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Abstract

In this paper we give necessary and sufficient conditions for uniform ex-

ponential stability of evolution equations in Banach spaces. This is done by

employing a skew-product semiflows technique and Banach function spaces.

Generalizations of some well-known results of Datko, Neerven, Rolewicz and

Zabczyk are obtained.

1 Introduction

In recent years, an important progress has been made in the study of the asymp-
totic behaviour of evolution equations in infinite-dimensional Banach spaces. Sig-
nificant progress has been made in this direction pointing out that an impressive
list of classical problems can be treated using the theory of linear skew-product
semiflows (see, for example, Sacker and Sell [16], Chow and Leiva [2]-[6], Chicone
and Latushkin [1] and Latushkin, Montgomery - Smith and Randolph [11]). There
have been obtained results concerning dichotomy of linear skew-product flows over
locally compact Banach spaces (see Latushkin, Montgomery-Smith and Randolph
[11]) and dichotomy of linear skew-product semiflows over compact Hausdorff spaces,
respectively (see Chow and Leiva [3], [4] and [6]). The asymptotic behaviour of the
linear skew-product flow has been also characterized in terms of spectral properties
of the evolution semigroup associated to the skew-product flow (see Latushkin,
Montgomery-Smith and Randolph [11]).
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In this paper we consider a concept of uniform exponential stability for linear
skew-product semiflows which is an extension of the classical concept of exponential
stability for time-dependent linear differential equations in Banach spaces (see, for
example, Datko [8] and Daleckii and Krein [9]). We give necessary and sufficient
conditions for uniform exponential stability of linear skew-product semiflows using
a Banach function spaces technique. We not only answer questions concerning
stability of linear skew-product semiflows but also obtain generalizations of some
well-known results due to Datko ([8]), Zabczyk ([17]), Neerven ([14]) and Rolewicz
([15]).

The theory developed here is applicable for a large class of systems described in
Chow and Leiva ([2]-[6]).

2 Notations and preliminaries

In this section we shall present some definitions, notations and results about linear
skew-product semiflows and Banach function spaces.

2.1 Linear Skew-Product Semiflows

We begin with the notion of linear skew-product semiflow on the trivial Banach
bundle E = X × Θ, where X is a fixed Banach space - the state space - and Θ
is a compact Hausdorff space. We shall denote by B(X) the Banach algebra of all
bounded linear operators from X into itself.

Definition 2.1. A mapping σ : Θ ×R+ → Θ is called a semiflow on Θ, if it
has the following properties:

(f1) σ(θ, 0) = θ, for all θ ∈ Θ;

(f2) σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ×R2

+;

(f3) σ is continuous.

Definition 2.2. A pair π = (Φ, σ) is called a linear skew-product semiflow on
E = X × Θ if σ is a semiflow on Θ and Φ : Θ×R+ → B(X) satisfies the following
conditions:

(s1) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;

(s2) Φ(θ, t+ s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ×R2

+ (the cocycle identity);

(s3) lim
t→0+

Φ(θ, t)x = x, uniformly in θ. This means that for every x ∈ X and every

ε > 0 there is δ = δ(x, ε) > 0 such that ||Φ(θ, t)x − x|| < ε, for all θ ∈ Θ and
0 ≤ t ≤ δ.

Remark 2.1. The mapping t → Φ(θ, t)x is right continuous, for all (x, θ) ∈ E .

Example 2.1. Let Θ be a compact Hausdorff space and let S = {S(t)}t≥0 be
a C0 - semigroup on X. Then for every semiflow σ : Θ × R+ → Θ on Θ the pair
πS = (ΦS, σ), where

ΦS(θ, t) = S(t), (θ, t) ∈ Θ×R+
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is a linear skew-product semiflow on E = X × Θ, which is called the linear skew-
product semiflow generated by the C0 - semigroup S and the semiflow σ.

