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Abstract

In this work we present a foundational theory with a certain degree of self-

description, in which different kinds of primitive concepts allow a formalization

close to common usage and open to different engraftings. We also show the

relative consistency of this theory, with respect to a fragment of the Zermelo-

Fraenkel set theory, by building some models.

Résumé

Dans ce travail, nous présentons une théorie auto-descriptive des fonde-

ments, où différentes sortes de concepts primitifs permettent une formalisation

assez naturelle qui se prête à des extensions dans plusieurs directions. Nous en

montrons enfin la consistance relative par rapport à un fragment de la théorie

des ensembles de Zermelo-Fraenkel, en construisant divers types de modèles.

1 Introduction

1.1. The present work should be viewed as part of a broader activity of research.
First of all we try to sketch this frame.

In the last twenty years of his life, Ennio De Giorgi was the leader of a foundational
research programme at the “Scuola Normale Superiore” in Pisa. A complete bibli-
ography can be found in [2]. This activity has been the result of a dialogue among
scholars from different areas: a dialogue on the basic principles of mathematics, logic
and computer science, and on their relations with the various branches of human
knowledge.
The “foundational” meaning of this activity can be explained by quoting De Giorgi,
[12]:
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... non intendiamo rifondare la Matematica su basi più solide, ma piuttosto
cercare qualche nuovo sentiero nella foresta della Matematica, della Logica e
dell’Informatica senza rinunciare ad alcuna delle più geniali intuizioni degli
studiosi che hanno tracciato le prime strade in questa foresta ... 1

We may consider the theories proposed in this research programme as foundational
theories in different senses: both as a broad frame for a conceptual realm and as a
way to set up a simple taxonomy of symbols, inspired by the usage of the language
of mathematics.

The evolution of these researches is summed up in the title of a paper written by
De Giorgi and published post mortem [5]: “Overcoming set-theoretic reductionism
in search of wider and deeper mutual understanding between Mathematicians and
scholars of different scientific and human disciplines”.
From the beginning, four paradigms have been outlined as informing the whole of
these reflections:

i- non-reductionism, which proposes to take into account the idea that there are
different kinds of objects, each with its peculiar intuitive meaning that we
would like to preserve. A difference that is also qualitative and not only quan-
titative. For example, in mathematics one should consider not only numbers
and sets, but also qualities, relations, tuples, operations, collections, functions,
variables . . . .

ii- open-endedness: at a different level, by the same principle, a foundational
theory should take into account the richness and the growth of sciences. Hence
it should allow developments in several directions to frame or to code different
topics in mathematics and in other disciplines.

iii- self-description: in particular a high degree of self-description is desirable
since the theory itself is part of mathematics. The main properties, relations
and operations on the objects of a foundational theory should be objects of
the theory itself.

iv- semi-formal axiomatization: rigour and clarity are needed in view of a
broader, rather than stronger, foundational framework, allowing a real ex-
change and a true dialogue among scholars from various branches of human
knowledge. For this reason the proposals of these theories are written following
the axiomatic method of the mathematical tradition: with axioms expressed
in the natural language supported by a presentation with notation close to the
common usage. This presentation should be suitable for rigorous formaliza-
tions in various formal languages.

The early activity in this area grew from a set-theoretic environment, [6]. Already
at this stage the non-reductionist attitude is apparent. In fact, in this set theoretic
frame there are Urelemente which are not mere atoms but correspond to various
mathematical objects (numbers, tuples, operations . . . ). Moreover various principles
of “free construction” are stated and studied, [18]. These principles allow a wider
set-formation than the classical one, based on the idea that to have a set one must

1... we do not intend to give new foundations to mathematics on a more solid basis. We rather search

for some new tracks in the forest of mathematics, logic and computer science, without waiving any of the

most genial intuitions of the scholars that drew the early roads in this forest ...



A basic theory with predicates 75

already have all of its elements. With these principles it is possible to have sets as
solutions of a large class of set-theoretic equations as, for example, x = {x}. Hence
these principles extend properties that have been studied by several scholars (P.
Aczel, M. Boffa, P. Finsler, P. Hájek, D. Scott, cfr. [1]) and that strongly violate
the postulate of well-foundation in the Zermelian universe.

