q), q odd none
H(4,q¢%) none
H(3,4%) hermitian unital

dual of H(4,¢?) none

Table 2: Ovoids with flag-transitive complement

The stabilizer of a point (type 0) induces on the point residue a group containing
Ls(t), or one of the exceptional flag-transitive groups Frob(7,3) (for t = 2) and
Frob(73,9) (for t = 8). In the principal case, where the induced group contains
Ls(t), the stabilizer of a {0,2}-flag induces on the t + 1 elements of type 1 (lines)
incident to that flag, a group containing PGL(2,t).

Theorem 2. Suppose (Q, H) is one of the pairs from the conclusion of Theorem 1
and G =AutC, C =Q\ H. Suppose F' < G has the property that, for every point
c € C, the stabilizer F, induces on the set of lines on ¢ at least the group PGLs(t).
Then F' contains G*®. Furthermore, QQ 2 H(4,s).

As it will be clear from the proof of the above theorem (Section 5), in order to
show that F' > G* we only need to know that the action of F. on the ¢t + 1 lines on
¢ contains Lsy(t). Note also that, if ¢ = 2 or 3 then in some case G is solvable and,
hence, the claim of the theorem trivializes.

2 Hyperplanes in generalized quadrangles

Let Q be a generalized quadrangle of classical type (including the dual of H(4,¢?)),
of order (s,t) with s,¢ > 1.

Let us first check that the hyperplanes H mentioned in (1) and (2) of Theorem
1 indeed lead to flag-transitive complements.
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Proposition 2.1. (1) For a point p € Q, the complement of H = p* is flag-
transitive.

(2) Suppose Q is embeddable, V' is the universal embedding space of Q and H is
the intersection of () with a hyperplane of V. Then the complement of H is
flag-transitive.

Proof. For p € Q, it is very well-known that p* is a geometric hyperplane in Q.
(In fact, this is true for all generalized quadrangles @), not only the classical ones.)
If @ is classical then Aut @) acts transitively on the apartments, and the stabilizer
of an apartment acts transitively on the flags inside the apartment. Let {¢, L} and
{q1, L1} be two flags of the complement C of p*. Then there is an apartment A
containing p, ¢ and L, and, symmetrically, another apartment A; containing p, ¢;
and L. By the above there is an automorphism taking A to A;, ¢ to ¢1 and L to
Ly. Since p is the opposite of ¢ in A, and opposite of ¢; in A, this automorphism
fixes p and hence it stabilizes H. Thus, C' is flag-transitive.

Let now @, V and H be as in (2). Then @ is defined by a quadratic, unitary
or alternating form on V. In all the cases there is a bilinear (or sesquilinear, in the
Hermitian case) form ® defining the collinearity on (). Let us first consider the case
where the form ® is non-degenerate. Then H is the intersection of ) with h* for
some vector h € V. (Here L is taken with respect to ®.) Choose two flags {p, L}
and {p1, L1} in the complement C. Let p = (v) and L = (v, u). Similarly, p; = (vy)
and L1 = (vi,u1). We may assume that u and u; are chosen in the intersection
of L and L; with h*, respectively. Thus, u is perpendicular to both A and v, and
similarly, u; is perpendicular to h and v;. On the other hand, v and v; are not
perpendicular to h as v and v; are contained in C. Without loss of generality we
may assume that ®(h,v) = ®(h,v1). Now all the assumptions of the Witt theorem
(see [B], Chapter IX, 4.3) are satisfied for (h,v,u) and (h,v1,u;). (If @ is defined
by a quadratic or unitary form then we also have to verify the values of that form
on v and vy, as well as, on u and u;. However, all these vectors are singular, so that
the values are all equal to 0.) In particular, there is an automorphism of @) that
preserves (h) (and hence also H) and takes p to p;, and L to L.

The only remaining case is where @@ = Q(4, q), ¢ even. Then V' is of dimension
5 and the form ® is degenerate. However, the orbits of O5(¢) < Aut@ on the
hyperplanes of V are known. In particular, H is one of the following: p* for a point
p € @, or an elliptic quadric, or a hyperbolic quadric. The first case has been dealt
with in the first paragraph of this proof. In the latter two cases, let us realize @
as a symplectic generalized quadrangle W (q) embedded in a 4-dimensional vector
space W endowed with a non-degenerate alternating form W. Now H is simply the
set of all singular points with respect to a quadratic form f compatible with W.
Choose two flags {p, L} and {p1, L1} in the complement C' and assume that p = (v),
L = (v,u), pr = (v1) and Ly = (v1,u;). Since ¢ is even, every element in GF(q) is a
square, and hence, we may assume that f(v) = f(v1). Also u is perpendicular to v
and u; is perpendicular to v;. Without loss of generality we may choose u and u; to
be singular. Again, all the assumptions of the Witt theorem are satisfied. Therefore,
there exists a linear transformation of W preserving f (consequently also H; as well
as ¥ and Q) and taking v to v; and u to u;. ]
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This proposition establishes the “if” part of Theorem 1. For the “only if” part, we
need to classify all the geometric hyperplanes H with a flag-transitive complement.
We will do it case by case in Sections 3 and 4. As the first step, and also to indicate
the main partition into cases, we present the following general result, which we
borrow from [PT].