The following example can be found in Chow and Leiva ([2]):

Example 2.2. Let σ be a semiflow on the compact Hausdorff space Θ and
let S = {S(t)}t≥0 be a C0 -semigroup on the Banach space X. For every strongly
continuous mapping D : Θ → B(X) there is a linear skew-product semiflow πD =
(ΦD, σ) on E = X × Θ such that

ΦD(θ, t)x = S(t)x +
∫ t

0
S(t− s)D(σ(θ, s))ΦD(θ, s)x ds

for all (x, θ, t) ∈ X × Θ×R+.
The linear skew-product semiflow πD = (ΦD, σ) is called the linear skew-product

semiflow generated by the triplet (S, D, σ).

Remark 2.2. As a consequence of condition (s2) from Definition 2.2. it follows
that if π = (Φ, σ) is a linear skew product semiflow on E = X ×Θ, then

Φ(θ, nt) = Φ(σ(θ, (n− 1)t), t) . . .Φ(σ(θ, 2t), t)Φ(σ(θ, t), t)Φ(θ, t)

for all (θ, n, t) ∈ Θ×N×R+.

The following result can be found in Chow and Leiva [3].

Proposition 2.1. Let π = (Φ, σ) be a linear skew-product semiflow on E =
X ×Θ. Then there exist constants M ≥ 1 and ω > 0 such that

||Φ(θ, t)|| ≤ Meωt, (θ, t) ∈ Θ×R+.

Definition 2.3. A linear skew-product semiflow π = (Φ, σ) on E = X × Θ is
called uniformly exponentially stable if there are N ≥ 1 and ν > 0 such that

||Φ(θ, t)|| ≤ Ne−νt, (θ, t) ∈ Θ×R+.

A sufficient condition for uniform exponential stability of a linear skew-product
semiflow is given by

Proposition 2.2. Let π = (Φ, σ) be a linear skew-product semiflow on E =
X ×Θ. If there are t0 > 0 and c ∈ (0, 1) such that

||Φ(θ, t0)|| ≤ c, θ ∈ Θ,

then π is uniformly exponentially stable.

Proof: Let M ≥ 1 and ω > 0 given by Proposition 2.1. Let ν be a positive number
such that c = e−νt0 .

Let θ ∈ Θ be fixed. For t ∈ R+ there are n ∈ N and r ∈ [0, t0) such that
t = nt0 + r. Then by Remark 2.2. we obtain

||Φ(θ, t)|| ≤ ||Φ(σ(θ, nt0), r)|| ||Φ(θ, nt0)|| ≤
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≤ Meωt0 ||Φ(σ(θ, (n− 1)t0), t0)|| . . . ||Φ(σ(θ, t0), t0)|| ||Φ(θ, t0)|| ≤

≤ M eωt0 e−nνt0 ≤ N e−νt,

where N = Me(ω+ν)t0 . So, π is uniformly exponentially stable. �

2.2 Banach function spaces

Let (Ω, Σ, µ) be a positive σ - finite measure space. By M(µ) we denote the linear
space of µ-measurable functions f : Ω → C, identifying the functions which are
equal µ - a.e.

Definition 2.4. A Banach function norm is a function N : M(µ) → [0,∞] with
the following properties:

(n1) N(f) = 0 if and only if f = 0 µ - a.e.;
(n2) if |f | ≤ |g|µ - a.e. then N(f) ≤ N(g);
(n3) N(af) = |a|N(f), for all a ∈ C and all f ∈ M(µ) with N(f) < ∞;
(n4) N(f + g) ≤ N(f) + N(g), for all f, g ∈ M(µ).

Let B = BN be the set defined by:

B := {f ∈ M(µ) : |f |B := N(f) < ∞}.

It is easy to see that (B, | · |B) is a normed linear space. If B is complete then B
is called Banach function space over Ω.

Remark 2.3. B is an ideal in M(µ), i.e. if |f | ≤ |g|µ - a.e. and g ∈ B then
also f ∈ B and |f |B ≤ |g|B.