In [7], [15] the non-reductionism is achieved explicitly. Along these lines a wide and
general theory for the foundations, with several kinds of objects, has been proposed
in [3] to tackle the problem of self-reference. In [23] and [24] it is shown that such a
theory, although relatively consistent with the classical foundational theories, is too
restrictive. In fact, it is inconsistent with some natural and interesting extensions
proposed in [3]. Hence such a general self-descriptive theory does not accomplish
the request for open-endedness.

For this reason the evolution of these investigations led to a preference for a pre-
sentation in which only a restricted initial core is given, [8], [4]. Then, the various
branches of mathematics, logic and computer sciences can be grafted onto this sim-
ple trunk: [25], [11], [20], [14], [21]. This choice is also useful in simplifying the task
of finding (relative) consistency proofs, allowing a step by step “construction” of
models.
In [8], [10], [4], [22] theories of this kind are called “Teorie Base” (“Basic Theories”).
They adopt as primitive concepts the notions of quality, relation, operation, natu-
ral number, collection, and system. A Basic Theory has a first essentially finitary
nucleus, and a second part useful in obtaining a good degree of self-description.

Subsequent simplifications of these theories opened a wider horizon. The theory
called “Teoria ’95”, and presented in [16], marks this transition. The main difference
between this theory and the previous ones is the preference given to predicates to
reach self-description in the first part of the exposition. This allows one to introduce
only a very weak arithmetic and to postpone stronger axioms for systems and tuples.

The last evolution is outlined in [13], [12], [9], [5]. This search of theories for the
foundations of mathematics, logic and computer science, has produced a new start-
ing point, open to the more general perspective of setting the basis of a dialogue
among scholars from different fields, [17]. Hence there was a need to isolate a pre-
mathematical part concerned with only a few qualities and relations of a general
character. By rephrasing the introduction of [5], we can say that this frame may be
suitable for a critical confrontation among the fundamental concepts of the various
disciplines in Humanities and Sciences. In fact, all these disciplines are concerned
with objects different in quality and with relations among these objects. All the
other concepts may be grafted onto this first trunk, qualified by suitable fundamen-
tal qualities and ruled by suitable fundamental relations. Moreover, logical concepts,
such as predicates, judgements and truth, have a particular importance in achieving
a wide self-description without requiring any engagement with strong mathematical
conceptions. In particular, in [13] a very rich structure for truth-judgments has been
grafted onto the theory. This structure, dominated by the quality of being “abso-
lutely true”, fully achieves, in a specific, inner environment, the hierarchy used to
escape the antinomies of self-description: a hierarchy that in classical foundational
theories permeates the whole construction.
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1.2. The work presented in this paper deals with a variant of these basic theories.
The main difference with the presentations in [16], [12], [13], [9], [5], is that we
propose axioms on predicates corresponding to the particular notion of predicate as
a binary operation.
The relative consistency proofs for these kinds of theories may be done with respect
to a rather weak arithmetic. On the other hand, the relative consistency proofs for
strong extensions of these theories make extensive use of Set Theory ([23], [19], [20],
[21]).
Since these theories are presented in a semiformal way, their formalization is the
first step toward an evaluation of the strength of consistency of the theories, [22].

In this paper we give a quite natural formalization in the First Order Predicate
Calculus with identity.

In the next section we present our formalization. The last paragraph is concerned
with a strengthening of the theory with an internal predicate of partial truth. In
section three we give a scheme to build models for the theory. These models are
based on the standard concept of term-model, suitably modified to fit the purely
relational presentation of the formalization. We have chosen Zermelo-Fraenkel set
theory, with extensionality up to a countable set of Urelemente, as a frame to build
these models.
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2 The theory

Basic–like theories allow an exposition that needs only a first formal bulk to
specify defined notions and terminology. After this initial task for obtaining a formal
frame, it is possible to proceed with the exposition in a semiformal but fully rigorous
way.