Lemma 2.2. If H is a proper geometric hyperplane of Q then H 1is one of the
following:

(1) p* for a point p € Q;
(2) a subquadrangle of order (s,t'), t' < t;

(3) an ovoid. ]

We know already that in case (1) C' is flag-transitive. In the next section we
consider the (easier) case (2), where H is a full subquadrangle of (). The last case
will be treated in Section 4.

We close this section with the following lemma.

Lemma 2.3. Let H be a geometric hyperplane of Q and C = Q \ H. Then AutC
coincides with the subgroup of Aut Q) consisting of all automorphisms stabilizing H .

Proof. 1t suffices to show that every automorphism of C' extends in a unique
way to an automorphism of ). In turn, to prove that, we only need to show how
to recover () in terms of C. Namely, we need to recover the points in H, and the
collinearity on H and between H and C.

We have two cases to consider:

CASE 1: H does not have deep points.

(Recall, that a deep point of a subset S of ) is a point of S that is not collinear
to any point outside S.)

In this case every point of H is contained in a line of C'. Since a line of C' contains
only one point from H, we can identify the points of H with the set of lines of C' it
belongs to. This defines a partition of the line set of C', and we need to show how
to recover this partition solely in terms of C'. This can be done as follows: two lines
Ly and Ls of C' contain the same point of H if and only if no point from L; N C' is
collinear to a point from L, N C.

This gives us the points of H (the classes) as well as the collinearity between H
and C'. It remains to find out when two points of H are collinear.

Let p; and ps be two points of H (that is, two classes of lines of C'). We claim
that p; and po are not collinear if and only if there is a point in C' that is collinear
with both of them. First of all, if p; and py are collinear then the whole line through
p1 and po is contained in H and hence no point of C' is collinear with both of p; and
p2. Secondly, suppose p; and py are not collinear. Since p; is not a deep point of H,
there is a line L on p; not contained in H. Then p; is the only point of L that is in
H. By the basic properties of generalized quadrangles p, is collinear with a point
on L and that point is, clearly, not p;. Hence there is a point in C' (on L!) collinear
with both p; and ps.

Thus, we have also recovered the collinearity on H.
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CASE 2: H has a deep point.

This means we are in the subcase (1) of Lemma 2.2. In particular, the deep
point is unique. As in the previous case, we can recover the non-deep points of H
(as classes of lines from ('), as well as the collinearity between the non-deep points
of H and the points of C', and the collinearity on the set on non-deep points of H.
However, this is essentially all we need, because the deep point is unique and it is
collinear with all the non-deep points of H. [ ]

3 Subquadrangles

In the case (2) of Lemma 2.2 it follows from Chapter 2 of [PT], that s can never be
greater than ¢, which excludes the cases Q = H(3,¢?) and the dual of H(4,¢?).

Since Q is classical and @ is not dual to H(4,¢?%), we can view it as embedded
in the natural way in a projective space P = PG(d,s). If Q = W(q), ¢ even, then
we view it as Q(4, ¢) and embed into PG(4, q).

Let W be the vector space underlying P. This means that the dimension of W is
d+1 and W is defined over GF(s). The generalized quadrangle () is then the set of
all totally singular (isotropic) 1- and 2-spaces of W with respect to a non-degenerate
quadratic (or alternating, or unitary) form ¢.

Clearly, the embedding of ) into P induces also an embedding of a subquadrangle
Q' of @ (as in (2)) into a subspace P’ of P. It follows from Buekenhout and Lefevre
[BL] that @' is classical itself. (Here we have to allow ¢’ = 1, a grid.) Furthermore,
from the same [BL], it follows that the embedding of @' into P’ is the natural
one, that is, it is defined by a quadratic (or alternating, or unitary) form ¢’ on
the subspace W’ of W underlying P’. Since ¢’ is defined uniquely up to a scalar,
it follows that ¢ differs from the restriction of ¢ to W' by a scalar factor. (The
restriction of ¢ cannot be null, because in that case @’ would be fully contained
in a line of @Q); then @ is a point or a line, and one can easily see that neither
is a hyperplane of @.) In particular, W’ # W (otherwise ' = Q!) So @’ is the
intersection of () with a proper subspace P’ of P.

Table 1 shows all the possible )’ in the case where W’ has codimension 1 in WW.
We now want to argue that this is always the case, so that all the full subquadrangles
Q' are, indeed, shown in Table 1.