Remark 2.4. If fn → f in norm in B, then there exists a subsequence (fkn
)

converging to f pointwise (see [12]).

Let (Ω, Σ, µ) = (R+,L, m) where L is the σ-algebra of all Lebesgue measurable
sets A ⊂ R+ and m the Lebesgue measure. For a Banach function space over R+

we define

FB : R+ → R̄+, FB(t) :=

{

|χ[0,t)|B , if χ[0,t) ∈ B
∞ , if χ[0,t) /∈ B

where χ[0,t) denotes the characteristic function of [0, t). The function FB is called
the fundamental function of the Banach space B.

In what follows we shall denote by B(R+) the set of all Banach function spaces
with the property that lim

t→∞
FB(t) = ∞ and there exists a strictly increasing sequence

(tn) of positive real numbers with

tn →∞, sup
n

(tn+1 − tn) < ∞ and inf
n
|χ[tn,tn+1)|B > 0.

A trivial example of Banach function space over R+ which belongs to B(R+) is
Lp(R+,C) with 1 ≤ p < ∞.
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Similarly, let (Ω, Σ, µ) = (N,P(N), µc) where µc is the countable measure and
let B be a Banach function space over N (in this case B is called Banach sequence
space). We define

FB : N∗ → R̄+, FB(n) :=

{

|χ{0,...,n−1}|B , if χ{0,...,n−1} ∈ B
∞ , if χ{0,...,n−1} /∈ B

called the fundamental function of B.

In what follows we denote by B(N) the set of all Banach sequence spaces B with
lim

n→∞
FB(n) = ∞ and

inf
n
|χ{n}|B > 0.

Remark 2.5. If B is a Banach function space over R+ which belongs to B(R+)
then

SB := {(αn)n :
∞
∑

n=0

αnχ[tn,tn+1) ∈ B}

with respect to the norm

|(αn)n|SB
:= |

∞
∑

n=0

αnχ[tn,tn+1)|B,

is a Banach sequence space which belongs to B(N).
Indeed, this assertion follows by observing that

|χ{n}|SB
= |χ[tn,tn+1)|B and FSB

(n) = FB(tn), n ∈ N.

In what follows we shall give some examples of Banach sequence spaces.

Example 2.4. If p ∈ [1,∞) then B = lp with

|s|p =

(

∞
∑

n=0

|s(n)|p
)

1

p

is a Banach sequence space which belongs to B(N).

Example 2.5. (Orlicz sequence spaces) Let g : R+ → R̄+ be a nondecreasing,
left continuous function which is not identically 0 or ∞ on (0,∞). We define the
function:

Yg(t) =
∫ t

0
g(s) ds

which is called the Young function associated to g.
For every s : N → C we consider

Mg(s) :=
∞
∑

n=0

Yg(|s(n)|).

The set Og of all sequences with the property that there exists k > 0 such that
Mg(ks) < ∞ is easily checked to be a linear space. With respect to the norm
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|s|g := inf{k > 0 : Mg(
1

k
s) ≤ 1}

it is a Banach sequence space called Orlicz sequence space. Trivial examples of Orlicz
sequence spaces are lp, 1 ≤ p ≤ ∞ which are obtained for

g(t) = p tp−1, 1 ≤ p < ∞ and g(t) =

{

0, 0 ≤ t ≤ 1
∞, t > 1

for p = ∞.

Remark 2.6. If g : R+ → R+ is a nondecreasing left continuous function with
g(t) > 0, for all t > 0 and g(0) = 0 then the Orlicz sequence space Og associated to
g belongs to B(N).

3 The main results

In this section we shall give necessary and sufficient conditions for uniform expo-
nential stability of linear skew-product semiflows in Banach spaces.