We choose a natural formalization with a finite number of symbols for constants.
The symbols for constants are introduced section by section. The language has
also a symbol ||= for a unary predicate, and three other symbols for predicates: U

(binary), B (ternary), and T (quaternary). This first order language is called L.
For sake of convenience we also adopt the usual symbol for the identity =.
The formalization of the principal bulk of the theory needs finitely many axioms:
namely the axioms from A.1 to F.2. We call this set of axioms Basic Theory with
Predicates, briefly BTP.

2.1 Fundamental qualities and relations

The first symbols for constants introduced in this section are:
qqual: for the quality of being a quality;
qrelb: for the quality of being a binary relation;
qrelt: for the quality of being a ternary relation;
qops: for the quality of being a simple operation;
qopb: for the quality of being a binary operation;
id: for the operation of identity.

The symbol U is intended as the predicate describing the use of “unary objects”. In
particular we say that the object x enjoys the quality q when U(qqual, q), and then
write q x for U(q, x). We also say that x is in the extension of q. Now we state with
axiom A.1 that “the quality of being a quality is a quality”. This is a self-referential
axiom since qqual plays both the role of quality and the role of object enjoying the
quality.

AXIOM A.1: U(qqual,qqual).

AXIOM A.2: The objects qrelb, qrelt, qops, qopb are qualities.

The objects enjoying qrelb, qrelt, qops, qopb are called binary relations, ternary
relations, simple operations, binary operations respectively.
The symbols B and T are intended as the predicates describing the use of “binary
objects” and of “ternary objects”, respectively. In particular if r is a binary relation
we write r xy for B(r, x, y). Similarly if s is a ternary relation we adopt the notation
s xyz for T(s, x, y, z). If f is a simple operation we write f xy for B(f, x, y), similarly
if g is a binary operation we write g xyz for T(g, x, y, z). If f xy, and if g abc, we
say that f is defined on x, and that g is defined on a and b (in the given order)
respectively. We also say that y is a value of f , and that c is a value of g respectively.

AXIOM A.3: The operations are functional, namely: if qops f , f xy, f xz then
y = z; if qopb g, g xyu, g xyv then u = v.
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Thanks to this axiom we can adopt the usual notations for operations: if f is a
simple operation we write also f(x) = y or fx = y for f xy, similarly if g is a binary
operation we write also g(x, y) = z or gxy = z for g xyz. Moreover we can use f(x),
fx, g(x, y) and g xy as defined partial terms.

AXIOM A.4: The object id is a simple operation and for all objects x it holds
id(x) = x.

2.2.1 Natural Numbers

We introduce the symbols for arithmetic:
qnat: for the quality of being a natural number;
nadd: for the binary operation of addition of natural numbers;
nord: for the binary relation of order between natural numbers;
0: for the number zero;
1: for the number one.

AXIOM B.1: qnat is a quality, nadd a binary operation, nord a binary relation;
further both 0 and 1 enjoy the quality qnat.

The objects enjoying qnat are called natural numbers.

AXIOM B.2: The operation nadd is defined exactly on all the natural numbers
and all its values are natural numbers. The relation nord holds between natural
numbers.

The usual notations are adopted. We use x + y = z for nadd xy = z, i.e.
T(nadd, x, y, z). We say that z is the sum of x and y. Similarly we use x ≤ y
for nord xy. We say that x is less than or equal to y. We write as usual x < y for
x ≤ y and x 6= y.

AXIOM B.3: One has x+ y = y+x, x+(y+ z) = (x+ y)+ z. If qnatx, qnaty
then x ≤ y or y ≤ x. If qnat x then x ≤ x. If x ≤ y ≤ z then x ≤ z. If x ≤ y and
y ≤ x then x = y.

AXIOM B.4: One has x+ y = x if and only if y = 0. One has 0 < 1. If qnatx,
and x 6= 0 then 1 ≤ x.

AXIOM B.5: One has x ≤ y if and only if x+ z = y for some natural number z.
If x < y then x + w < y + w.

These axioms give a very weak arithmetic. Namely the natural numbers are a
discrete ordered monoid.
We also use the standard notations for numerals denoting “concrete” natural num-
bers. We freely speak of their family, denoted as usual by IN, that is not an object
of the theory BTP.
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2.2.2 Arity and fundamental relations

ar: for the operation giving arity;
qrel: for the quality of being a relation;
qop: for the quality of being an operation;
rfond: for the operation generating fundamental relations.