Suppose P’ is not a hyperplane. Let P” be a hyperplane of P that contains P’
and one further point p € @\ Q'. Then Q" = QN P" is a geometric hyperplane of @
properly containing )’. It follows from Lemma 2.2 that Q)" is also a subquadrangle;
namely, it is one of those listed in Table 1. Now also @’ is a full subquadrangle
of Q". If Q' # Q" then we repeat the above and construct a hyperplane P of
P" and a subquadrangle Q" = @Q N P, such that @' is contained in Q"”. How-
ever, as follows from Table 1, the only possibility for the sequence (Q,Q", Q") is
(Q(5,9),Q(4,q),Q(3,q)) (cf. [PT]). However, Q(3, q) is not a geometric hyperplane
of Q(5,q) and so Q' cannot be a geometric hyperplane of @ in that case, either.
Thus, P’ is indeed a hyperplane of P and, therefore, all the possibilities for @’ in @
are already listed in Table 1.
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4 Ovoids

It remains to consider the case where our geometric hyperplane H = O is an ovoid
(cf. Lemma 2.2). The classification of all ovoids in classical generalized quadrangles
is a hard problem, so, unlike the previous section, we will have to use the condition
that the complement C' = @ \ O is flag-transitive.

We prove the following.

Proposition 4.1. Suppose O is an ovoid in a classical generalized quadrangle @,
such that C = Q\ O is flag-transitive. Then either Q = Q(4,q) and O is the elliptic
quadric, or Q = H(3,q¢*) and O is the Hermitian unital.

Proof. In three cases, namely for Q = Q(5,q), W(q), ¢ odd, and H(4,q?), it is
known that no ovoid exists (cf. [PT], Section 3.4). Thus, we only need to handle
the cases Q = Q(4,q), H(3,¢*) and the dual of H(4,¢?). In all cases the size of an
ovoid must be equal st 4 1, so that in the above cases we obtain the size ¢ + 1,
¢ + 1 and ¢° + 1, respectively.

Let A= Aut Q and G = Aut C. By Lemma 2.3, G = Stab;(0). Let Ay = F*(A)
be the simple group involved in A and define A = AyG. Let M be a maximal
subgroup of A that contains G. Then M falls into one of several types, as described
by Aschbacher [A] and detailized by Kleidman and Liebeck [KL]. We now plan
to consider the possibilities for M case by case. Notice that, because of the flag-
transitivity on C,

(%) G is transitive on the lines of Q and it has two orbits on the points of Q, of
sizes st + 1 (the ovoid) and s(st + 1) (the complement). Accordingly, either
M = G and then it has the same orbits, or G < M and then M is transitive
on the points and the lines of Q.

(In fact, in the latter case M is even flag-transitive on @); cf. [S].)

We now consider the cases. We follow the definitions and the notation of [KL].
The families of maximal subgroups C;, i = 1,...,8 and § are defined in [KL] in
terms of certain substructures in the natural module V' for A, that M is to stabilize.
Notice that when @ is the dual of H(4,¢?) then V is still the natural 5-dimensional
module for Ay = Us(q). Also, because of the way the tables in [KL] (we use Tables
3.5 B,C and D) are composed, when @ = Q(4, q), ¢ even, we have to take as V' the
natural 4-dimensional module for PSps(q) = Qs5(q), the points (lines) of @ being
2-dimensional totally isotropic (resp. the 1-dimensional) subspaces of V.

CASE 1: M € Cy, i.e., M 1is the stabilizer of a proper subspace of V.

If M is a maximal parabolic then it stabilizes a point or a line of () which
contradicts (). The remaining subcases are as follows:

(1.1) If @ = Q(4,q), q odd, then M can be the stabilizer of a non-degenerate
subspace U < V of dimension 1 or 3. Clearly, M then also stabilizes U+ which has
dimension 4 and 2, respectively. If dimU = 3 then U contains ¢ 4+ 1 points of Q).
Hence M has an orbit of size at most g + 1, contradicting (*). If dimU = 1 and
the form on U~ has the plus type then U+ contains 2(g + 1) lines of @, which again
contradicts (x). Finally, if that form is of the minus type then the singular points
inside U+ form a known ovoid—the elliptic quadric.
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If ¢ is even then recall that V' is the natural module for Sp,(q), and this type of
maximal subgroups does not occur (except for the parabolics, of course).

(1.2) If Q = H(3, ¢?) then M can be the stabilizer of a non-singular 1-dimensional
subspace U. Then U+ contains ¢ 4 1 singular points and this is a known example
of ovoid—the Hermitian unital.

(1.3) If @ is the dual of H(4,¢*) then M stabilizes a non-degenerate subspace
U < V of dimension 1 or 2. Then U+ contains some but not all of the singular
points (which are lines of @!), thus contradicting (x).

CASE 2: M € Cs, i.e., M is the stabilizer of a direct sum decomposition of V' with
parts of equal dimension m.