Our main result is

Theorem 3.1. The linear skew-product semiflow π = (Φ, σ) on E = X × Θ
is uniformly exponentially stable if and only if there are a Banach sequence space
B ∈ B(N) and a sequence (tn) of positive real numbers with the following properties:

(i) sup
n
|tn+1 − tn| < ∞;

(ii) for every (x, θ) ∈ E the function

ϕx,θ : N → R+, ϕx,θ(n) := ||Φ(θ, tn)x||

belongs to B;
(iii) there exists K : X → (0,∞) such that

|ϕx,θ|B ≤ K(x), (x, θ) ∈ E . (3.1)

Proof: Necessity. It is immediate by taking B = l1 and tn = n.
Sufficiency. We have two possible situations.

Case 1. If T = sup
n

tn < ∞ then we have

||Φ(θ, T )x|| ≤ ||Φ(σ(θ, tn), T − tn)|| ||Φ(θ, tn)x|| ≤

≤ MeωT ||Φ(θ, tn)x|| = ϕθ,x̃(n), n ∈ N, (x, θ) ∈ E ,

where x̃ = MeωT x and M ≥ 1, ω > 0 are given by Proposition 2.1. Thus we have

||Φ(θ, T )x||χ{0,...,n−1} ≤ ϕx̃,θ, n ∈ N∗.

Using (3.1) it follows that

FB(n)||Φ(θ, T )x|| ≤ |ϕx̃,θ|B ≤ K(x̃), n ∈ N∗.
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Because B ∈ B(N) it results

Φ(θ, T )x = 0, (x, θ) ∈ E

and hence π is uniformly exponentially stable.

Case 2. Suppose that (tn) is unbounded. Since B ∈ B(N) there exists c > 0
such that

|χ{n}|B ≥ c, n ∈ N.

From

ϕx,θ(n)χ{n} ≤ ϕx,θ, n ∈ N, (x, θ) ∈ E

we have

c ||Φ(θ, tn)x|| ≤ |ϕx,θ|B ≤ K(x), n ∈ N, (x, θ) ∈ E .

By applying the uniform boundedness principle there exists N > 0 such that

||Φ(θ, tn)|| ≤ N, n ∈ N, θ ∈ Θ.

Let θ ∈ Θ. If s ≥ t0 then using the fact that (tn) is unbounded and the hypothesis
(i) it follows that there exists n(s) ∈ N such that

tn(s) ≤ s ≤ tn(s) + δ

where δ = sup
n
|tn+1 − tn|. Then

||Φ(θ, s)|| ≤ ||Φ(σ(θ, tn(s)), s− tn(s))|| ||Φ(θ, tn(s))|| ≤ MNeωδ, s ≥ t0, θ ∈ Θ.

It follows that

||Φ(θ, s)|| ≤ L := max{Meωt0 , MNeωδ}, s ∈ R+, θ ∈ Θ.

We consider the sequence (kn) defined by k0 = 0, kn+1 = min{j : tj ≥ tkn
}. Then

kn →∞ and

tj ≤ tkn
, j ∈ {0, . . . , kn}, n ∈ N.

From

||Φ(θ, tkn
)x|| ≤ ||Φ(σ(θ, tj), tkn

− tj)|| ||Φ(θ, tj)x|| ≤

≤ L||Φ(θ, tj)x||, j ∈ {0, . . . , kn}, n ∈ N

it results

||Φ(θ, tkn
)x||χ{0,...,kn} ≤ Lϕx,θ, n ∈ N, (x, θ) ∈ E

and hence
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||Φ(θ, tkn
)x||FB(kn + 1) ≤ LK(x), n ∈ N, (x, θ) ∈ E

By uniform boundedness principle there exists K ≥ 1 such that

||Φ(θ, tkn
)||FB(kn + 1) ≤ K, n ∈ N, θ ∈ Θ.

This inequality together with B ∈ B(N) implies that there is m ∈ N such that

||Φ(θ, tkm
)|| ≤

1

2
, θ ∈ Θ.

By Proposition 2.2. we conclude that π is uniformly exponentially stable. �

Corollary 3.1. The linear skew-product semiflow π = (Φ, σ) on E = X × Θ is
uniformly exponentially stable if and only if there are p ∈ [1,∞) and K : X → (0,∞)
such that

∞
∑

n=0

||Φ(θ, n)x||p ≤ K(x), (x, θ) ∈ E .

