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Abstract

In this paper we investigate the existence of solutions on a compact domain
to an hyperbolic differential inclusion in Banach spaces. We shall rely on a
fixed point theorem for condensing maps due to of Martelli.

1 Introduction

This note deals with the existence of solutions defined on a compact domain for the
following hyperbolic differential inclusion (Darboux problem):

O®u(x,y)

910y € F(z,y,u(z,y)), (x,y) € JxJ=10,T]x]0,T] (1)

u(z,0) = f(z), u(0,y) = 9(y) (2)
where F' : J x J x E — 2F is a multivalued map with nonempty compact and
convex values, f, g:J — E and (F,|.|) a separable Banach space.

The single and multivalued finite dimensional versions of the problem (1)-(2) were
considered by DeBlasi and Myjak [2], [3] who established the topological regularity
of the solutions set. Kubiaczyk [6] considers the single-valued infinite dimensional
version of the problem where a Kneser-type theorem is proved for the solutions set.
By using a compactness type condition involving the measure of noncompactness,
Papageorgiou gives in [9] existence results for the problem (1)-(2).
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In this note we shall give an existence result for the problem (1)-(2). The method
we are going to use is to reduce the existence of solutions to problem (1)-(2) to the
search for fixed points of a suitable multivalued map on the Banach space C(J x
J, E). In order to prove the existence of fixed points, we shall rely on a fixed point
theorem for condensing maps due to Martelli [8]. Our result complements the few
existence results on the problem.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from mul-
tivalued analysis which are used throughout this paper. In the sequel we will note
J=JxJ

C(J, E) is the Banach space of continuous functions from J into E with the
norm

|2|loo := sup{|z(z,y)| : (z,y) € T}, foreach z € C(J,E).

A measurable function z : J — FE is Bochner integrable if and only if |z| is
Lebesgue integrable. (For properties of the Bochner integral see Yosida [10]).
LY(J, E) denotes the Banach space of measurable functions z : J — E which are
Bochner integrable.

Let (X, | - /) be a Banach space. A multivalued map G : X — 2% is convex
(closed) valued if G(z) is convex (closed) for all x € X. G is bounded on bounded sets
if G(B) = U,epG(z) is bounded in X for any bounded set B of X (i.e. sup{sup{||y|| :

zeB

y € G(r)}} < o0).

G is called upper semicontinuous (u.s.c.) on X if for each x, € X the set G(z,)
is a nonempty, closed subset of X, and if for each open set B of X containing G(z.),
there exists an open neighbourhood V' of z, such that G(V) C B.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B C X.

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. =, — x., y, —
Ys, Yn € G(x,) imply y, € G(x,)). G has a fixed point if there is x € X such that
z € G(z).

In the following CC(X) denotes the set of all nonempty compact and convex
subsets of X.

A multivalued map G : J — CC(F) is said to be measurable if for each w € E
the function Y : 7 — R defined by

Y(z,y) =d(w,G(z,y)) = inf{|w —v| : v € G(z,y)}
is measurable.

Definition 2.1. A multivalued map F : J x E — 2F is said to be an L'-
Carathéodory if

(i) (z,y) — F(x,y,u) is measurable for each u € E;

(1) u+— F(x,y,u) is upper semicontinuous for almost all (x,y) € J;
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(iii) For each k > 0, there exists hy € L'(J,R,) such that
1F(z,y,u)l| = sup{llv]| : v € F(z,y,u)} < hi(t) for all |u] <k

and for almost all (x,y) € J.

An upper semi-continuous map G : X — 2% is said to be condensing if for
any subset B C X with a(B) # 0, we have a(G(B)) < «(B), where o denotes the
Kuratowski measure of noncompactness. For properties of the Kuratowski measure,
we refer to Banas and Goebel [1].

We remark that a completely continuous multivalued map is the easiest example
of a condensing map. For more details on multivalued maps see the books of Deim-
ling [4] and Hu and Papageorgiou [5].

We will need the following hypotheses:

(H1) F: J x E — CC(F) is an L'~ Carathéodory multivalued map and for each
fixed u € C(J, E) the set

Sru={v € LT E): vlw.y) € Fla,y, ulw,y)) for ae. (v,y) € T |
is nonempty;

(H2) There exists H € L'(J,R") such that
1F (@, y,w)ll = sup{[lv]| : v € F(z,y,u)} < H(z,y)

for almost all (z,y) € J and all u € E;

(H3) The functions f, ¢g:J — E are continuous with f(0) = g(0);

(H4) For each bounded set B C C(J, F) and for each (z,y) € J the set

z oy
@) +90) = FO) + [ [Tolt s)dtds v e Spp)
is relatively compact in E, where Spp = U{Sp, : u € B}.

Remark 2.2. (i) If dimE < oo, then for eachu € C(J, E) the set Sg,, is nonempty
(see Lasota and Opial [7]).
(it) If dimE = oo then Sg, is nonempty if and only if the functionY : J — RT
defined by

Y(z,y) == inf{|v]| : v(z,y) € F(z,y,u(z,y))}

is measurable (see Hu and Papageorgiou [5]).

Definition 2.3. By a solution of (1)-(2) we mean a function u(.,.) € C(J, E) such
that there exists v € L'(J, E) for with we have

ula,y) = f@)+9(u) = 10)+ [ ["o(t.s)dids for each (w,) € T

and with v(t,s) € F(t,s,u(t,s)) a.e. on J.
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Our considerations are based on the following lemmas.