(2.1) If @ = Q(4,q), g odd, we can only have 5 pairwise orthogonal non-singular
I-dimensional summands U;. Table 3.5 D of [KL] indicates that here g must be
prime. For a 3-subset {i,7,k} C {1,...,5}, define Ujjy = U; + U; + Ug. Then M
permutes the 10 subspaces U;;, and each of these subspaces contains exactly ¢ + 1
points of (). Hence M has an orbit of size at most 10(q¢ + 1). Together with (x)
this implies that ¢ = 3, 5 or 7. Furthermore, ¢(¢*> + 1) (the size of C) divides the
order of G, hence the order of M. The latter divides (¢ — 1)® - 5!. This leaves the
only possibility ¢ = 3. However, if ¢ = 3 then M (which is isomorphic to 2% : S5 or
21 : Aj) is a known case of a flag-transitive action on @ (cf., [S]). Clearly, G # M.
Since ¢(¢? + 1) divides the order of G, we see that G necessarily involves A5 and,
therefore, G = A5 or S;. Choose a basis u;, i = 1,...,5 in V, such that U; = (u;).
The full preimage of G in GO(5, ¢) contains As and so we can assume that {u;} is
an orbit of that As;. Then the singular points are represented by the vectors having
support of size 3. The group G has two orbits on the singular points, represented
by the vectors with coordinates (1,1,1,0,0) (orbit of length 10) and (1,1,—1,0,0)
(orbit of length 30). One can easily check that the singular points in the first orbit
are pairwise non-collinear and hence they indeed form an ovoid. Moreover, these 10
points are all perpendicular to the point (1,1,1,1,1), which means that this ovoid
is the classical elliptic quadric (see Case 1). Since the full stabilizer of the elliptic
quadric involves Ag = €, (3), we obtain a contradiction.

If ¢ is even, then V is the 4-dimensional symplectic space. Here (cf. Table 3.5 C
of [KL]) M stabilizes a decomposition V' = Uy & U, where U; are 2-spaces, which are
either non-isotropic mutually orthogonal, or both totally isotropic. In either case,
U; U U, contains some but not all 1-spaces, which are, in fact, lines of ). Thus, M
is not transitive on the lines of @, in contradiction with (x).

(2.2) If @ = H(3, ¢?) then there are two possibilities. If M stabilizes a decompo-
sition V' = U; & Uy (with U; either mutually orthogonal non-degenerate 2-spaces, or
disjoint totally singular 2-spaces), then U; UU; contains exactly 2(g+1) (respectively,
2(¢*+1)) points of Q. However, this is always less then the size of the larger orbit of
G, ¢*(¢>+1), and never equal to the size of the smaller orbit, ¢*+ 1; a contradiction.
In the other case, M stabilizes a decomposition V = U; & ... & Uy, where U; are
mutually orthogonal nonsingular 1-spaces. Each 2-subspace U;; = U; + U; contains
g+ 1 points of ). Therefore, the smaller orbit of G must have size at most 6(q + 1).
The inequality ¢3 + 1 < 6(q + 1) forces ¢ = 2. However, if ¢ = 2 then the two orbits
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must have size 9 and 36, which does not allow for an invariant set of 6(2 + 1) = 18
points.

(2.3) If Q is the dual of H(4,¢?) then the only possibility is that M stabilizes a
decomposition V' = U; @ ... & Us, with mutually orthogonal nonsingular 1-spaces
U;. The union of the subspaces U;;, defined as above, give us then an invariant set
of singular 1-spaces of size (‘;’) (¢+1) =10(¢+1). This is less than the total number
of singular 1-spaces and, thus, M cannot be transitive on the lines of Q.

CASE 3: M € (s, i.e., the action of M on 'V is not absolutely irreducible and, hence,
V' possesses an M -invariant structure of an n/r-dimensional space over GF(q") for
some prime 7.

(3.1) If @ = Q(4,q), g odd, then this case is impossible, since Table 3.5 D of [KL]
forbids r» = n. So we assume that ¢ is even. Then V has dimension 4 and, therefore,
r = 2. Furthermore, from Table 3.5 C of [KL] we read off that M stabilizes an
alternating GF(¢*)-form f on V. The 1-dimensional spaces with respect to f are
totally isotropic 2-spaces over GF'(q). They form a spread in the dual of @, hence,
an ovoid in (). We claim this ovoid is the usual elliptic quadric.

We can always assume that f is expressed as X;Ys— X5Y). (Here the coordinates
are taken in GF(g?).) Consequently, given an irreducible polynomial ¢? —t — a over
GF(q), the alternating form g over GF'(q) left invariant by A admits the following
expression with respect to a suitable basis:

T1Ys + ToY3 + ToYs — T3Y2 — Tal1 — T4alo.

The spread, say S, stabilized by M, consists of the 2-spaces of V' spanned by the
following pairs of vectors: (u1,ug,v1,v2) and (aus, uy + ug, ave, v1 + v3). Now it is a
computational exercise to check that the points on the ¢ 4+ 1 lines of S meeting an
arbitrary GF'(q) line L ¢ S satisfy a nontrivial homogeneous quadratic equation, so
that they form a hyperbolic quadric. This is known as the regularity property of S,
and by [PT], Section 3.4, S is an elliptic quadric in Q.