Proof: Necessity It is immediate.
Sufficiency. It results from Theorem 3.1. for B = lp and tn = n. �

Theorem 3.2. The linear skew-product semiflow π = (Φ, σ) on E = X × Θ
is uniformly exponentially stable if and only if there exist a non-decreasing function
N : R+ → R+, a sequence (tn) ⊂ R+ and a constant K > 0 with the following
properties:

(i) N(0) = 0 and N(t) > 0, for all t > 0;
(ii) sup

n
|tn+1 − tn| < ∞;

(iii) for every x ∈ X there exists α(x) > 0 such that

∞
∑

n=0

N(α(x) ||Φ(θ, tn)x||) ≤ K, θ ∈ Θ.

Proof: Necessity. It results for N(t) = t and tn = n.
Sufficiency. Case 1. If (tn) is bounded let T = sup

n
tn and M ≥ 1, ω > 0 given by

Proposition 2.1. Let x ∈ X and x̃ = [α(x)/MeωT ]x. Then

nN(||Φ(θ, T )x̃||) ≤
n
∑

k=1

N(MeωT ||Φ(θ, tn)x̃||) =

=
n
∑

k=1

N(α(x)||Φ(θ, tn)x||) ≤ K, n ∈ N, θ ∈ Θ.

It follows that Φ(θ, T )x̃ = 0, for all θ ∈ Θ and hence Φ(θ, T )x = 0, for all
(x, θ) ∈ E . So π is uniformly exponentially stable.

Case 2. If sup
n

tn = ∞ without lost of generality we may suppose that (tn) is a

non-decreasing sequence (if not we shall consider a subsequence with this property
and the proof is analogous).
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Let r = sup
n

(tn+1 − tn) and n0 ∈ N∗ with K < n0N(1). Then

n0N(||Φ(θ, tn)x̃||) ≤
n
∑

j=n−n0+1

N(α(x) ||Φ(θ, tj)x||) ≤ K, n ≥ n0, (x, θ) ∈ E

where x̃ = α(x)/Meωn0r. From this inequality we obtain that

N(||Φ(θ, tn)x̃|| < N(1)

and hence

||Φ(θ, tn)x̃|| =
α(x)

Meωn0r
||Φ(θ, tn)x|| < 1.

If we denote by L(x) = Meωn0r/α(x) it results that:

||Φ(θ, tn)x|| ≤ L(x), n ≥ n0, (x, θ) ∈ E .

By uniform boundedness principle it follows that there exists L1 ≥ 1 such that

||Φ(θ, tn)|| ≤ L1, n ≥ n0, θ ∈ Θ

and then we have

||Φ(θ, tn)|| ≤ L := max{L1, Meωtn0}, n ∈ N, θ ∈ Θ.

Without lost of generality, we may suppose that N is left continuous - if not we
can consider the function Ñ(t) = lim

s↗t
N(s) and the proof is unchanged.

Let (ON , | · |N) be the Orlicz sequence space associated to N and YN the Young
function associated to N.

Let x ∈ X \ {0} and β(x) = min{α(x), 1/KL||x||}. If x̃ = β(x)x and θ ∈ Θ ,
then the sequence

ϕx̃,θ : N → R+, ϕx̃,θ(n) = ||Φ(θ, tn)x̃||

verifies the inequality

YN(ϕx̃,θ(n)) = YN(β(x)||Φ(θ, tn)x||) ≤

≤ β(x)||Φ(θ, tn)x||N(β(x)||Φ(θ, tn)x||) ≤
1

K
N(α(x)||Φ(θ, tn)x||), n ∈ N

and hence MN(ϕx̃,θ) ≤ 1. It follows that ϕx̃,θ ∈ ON and |ϕx̃,θ|N ≤ 1. Because
ϕx̃,θ = β(x)ϕx,θ and ON is a linear space, we obtain that ϕx,θ ∈ ON and

|ϕx,θ|N ≤ K(x) := max{
1

α(x)
, KL||x||}, (x, θ) ∈ E .