Lemma 2.4. [7]. Let F be a multivalued map satisfying (H1) and let T be a linear
continuous mapping from L'(J, E) to C(J, E), then the operator

FoSp:C(J,E) — CC(C(J,E)), u— (I'o Sp)(u) :==T(Sku)
is a closed graph operator in C(J,E) x C(J, E).

Lemma 2.5. [8]. Let X be a Banach space and N : X — CC(X) be a condensing
map. If the set

Q:={ueX: e N(u) for some \> 1}

1s bounded, then N has a fixed point.

3 Main Result

Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that hypotheses (H1)-(H4) hold. Then the problem (1)- (2)
has at least one solution on J.

Proof. Let C(J, E) be the Banach space provided with the norm
[ulloo := sup{|u(z, )| : (z,y) € T}, forue C(T, E).

Transform the problem into a fixed point problem. Consider the multivalued map,
N :C(J,E) — 2°7-E) defined by:

N(w) = {h € O B hay) = @)+ gly) ~ 0+ [ ["olt.)deds
where
vE Sp, = {v € LNJ,E):v(t,s) € F(t,s,u(t,s)) forae. (ts)¢€ j}.

Remark 3.2. [t is clear that the fized points of N are solutions to (1)-(2).

We shall show that N satisfies the assumptions of Lemma 2.5. The proof will be
given in several steps.

Step 1: N(u) is convez for each u € C(J, E).
Indeed, if hy, he belong to N(u), then there exist vy, vo € Sk, such that for each
(z,y) € J we have

hi(z,y) = f(z)+g(y) — f(0) + /Ox /Oy v;(t, s)dtds, i=1,2.
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Let 0 < a < 1. Then for each (z,y) € J we have

(ahy + (L= a)ha) (@,y) = f(@) +9(y) = FO)+ [ ["Tavi(t,) + (1 = a)ea(t, s)]ds.
Since S, is convex (because F' has convex values) then

ahy 4+ (1 — a)hy € N(u).

Step 2: N is bounded on bounded sets of C(J, E).

Indeed, it is enough to show that there exists a positive constant ¢ such that for
each h € N(u),u € B, ={u € C(J,FE) : ||ul|oc <7} one has ||h]|» < c.
If h € N(u), then there exists v € Sg,, such that for each (z,y) € J we have

h(z,y) = f(z) + gly +/ / (t, 5)dtds.

By (H1) we have for each (z,y) € J that

bz, )]l < 1£@)|+lg@)|+ FO) + [ [ At 9)dtds.

Then
1llso < 1 fllos + llglloe + | £(0) |+// (t, s)dtds = c.

Step 3: N sends bounded sets of C(J, E) into equicontinuous sets.
Let (z1,v1), (x2,y2) € T, x1 < X2, 11 < y2 and B, be a bounded set of C(J, E).
For each v € B, and h € N(u), there exists v € Sp,, such that

h(z,y) = f(z) + g(y) +/ / (t, 5)dtds.

Thus we obtain

[z, y2) = )| < 1) = Fn)|+ latwe) = gl + [ [ fo(e, s)ldrds

< | f(z2) = fz1)| +19(y2) — (1 |+/ / +(t, s)dtds.

As (x9,y2) — (z1,y1) the right-hand side of the above inequality tends to zero.

As a consequence of Step 2, Step 3 and (H4) together with the Arzela-Ascoli
theorem we can conclude that N is completely continuous and therefore a condensing
map.

Step 4: N has a closed graph.
Let u, — w4, h, € N(u,), and h,, — h,. We shall prove that h, € N(u,).
hy, € N(u,) means that there exists v,, € Sp,, such that

ho(z,y) = f(x) + g(y) +//vnt5dtds (x,y) € J.
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We must prove that there exists g. € Sp,, such that

ho(z,y) = f(z) +9(y) +//v*tsdtds (x,y) € J.
Now, we consider the linear continuous operator

r:L"J,E) — C(J,E)

vi— T(v)(z,y) = /OJC /Oyv(t, s)dtds, (z,y) € J.

From Lemma 2.4, it follows that I" o S is a closed graph operator.
Clearly we have

[(hn (2, y) = f(2) = g(y) + £(0)) = (hu(z, y) — f(z) —9(y) + f(0))]loo = 0 asn — oc.
Moreover from the definition of I we have
(hu(z,y) = f(z) — g(y) + £(0)) € I'(Sku,)-

Since u,, — U, it follows from Lemma 2.4 that

z ry
hola,y) = (@) = g) + F0) = [ [To.tt.)atds, @y) € T
for some v, € Spy,.
Step 5: The set
Q:={ueC(J,E): \ue N(u) for some A>1}

1s bounded.

Let u € Q. Then Au € N(u) for some A > 1. Thus there exists v € Sp,, such
that

u(z,y) = A1 (x) + A tg(y) — AHF(0) AT /Ox /Oyv(t, s)dtds, (z,y) € J.

This implies by (H2) that for each (z,y) € J we have

Jute, )]l < £+ lgw)] + 1£O)] + [ ["H(t, s)deas,

Thus
[ulloo < [flloo + llglloo + [.£(O |+/ / (t,s)dtds = K.
This shows that €2 is bounded.

Set X = C(J,E). As a consequence of Lemma 2.5 we deduce that N has a
fixed point which is a solution of (1)-(2) on J.
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