(3.2) If @ = H(3,¢*) then this case does not occur, since according to Table
3.5 C of [KL] the prime r must be at least 3. Thus, assume that @ is the dual of
H(4,¢%). In this case, 7 = 5 is the only possibility. Hence M stabilizes the structure
of a 1-dimensional GF(¢'°)-space on V. Furthermore, it preserves a non-degenerate
unitary form on that space. Thus, the order of M is a divisor of (¢°+ 1)10f, where
q = p’, p prime. On the other hand, G < M has to act transitively (by (*)) on
(¢° + 1)¢® points of C. Hence ¢® has to divide 10f, which is clearly impossible.

CASE 4: M € Cy4, i.e., M stabilizes the factors of a decomposition of V' into a tensor
product, V =U @ W.

Clearly, we must have n = dimV = mk, where m = dimU and k = dim W.
Also, the cases m = 1 and k = 1 do not lead to proper subgroups. Thus, this type of
maximal subgroups does not occur when Q = Q(4, q), q odd, or the dual of H (4, ¢%).
Let us consider the remaining cases.

(4.1) If @ = Q(4, q) with g even, then m = k = 2. However, Table 3.5 C of [KL]
requires also that one of these numbers be at least 3. So, no such maximal subgroup
arises in this subcase.
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(4.2) If Q = U(3,¢?) then again m = k = 2. However, Table 3.5 B of [KL]
prescribes now that one of these numbers be strictly less than y/n = 2. So this is
impossible, too.

CASE 5: M € Cs, i.e., M is a group defined over a proper subfield GF(qy) of GF(q)
(or GF(q?) for the Hermitian generalized quadrangles).

There are a variety of subcases in this case; however, in all of them except for
one, M stabilizes a proper subquadrangle of (). This makes it impossible for M to
act transitively on the lines of Q).

The exceptional case is where Q = H(3, ¢?) and M stabilizes an elliptic quadric in
a 4-dimensional GF(q)-subspace of V. (Recall that V' is itself defined over GF(¢?).)
The points of this quadric number ¢ + 1, and they are points of (). Thus, M has
on the point set of @ an orbit of size at most ¢? + 1, which contradicts (x).

CASE 6: M € Cg, i.e., M originates from the normalizer of an extraspecial group
acting on V' faithfully and absolutely irreducibly.

According to Tables 3.5 C and D of [KL], this case never occurs if Q@ = Q(4, q).

(6.1) If @ = H(3,¢*) then, by specializing to our subcase the conditions from
Table 3.5 B of [KL], we obtain that M contains a normal subgroup 2%.4¢. Also, ¢
must be the second power of an odd prime p. The order of M has to divide 22 -6!- 2.
Also, it must be divisible by ¢*(¢®> + 1). This forces p* to divide 6!, which is a
contradiction.

(6.2) If Q is the dual of H(4,¢?) then, similarly, we observe that M must normal-
ize a subgroup 52.SL(2,5); also that ¢ = p/ = 1mod 5 with f = 2 or 4. Similarly to
the previous case, on the one hand, |M| must divide 5% -4 - 5!. On the other hand,
it is divisible by ¢®(¢®> + 1). This forces ¢ to be even. However, in that case f = 4
and 2'2 must divide M, a contradiction.

CASE 7: M € Cy, i.e., M stabilizes a decomposition of V as a tensor product
V=U®...0U; with factors of the same dimension m.

This is only possible when n = 4. Hence Q = Q(4,q), q even, or H(3,q?).
According to Tables 3.5 B and C of [KL], in no case this leads to a maximal subgroup.

CASE 8: M € Cs, i.e., M 1is a classical group with V' being its natural module.

This case is nonempty only if Q@ = Q(4,¢q), ¢ even. Recall that in that case V
is a 4-dimensional symplectic module. The group M is then an orthogonal group
of dimension 4 and type plus or minus. Correspondingly, either M stabilizes a
subquadrangle (a grid) in @ (plus type), or it stabilizes a set of ¢* + 1 lines (a
spread) in @ (minus type). In both cases M is not transitive on the lines of Q.

CASE 9: M € S, i.e., M is an almost simple group, and if L = F*(M) then V is
an absolutely irreducible projective L-module over the field F = GF(q) or GF(¢?)
(the latter for the unitary quadrangles Q). Furthermore, V cannot be realized over
any proper subfield of F'.

In principle, the list of simple groups having low-dimensional (dimensions 4 and
5 is all we need) projective representations, is known. However, we could not find,
wherever we looked, a complete list given in a clear and convenient form. The closest
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approximation to our needs is Chapter 5 of [K], where the complete lists of maximal
subgroups of low-dimensional classical simple groups are given. Unfortunately, there
seems to be no reason to assume that in our situation M N Ay is necessarily a
maximal subgroup of Ayg. However, it is maximal in a maximal subgroup of a
maximal subgroup of ... of Ag. Thus, by ‘inductively’ looking through the lists of
subgroups of maximal subgroups [K], one can compile the list of the possible groups
L: Ly(qo), Sz(qo), As, As, A7, Lo(7), La(11), L3(4) and Uy(2). In the first two cases
qo is restricted by the condition that ¢* (respectively, ¢) is a power of qo.
We now consider these possibilities case by case. Let ¢ = p/, p a prime.