By Theorem 4.1. we obtain that π is uniformly exponentially stable. �
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Theorem 3.3. The linear skew-product semiflow π = (Φ, σ) on E = X × Θ
is uniformly exponentially stable if and only if there is a Banach function space
B ∈ B(R+) with the following properties:

(i) for every (x, θ) ∈ E the function

Ψx,θ : R+ → R+, Ψx,θ(t) = ||Φ(θ, t)x||

belongs to B;

(ii) there exists K : X → (0,∞) such that

|Ψx,θ|B ≤ K(x), (x, θ) ∈ E .

Proof: Necessity. It is a simple exercise for B = L1(R+,C).

Sufficiency. Let SB be the Banach function space associated to B via Remark 2.5.
Since B ∈ B(R+) there exists a strictly increasing sequence (tn) of positive real
numbers with tn → ∞, δ := sup

n
(tn+1 − tn) < ∞ and inf

n
|χ[tn,tn+1)|B > 0. For every

(x, θ) ∈ E the function

ϕx,θ : N → R+, ϕx,θ(n) = ||Φ(θ, tn+1)x||

satisfies

ϕx,θ(n) ≤ ||Φ(σ(θ, t), tn+1 − t)|| ||Φ(θ, t)x|| ≤

≤ Meωδ||Φ(θ, t)x|| = ||Φ(θ, t)x̃||, n ∈ N, (x, θ) ∈ E , t ∈ [tn, tn+1),

where x̃ = Meωδx and M, ω are given by Proposition 2.1. It follows that

∞
∑

n=0

ϕx,θ(n)χ[tn,tn+1) ≤ Ψx̃,θ

and hence ϕx,θ ∈ SB and

|ϕx,θ|SB
≤ |Ψx̃,θ|B ≤ K(x̃) = K(Meωδx), (x, θ) ∈ E .

Then by Theorem 3.1. we conclude that π is uniformly exponentially stable. �

Corollary 3.2. The linear skew-product semiflow π = (Φ, σ) on E = X × Θ is
uniformly exponentially stable if and only if there are p ∈ [1,∞) and K : X → (0,∞)
such that

∫ ∞

0
||Φ(θ, t)x||pdt ≤ K(x), (x, θ) ∈ E .

Proof: Necessity. It is trivial.

Sufficiency. It results by Theorem 3.3. for B = Lp(R+,C). �
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Theorem 3.4. The linear skew-product semiflow π = (Φ, σ) on E = X × Θ
is uniformly exponentially stable if and only if there exist a nondecreasing function
N : R+ → R+ and a constant K > 0 with the following properties:

(i) N(0) = 0 and N(t) > 0, for all t > 0;
(ii) for every x ∈ X there exists α(x) > 0 such that

∫ ∞

0
N(α(x)||Φ(θ, t)x||)dt ≤ K, θ ∈ Θ.

Proof: Necessity. It results immediately for N(t) = t.
Sufficiency. Let M, ω given by Proposition 2.1. If (x, θ) ∈ E and β(x) = α(x)/Meω

then:

∞
∑

n=0

N(β(x)||Φ(θ, n + 1)x||) ≤
∞
∑

n=0

∫ n+1

n
N(α(x)||Φ(θ, t)x||)dt ≤ K.

Then by Theorem 3.2. it results that π is uniformly exponentially stable. �

Remark 3.1. Theorem 3.2., Corollary 3.2. and Theorem 3.3. are generalizations
for the case of linear skew-product semiflows of well-known results due to Zabczyk
([17]), Datko ([7]) and Neerven ([14]) for C0 -semigroups of linear operators. The-
orem 3.4. is a variant of Rolewicz’s theorem (see [15]) for linear skew-product
semiflows.
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