AXIOM B.6: The objects qrel and qop are qualities. Binary and ternary rela-
tions are relations. Simple and binary operations are operations.

AXIOM B.7: The object ar is a simple operation.

When ar(x) = y we say that the object x has arity equal to y. When the arity is
a concrete positive number, 1, 2, 3 . . ., we say as usual that the object is unary,
binary, ternary, etc. The next axiom specifies the arities of the main kinds of
objects introduced up to now. The domain and codomain of the operation ar are
not completely specified by this axiom.

AXIOM B.8: The operation ar is defined on qualities, relations, operations and
numbers. Each natural number has arity 0. Each quality has arity 1. Each binary
relation and each simple operation has arity two. Each ternary relation and each
binary operation has arity three.

AXIOM B.9: The object rfond is a simple operation defined on all the nonzero
natural numbers, and rfondn is a relation with arity n+ 1.

AXIOM B.10: If x is unary then U(x, y) if and only if (rfond1)xy. If x is binary
then B(x, y, z) if and only if (rfond2) xyz. If x is ternary then T(x, y, z, w) if and
only if (rfond3)xyzw.

Remark: In particular, according to their intended meaning, the predicates de-
noted by U, B, T correspond to the fundamental relations on unary, binary, ternary
objects.

Remark: Only with the symbols U, B and T, we can not write axioms ruling
objects with arity greater than three. For example we can not express the usual
notations for ternary operations and quaternary relations, namely g(x, y, z) = w
and t xyzw respectively. We complete our formalization in sections 2.4.1 and 2.4.2.

2.3 Collections

We introduce the symbols for the basic collections:
qcoll: for the quality of being a collection;
V: for the the collection of all the objects;
∅̄: for the empty collection;
coll: for the collection of all the collections;
ins: for the collection of all the sets.

AXIOM C.1: The object qcoll is a quality. If qcoll x then arx = 1.

If qcoll C we say that C is a collection. If C is a collection we write x ∈ C for
U(C, x), and we say that x is an element of C or x belongs to C.
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We write A ⊆ B when all the elements of the collection A are also elements of the
collection B, and we say that A is included in B.

AXIOM C.2: The collections are extensional: if A ⊆ B and B ⊆ A then A = B.

AXIOM C.3: The objects coll, ∅̄, V and ins are collections. In particular
coll is the collection whose elements are exactly all collections, ∅̄ is the collection
without elements, V is the collection whose elements are all objects. Moreover
∅̄ ∈ ins ⊆ coll.

The elements of ins are called sets. In particular V ∈ coll ∈ coll ∈ V ∈ V.

For sake of convenience we introduce the collection of natural numbers.

N is the symbol for the collection of natural numbers.

AXIOM C.4: N is a collection whose elements are exactly the natural numbers,
i.e. x ∈ N if and only if qnat x.

As already said one must distinguish between N, that is an object of the theory,
and the family of concrete natural numbers IN.

2.4.1 Predicates

The main symbols of this section are:
bpred: for the operation giving the collections of b-predicates;
qpred: for the quality of being a general predicate;
qprop: for the quality of being a general proposition;
ide: for the operation of diagonalization of predicates;
et: for the operation of conjunction of predicates;
vel: for the operation of disjunction of predicates;
neg: for the operation of negation of predicates;
exists: for the operation generating existential quantifications of predicates;
univ: for the operation generating universal quantifications of predicates.

AXIOM D.1.1: The objects qpred, qprop are qualities, et, vel, ide are binary
operations; bpred, neg, exists, univ are simple operations.

The objects enjoying qpred are called (general) predicates, the objects enjoying
qprop are called (general) propositions.

AXIOM D.1.2: Every proposition is a predicate.

AXIOM D.2: The operation bpred is defined on all natural numbers. For each
natural number n bpredn is a collection. If p ∈ bpred (n+1) then p is a predicate
and also a binary operation with values in bpred n. If p ∈ bpred 0 then p is a
proposition and also a binary operation with values in bpred0.