(9.1) Suppose that L = Ly(qo) and ¢* is a power of qo. Let gy = p™, so that
2f = mr for some integer r. The order of M divides |Aut L| = qo(g2 — 1)m. On the
other hand, |M| has to be divisible by the number of flags in @, s(st + 1)(t + 1),
which, depending on the type of Q, is equal to q(¢*> + 1)(q + 1), ¢*(¢* + 1)(¢ + 1)
or ¢*(¢° +1)(¢> + 1). Clearly, m < qo, so |Aut L| < ¢3. This, together with the
divisibility requirement above, yields that ¢y > ¢, i.e., gqo = ¢*>. Still, the last
case, where ) is the dual of H(4,¢?), is impossible, because the order of Aut L is
less than the number of flags. Furthermore, @ cannot be H(3, ¢?), either, because if
(¢ +1)(q+1) divides |Aut L| = ¢*(¢*—1)m then ¢*>—q+1 divides (¢—1)(¢*+1)m.
Asged(¢®>—q+1,(¢g—1)(¢*+1)) = 1, we conclude that ¢*—q+1 divides m. However,
¢*> — ¢+ 11is odd, and the odd part of m divides f, which is no greater than ¢ = p’.
This is a contradiction.

Thus, Q = Q(4,q) and L = Ly(q?). Recall that in the case Q = Q(4,q) we
assume the dual point of view, so that V' is a 4-dimensional module over F' = GF'(q),
and there is an invariant non-degenerate alternating form defined on V.

The irreducible projective modules of L = Ly(q?) in the defining characteristic
are well-known. See, for example, [GLS], Examples 2.8.10ab. We read off from there
that V' is a GF(q)-realization of one of the following modules: For p > 5, there is
a basic module of dimension 4; it can be constructed as the module on the space
of homogeneous polynomials in two variables of degree 3. Any other irreducible 4-
dimensional module is a tensor product of two natural modules for SL(2, ¢?), twisted
by two different field automorphisms (the trivial automorphism included).

Suppose first that p > 5 and V' is a GF(q)-realization of a basic module V;. By
a simple computation, the trace of A € SL(2,¢?) acting on Vj is equal to t* — 2t,
where ¢ is the trace of A as an element of SL(2,¢*). Since ¢ can be any element of
GF(q?), the number of different values taken by the trace of A in the action on Vj
is at least ¢?/3 which is certainly greater than g. Therefore, Vj cannot be realized
over GF'(q). This contradiction rules out the basic module.

Suppose now that V' is a GF'(q)-realization of the tensor product module V;; =
UP) @ U®), where U is the natural module of SL(2,¢?), and (p*) and (p?) are two
different field automorphisms; namely, the ones defined by taking the p’th and p’th
powers in GF(q¢?). Up to a field automorphism, we can assume that ¢ = 0 and
j <% = f. Then the trace of A € SL(2,¢%) on V; = Vj; is equal to tP'## = 1+
where t is, as above, the trace of A as an element of SL(2, ¢?). Since V is defined over
F = GF(q), every value of trace should be in F'. The number of different values that
the polynomial 27 takes on GF(q?) (recall that ¢ may be any element of GF(¢?))

. 2f_1
is at least 1+ 55—

which is less or equal than ¢ only if j = f (and then we have
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equality). Thus, V is defined uniquely up to conjugation by field automorphisms.
If p = 2 then V has to be the same as (a conjugate of) the natural module for
O; (q) = Ly(¢?). This configuration has been considered and eliminated in Case
8. Thus, we only need to consider the case where ¢ is odd. We claim that in that
case no nontrivial alternating form on V' is left invariant by L. Indeed, without loss
of generality we may assume that V is a GF(q)-realization of the GF(¢?)-module
W =V; =U@UW. Clearly, if V possesses a non-degenerate alternating form then
so also does W. Furthermore, since W is irreducible and absolutely irreducible,
Schur lemma implies that, up to a scalar factor, there is a unique invariant bilinear
form on W. Notice that SL(2, ¢?) is isomorphic to Sp(2, ¢*), so that U possesses an
invariant alternating form ®. Also, ®@ is an invariant alternating form on U(®.
Define a four-linear mapping U x U@ x U x U9 — GF(q?) as follows

(w1, ug, ug, ug) — <I>(u1,U3)<I>(Q) (ug, uq).

According to the general theory of tensor products, this defines a bilinear form ¥
on W =U®UW, via

U(up @ ug, uz @ ug) = P(uy, Ug)q’(Q) (ug, uq).

Clearly, W is nontrivial and invariant. It remains to see that ¥ is symmetric, rather
than alternating. Indeed, if w3 = u; ® us and we = uz ® ug then V(we, wy) =
D (us, 1) P (ug, ug) = (—P(ur, us))(—P(uz, us)) = V(wy, wy). Hence, ¥ is symmet-
ric, and, since ¢ is odd, ¥ cannot be alternating. This is the final contradiction
eliminating the case L & Ly(q?).