For each natural number n the elements of bpredn are called b-predicates of order
n. If n = 0 they are called b-propositions.

According to axiom D.2 the b-predicates are binary operations with values that are
b-predicates. We use the prefix “b-” to remind this fact. We choose this notion
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of predicate to obtain, in a finitary way, the principal manipulations on predicates
without using operations like K (à la Curry), and like the operation of transposition
T (as done, for example, in [16]). The first input of a b-predicate must be a natural
number specifying in what “entry” of the predicate the second input is evaluated.
At each new computation the “entries” of the predicate are “renewed”. Hence the
order of a b-predicate has the intuitive meaning of “number of free variables”. Thus
we state the following axiom:

AXIOM D.3: The b-predicate p is defined on h and x if and only if h is a positive
natural number. If n is the order of p and h > n then p hx = p. If 0 < h ≤ k then
for any two objects x and y it holds (p hx) ky = (p (k + 1)y) hx.

If 0 < m1 ≤ m2 . . . ≤ mk, we denote by p[x1/m1, x2/(m2 + 1) . . . , xk/(mk + k − 1)],
the predicate: (. . . (pm1x1)m2x2 . . .)mkxk. If m1 = m2 . . . = mk = 1 we simply use
the notation p[x1 . . . xk].

AXIOM D.4: The operations et, vel, neg, are defined on predicates and their
values are predicates. The operations exists, univ, are defined on nonzero natural
numbers, and their values are simple operations defined on b-predicates that have
as values b-predicates.

We use the standard notations p∧ q, p∨ q, ¬p for et pq , vel pq, neg p, respectively.
Moreover we denote exists k and forall k by ∃k, and by ∀k respectively. When p is
of order one we simply write ∀p and ∃p instead of ∀1p, and ∃1p.

Axioms D.5, D.7, D.8 reflect the following intuitive idea: if the formula ϕ(x1 . . . xn)
corresponds to the b-predicate p, and the formula ψ(x1 . . . xm) corresponds to the
b-predicate q, then: the formula ϕ(x1 . . . xn)∧ψ(xn+1 . . . xn+m) corresponds to p∧q,
the formula ∃xkϕ(x1 . . . xn) corresponds to ∃kp, etc.

AXIOM D.5: If p and q are propositions then p∧q, p∨q, and ¬p are propositions.
For every n ∈ N, m ∈ N one has: if p ∈ bpredn and q ∈ bpredm then p ∧ q ∈
bpred(n + m), p ∨ q ∈ bpred(n + m), ¬p ∈ bpred n. If 1 ≤ k ≤ n + 1 and
p ∈ bpred(n+1) then ∃kp ∈ bpredn and ∀kp ∈ bpredn. If k > n and p ∈ bpredn
then ∃kp = p and ∀kp = p.

Let us now give the axiom on the binary operation ide. It allows the diagonalizations
of a predicate by identifying an “entry” of the predicate with a previous one.

AXIOM D.6: The binary operation ide is defined on nonzero natural numbers
and its values are operations on b-predicates with values that are b-predicates. For
any h ≥ 1, k ≥ 1 one has ide hk = ide kh. For any b-predicate p if h ≥ 1 then
(idehh)p = p. For any b-predicate p of order n, if m > n then for any h ≥ 1 one
has (idemh)p = p. For any b-predicate p of order n+ 1, if 1 ≤ h < m ≤ n+ 1 then
(ide hm)p ∈ bpredn.

We denote ide hk by ihk.

The following two axioms state some commutation rules among the introduced op-
erations.
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AXIOM D.7: Let p be a b-predicate of order n, and let q be any b-predicate:

1: ilm(ihk p) =















ihk(i(l+1)(m+1) p) for 1 ≤ h < k ≤ l < m ≤ n

ihk(il(m+1) p) for 1 ≤ h ≤ l < k ≤ m ≤ n

ih(k−1)(ilm p) for 1 ≤ h ≤ l < m < k ≤ n

2: ihk(∀m p) =















∀m−1(ihk p) for h < k < m

∀m(ih(k+1) p) for h < m ≤ k

∀m(i(h+1)(k+1) p) for 1 ≤ m ≤ h < k

ihk(∃m p) =















∃m−1(ihk p) for h < k < m

∃m(ih(k+1) p) for h < m ≤ k

∃m(i(h+1)(k+1) p) for 1 ≤ m ≤ h < k

3: ihk(p ∧ q) =







(ihkp) ∧ q for 1 ≤ h ≤ k ≤ n

p ∧ (i(h−n)(k−n) q) for n < h ≤ k

ihk(p ∨ q) =







(ihkp) ∨ q for 1 ≤ h ≤ k ≤ n

p ∨ (i(h−n)(k−n) q) for n < h ≤ k

4: ihk(¬p) = ¬(ihk p).

We do not assume associativity or commutativity for ∨ and ∧. Let us now give the
axioms on the action of “composite” predicates.

AXIOM D.8: Let p be a b-predicate of order n, and let q be any b-predicate:

1: (ihk p)mx =















i(h−1)(k−1)(p mx) for 1 ≤ m < h

ih(k−1)(p mx) for 1 ≤ h < m < k

ihk(p (m+1) x) for 1 ≤ k ≤ m 6= h

(ihk p) hx = ((p hx) (k−1) x) = p[x/h, x/k] for 1 ≤ h < k.

2: (∀hp) kx =







∀h(p (k+1) x) for 1 ≤ h ≤ k

∀h−1(p kx) for k < h

(∃hp) kx =







∃h(p (k+1) x) for 1 ≤ h ≤ k

∃h−1(p kx) for k < h

3: (p ∧ q) hx =







(p hx) ∧ q for h ≤ n

p ∧ (q (h−n) x) for h > n

(p ∨ q) hx =







(p hx) ∨ q for h ≤ n

p ∨ (q (h−n) x) for h > n

4: (¬p) kx = ¬(p kx).
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2.4.2 Basic predicates

Let us now introduce basic predicates related to the “action” of the objects of
the theory itself. The fundamental object introduced in this section is:

gbp: for the operation generating basic predicates.

AXIOM D.9: The object gbp is a simple operation associating to any object a
predicate. If ar x = n > 0 then gbpx is a b-predicate of order n.

We adopt the notation “xy1 . . . yk” for the predicate (gbp x)[y1 . . . yk]. We use simply
the notation “x” for gbp x. If x is a collection we use the notation “y ∈ x” for “x y”.
We also use the notation “x = y” for (gbp id)[x, y]. If 0 < m1 ≤ m2 . . . ≤ mk, the
predicates “x”[y1/m1, y2/(m2 + 1) . . . , yk/(mk + k − 1)], are called basic.

Since rfond h is the relation of arity h+ 1 describing the objects of arity h, we give
the following axiom:

AXIOM D.10: If ar x = h > 0 then “(rfond h) x” = “x”.

Now we can find a b-proposition corresponding exactly to each sentence of the
language L\{||=}. This can be done by replacing U, B, T with “rfond1”, “rfond2”,
“rfond3” respectively.

2.5 The notion of truth

Now we consider the symbol ||= as a unary predicate. The intended meaning of
||=x is: x is a proposition and x is true. We have made this choice simply to get a
finite and meaningful formalization of the theory.

AXIOM E.1: If ||=x then x is a proposition.

AXIOM E.2: If p is a b-proposition then ||=p if and only if not ||=¬p.
If p and q are b-propositions then:
||=p ∧ q if and only if ||=p and ||=q, and ||=p ∨ q if and only if ||=p or ||=q.
If p is a b-predicate of order one then:
||=∀p if and only if for every x it holds ||=px, and ||=∃p if and only if for some x

it holds ||=px.

AXIOM E.3: If arx = 1 then U(x, y) if and only if ||=“x y”. If arx = 2 then
B(x, y, z) if and only if ||=“x yz”. If arx = 3 then T(x, y, z, w) if and only if
||=“x yzw”.

We can now generalize the notation x y1 . . . yk for ||=“x y1 . . . yk”, also for values of
arx = k greater than three. Thanks to Axiom D.10, if arx = k then x y1 . . . yk if
and only if (rfondk) xy1 . . . yk. When x y1 . . . yk holds we say that the object x acts
on the objects y1 ... yk.