(9.2) Suppose now that L = Sz(qp) and ¢ is a power of go. Here ¢o = 2™
with m odd and greater than 1. Again, the number of flags in C' must divide the
order of M, which, in turn, divides [Aut L| = ¢2(qo — 1)(¢2 + 1)m. We now observe
that, for all the three types of @), ¢ + 1 divides the number of flags in C. Since
ged(q + 1,¢3(qo — 1)) = 1 (q and qo are even!), we conclude that ¢ + 1 divides
(g2 + 1)m. However, ¢ is a power of qo (= 2™, m > 1). Hence ¢ = ¢2 and the
number of flags of C'is ¢3(qy + 1)(q5 + 1), g5(g5 + 1)(g§ + 1) or g§(go0 + 1)(gg + 1),
according to the type of Q. The order ¢3(qo — 1)(¢2 + 1)m of Aut L is a multiple of
one of those three numbers, but this is a contradiction. Thus, L % Sz(qo).

Beside these two series, we only have a few small groups left. All the ordinary
and Brauer character tables for these groups are known (cf. [MOD]). The relevant
characteristics are restricted by the condition that p must be a divisor of |[M]. (In-
deed, G acts transitively on the point set of C, having size s(st+ 1); hence, s divides
|G| and s is a power of p.) Thus, for each group L we only need to check the Brauer
character tables. Furthermore, as V' is absolutely irreducible, we are not interested
in the characters of degree other than 4 or 5, depending on the case. Furthermore, V'
cannot be realized over a proper subfield of F'. (Recall that F' = GF(q) or GF(q?),
depending on the case.) This means that F' is the minimal field of realization for
V', and hence, F' is simply the smallest field containing the values of the Brauer
character of V', taken modulo p.

(9.3) If L = Aj then the characteristics 2 and 5 are covered by (9.1), as A5 =
Ly(4) = Lo(5). In characteristic 3, L has only one eligible irreducible projective
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module. The module has dimension 4 and is defined over GF'(3). (Hence ¢ = 3 and
F = GF(3).) This restricts the situation to the case @ = Q(4,3). However, in that
case the module must possess an invariant alternating form, which is not the case.

(9.4) For L = Ag, we can ignore the characteristic 3, because Ag = L9(9). For
characteristics 2 and 5, by browsing through the Brauer character tables we find the
following modules of dimension 4 and 5:

(a) Two conjugate modules of dimension 4 over GF'(2). Each of them can be
viewed as the natural module for Ag = Sps(2)’. Correspondingly, @ = (Q(4,2);
however, M is then equal to A, a contradiction.

(b) Two conjugate 4-dimensional modules over GF'(5). Since the field is of prime
order, this can only correspond to @ = Q(4,5). By the condition (x), the order of
M must be divisible by 5% + 1 = 2 - 13. This is impossible.

(c¢) Two conjugate 5-dimensional modules over GF'(5). Since the field is, again,
of prime order, this module cannot be related to any of our quadrangles.

(9.5) For L = A; we find the following modules:

(a) Two conjugate 4-dimensional modules over GF'(2). Impossible, because @
has to be Q(4,2) whereas A7 is not a subgroup of Sp4(2).

(b) Two conjugate modules of dimension 4 over GF(9). Here ) cannot be
Q(4, q) because the Schur-Frobenius indicator of the character shows that there is
no invariant alternating form. Therefore, we must have Q = H(3,3?), and, indeed,
Az is a maximal subgroup of U,(3). However, the (x) test fails, as M cannot be
transitive on lines. (Indeed, the stabilizer of a line would have to be a subgroup of
order 3% - 5, and there is no such subgroup in A;.)

(c) Two conjugate modules of dimension 4 over GF(25). Again Q = H(3,5%) is
the only possibility. However, the order of Aut L is not divisible by the number of
flags, 52(5° + 1)(5 + 1).

(d) A 4-dimensional module over GF(7). This may only correspond to @ =
Q(4,q). However, in that case, ¢> + 1 = 50 should divide |M|, and this is not the
case.

(e) A 5-dimensional module over GF'(7). This case does not correspond to any

type of Q.

(9.6) For L = Ly(7) we only need consider the characteristics 2 and 3. From
[MOD] we see that L has modules of dimension 4 or 5 only if the characteristic
is equal to 3. Namely, it has two modules of dimension 4, conjugate by the outer
automorphism of L. Suppose V is one of these modules. Then, first of all, we
observe from the character that F' = GF'(9). Furthermore, after checking the Schur-
Frobenius indicator, we find that there is no invariant alternating form on V. This
forces Q = H(3,3%). However, in that case, the number of points in C' is equal to
32(3% +1). Since 32 does not divide |Aut L|, M cannot be transitive on the points
of C.