Remark: in this way we can express in our formalization, with a finite number of
axioms and symbols, the action of objects with arity greater than three. We remark
that, for each k, the notation ||=“x y1 . . . yk” corresponds to a Σ1 formula of the first
order language L in the free variables x, y1, . . . , yk.
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Remark: at this stage the axioms E.1, E.2, E.3 have no counterparts in terms of
the internal predicates of the theory.
In fact the truth predicate ||= can not have an internal counterpart. More pre-
cisely we can adapt the traditional “liar” argument to obtain the following theorem,
cfr.[16]:

Theorem 1: Let p be a b-predicate of order one. There is a b-proposition q such
that ||=q if and only if 6 ||=p[q]. In particular there is no b-predicate p such that:
||=p[x] if and only if ||=x, for any object x.

Proof : Put θ̄ = (∃1i24i15((¬p) ∧ “rfond3”)) [1/2], and q = θ̄[θ̄] = ∃i12
(

(¬p) ∧ “θ̄ 1θ̄”
)

.
Then

||=q if and only if for some x, ||=
(

i12
(

(¬p) ∧ “θ̄ 1 θ̄”
))

[x]

if and only if for some x, ||=
(

(¬p) ∧ “θ̄ 1 θ̄”
)

[x/1, x/2]

if and only if for some x, ||=¬p[x] and ||=“θ̄ 1 θ̄ x”

if and only if for some x, ||=¬p[x] and T(θ̄, 1, θ̄, x)

if and only if for some x, not ||=p[x], and θ̄[θ̄] = x

if and only if not ||=p[θ̄[θ̄]]

if and only if not ||=p[q]. �

Different formalizations of the theory can be completely described in terms of the
predicates of the theory itself: e.g. taking an infinite language having a sequence of
symbols for predicates Pn (each of them having arity n + 1 and corresponding to
rfondn). This choice leads to an infinite axiomatization.

2.6 Verifiability and falsifiability

In this section we partially reflect into the theory the notions of being a true
proposition and of being a false proposition. The constant symbols of this section
are:

qfals: for the quality of being falsifiable;

qver: for the quality of being verifiable.

AXIOM F.1: The objects qver, qfals are qualities of b-propositions.

AXIOM F.2: If qverx then ||=x. If qfals x then ||=¬x.

We call judgement any proposition of the form “qver x” or “qfals x”. A proposition
x is called judgeable if either qver x holds or qfals x holds.

Remark: The following natural properties of qver and qfals hold thanks to
axioms E.2 and F.2:

- qver x and qfals x can not both hold;

- if p and ¬p are both judgeable, then qver¬p if and only if qfals p;

- if p, q and p ∧ q are all judgeable, then qver p ∧ q if and only if qver p and
qver q;

- if p, q and p ∨ q are all judgeable, then qver p ∨ q if and only if qver p or
qver q;
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- if ∀1p is judgeable and for every x the proposition p[x] is judgeable, then
qver∀1p if and only if for all x qver p[x];

- if ∃1p is judgeable and for every x the proposition p[x] is judgeable, then
qver∃1p if and only if for some x qver p[x].

The following axiom schemata provide judgeable propositions. Let n be a concrete
natural number:

AXIOM F.3.n: qver“x y1 . . . yn” if and only if ||=“x y1 . . . yn”.

AXIOM F.4.n: qfals“x y1 . . . yn” if and only if ||=¬“x y1 . . . yn” .

These axioms can be synthetized by saying that all basic propositions are judgeable.

As already noticed, the axioms from A.1 to F.4 do not guarantee any “closure”
property of judgeable propositions. The main closure properties can be stated as
follows.

AXIOM F.5: If p is judgeable then ¬p is judgeable as well. If p, q are judgeable
then both p ∧ q and p ∨ q are judgeable.

AXIOM F.6: Let p be a predicate of order one. If for every x it holds qver p[x] or
for some x it holds qfals p[x], then ∀p is judgeable. If for every x it holds qfals p[x]
or for some x it holds qver p[x], then ∃p is judgeable.