(9.7) The group L = Ls(11) has (outside the characteristic 11) no irreducible pro-
jective modules of dimension 4, and every irreducible module of dimension 5 arises
by reduction modulo p of a unique (up to automorphisms) complex representation
of dimension 5.

Since the dimension of the module is 5, we must have Q = H (4, ¢*). In particular,
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F = GF(q%). In characteristics p = 3 or 5, all the values of the complex character
reduced modulo p are in GF(p). Hence, the only possible characteristic is p = 2.

In characteristic 2, GF'(4) is the smallest field over which the module can be
realized. This implies that ¢ = 2. Furthermore, the number of flags in @) is equal
to ¢*(¢° + 1)(¢* + 1) = 1320, which is exactly the order of Aut L = PGL(2,11).
Therefore, M = Aut L. On the other hand, the oval O consists in this case of ¢° + 1
points. Since M has to be transitive of the points of O, the stabilizer in M of a
point a € O is a subgroup of order 23 - 5. Tt is easy to see that PGL(2,11) has no
such subgroup; a contradiction.

(9.8) For L = L3(4) there is only one configuration to consider: V' can be one of
two conjugate modules of dimension 4 defined over GF'(9). By checking the Schur-
Frobenius indicator of the character of V', we establish that there is no invariant
quadratic form on V. This eliminates the possibility of @ = Q(4,9). Thus, () must
be H(3,3%). Upon checking [ATL], we see that, indeed, L = L3(4) is a subgroup of
U4(3). In fact, the normalizer of L is flag-transitive on Q. (See [S]; also [M].) This
means that G must be a proper subgroup of M. Since G has to be transitive on the
flags of C, the order of G is divisible by 3%(3* + 1)(3 4+ 1). By checking in [ATL] all
the maximal subgroups of L3(4) (with possible outer automorphisms) we see that
no subgroup satisfies this condition.

(9.9) For the group L = U,(2) we have to consider the following candidates for
V:

(a) In characteristic 5, there is a pair of conjugated modules of dimension 4, and
a pair of conjugated modules of dimension 5. For all these modules F' = GF(25).
Furthermore, for the modules of dimension 4, the Schur-Frobenius indicator is equal
0, which means that there is no invariant alternating form. Therefore, Q = H(3, 5?)
for the modules of dimension 4, and H(4,5?) for the modules of dimension 5. In
the first case, the number of flags in C'is 5?(5% + 1)(5 + 1); in the second case, it is
53(5° + 1)(5% + 1). Since 5% + 1 = 26 does not divide the order of Aut L, both cases
lead to a contradiction.

(b) In characteristic 3, L has one module of dimension 4 and one of dimension
5. Both these modules are defined over GF'(5). Hence @ = Q(4,3) and V is 4-
dimensional. However, as Uy(2) = S4(3), the normalizer of L is the whole of A,
rather than a maximal subgroup thereof.

(c) Similarly, in characteristic 2, L has a pair of conjugate modules of dimension
4, defined over GF'(4). By checking the Schur-Frobenius indicator, we exclude the
case Q = Q(4,4), leaving Q = H(3,2?) as the only possibility. However, again
L = Uy4(2) is equal to Ay and, hence, M is not a maximal subgroup.

This was the last case, and the proof of Theorem 1 is now complete. [ |
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5 Proof of Theorem 2

In this section we prove Theorem 2. Let () be a classical generalized quadrangle, H
a geometric hyperplane as in the conclusion of Theorem 1, and C' = @\ H. Suppose
F < G = AutC has the property that, for any point ¢ € C', F,. induces at least
PGL(2,t) on the lines through c¢. This immediately excludes Q = H(4,4?%), as in
that case the action on (t +1 = ¢+ 1) lines involves Us(q), which does not contain
Ly(¢?). In all the other cases the action on the star of a point involves Ly(t) as a
normal subgroup.

Let T be the set of t+1 points of H which are collinear with c¢. By assumption F,
induces on these points a group containing PGL(2,t). We claim that F>° = G°
(S)Lo(t). For that we only need to notice that the kernel K of the action of G. on
T centralizes G°. (This follows from a case-by-case check.) Since it is also clear
that F2°K = G K, it follows that G° = F°. Therefore, F' contains the subgroup
(G| c € C), which is normal in G. It is now straightforward to check that in all
cases G has at most one nonabelian composition factor. This implies that G* is
contained in every normal nonsolvable subgroup of G. In particular, if ¢ > 4 then
G is contained in F.

It remains to look at the possibilities t = 2 and 3. Clearly, if G* = 1 then there
is nothing to prove. The remaining cases are few: @ = Q(4,2) and H is the elliptic
quadric, @ = Q(4,3) and H is again the elliptic quadric, and @ = H(3,9) and H
is the Hermitian unital. In all these cases, by looking through the list of subgroups
of G one can see that any subgroup, whose order is divisible by the number of flags
in C' (equal to s(st + 1)(t + 1) in all these cases), necessarily contains G*°. This

completes the proof of Theorem 2. [
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