Taken together, these axioms would allow a good reflection of truth into the theory.
But (un)fortunately they are inconsistent.

Theorem 2: The axioms from A.1 to F.6 are inconsistent.

Proof : We prove more: the axioms from A.1 to F.5 are inconsistent with a weaker
form of F.6, namely:

(*) If for every x the proposition p[x] is judgeable then both ∀ p and ∃ p are
judgeable.

The argument is the following. By theorem 1 there is some proposition y such that
||=“qver y” if and only if 6||=y. Hence either ||=“qver y” (i.e. qver y) holds and
6||=y, or qver y does not hold and ||=y. The first possibility is excluded by F.2, and
so is the second one, when y is judgeable. In fact in this case by E.2 and F.2 we
have qver y. Following the proof of theorem 1, with p = “qver”, we can build y as
the b-proposition q = ∃i12

(

(¬“qver”) ∧ “θ̄ 1θ̄”
)

, which is judgeable by axioms (*),
F.3, F.4, F.5.
In fact by (*), D.7, D.8 it is enough to prove that for every x the proposition
(¬“qver x”)∧ “θ̄[θ̄] = x” is judgeable. By E.6 it is enough to prove that for every x
both ¬“qver x” and “θ̄[θ̄] = x” are judgeable. Thanks to F.3 and F.4. it is enough
to prove:

∀x
((

(||=¬“qver x”) ∨ (6||=¬“qver x”)
)

∧
(

(||=“θ̄[θ̄] = x”) ∨ (6||=“θ̄[θ̄] = x”)
))

.
This is a theorem of first order logic. �

However, both the group of axioms from A.1 to F.5 and the group of axioms from
A.1 to F.3 together with F.5, F.6, are relatively consistent with respect to Zermelo-
Fraenkel set theory. This will be shown in the next sections.
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3 Some models

In this section we prove the relative consistency with respect to ZFU (Zermelo-
Fraenkel set theory with extensionality up to a countable set of Urelemente) of two
extensions of BTP, namely: BTP and axioms F.3, F.4, F.5, BTP and axioms F.3,
F.5, F.6.

The relative consistency proofs are done by giving a scheme to build suitable first
order structures, over the first order language L introduced in section 2. In this way
we stress quite neatly a division between the main ideas underlying these construc-
tions and the rather long and tedious coding needed to complete the construction
of the models. We propose structures of three different kinds.

The structures U of the first type are first order structures on the language L and
verify BTP, F.5, F.6. The scheme to build them is divided in two parts. We begin
with the construction of models of the axioms from A.1 to D.10. Such a structure is
a sort of term model. Then we encode formulae by elements of the term model and
we define the interpretation of ||= in U . We conjecture that similar constructions
can be done in suitable fragments of Recursive Arithmetic.

The models of the second kind, denoted by U∞, verify BTP, F.3, F.4, F.5. Since
they satisfy the axiom schemata F.3, F.4, all basic propositions are judgeable. These
models are given by an iterative and increasing process based on a structure of the
first kind.

The models of the third kind, denoted by U τ , satisfy BTP, F.3, F.5, F.6. The
construction of this kind of models recalls the one presented in [26]. To get the
desired properties we use a countable transfinite iteration based on a structure of
the first kind.

• We consider first order structures based on a countable set of Urelemente U in-
cluding IN, and such that U \ IN is infinite.

3.1 The general scheme

In this section we prove the consistency of BTP, F.5, F.6 with respect to ZFU.
Thanks to the notations introduced in section 2, we assume that all the axioms are
formulated in the formal first order language L (which has 33 symbols of constants,
and the four symbols of predicates U, B, T and ||=).

3.1.1 Extension functions and basic structures

Definition 1: Fixed two distinct elements, ar and rfond, of U , we consider:

- Ar : U → IN such that: Ar(ar) = 2, Ar(rfond) = 2 and, for n ∈ IN,
Ar(n) = 0, Ar−1({n}) is infinite ;

- Rfond : IN \ {0} → U \ {ar, rfond} an injective function such that:
Ar(Rfond(n)) = n+ 1 for n ∈ IN;

- Ext :U \Ar−1({0}) → Vω(U), being Vω(U) the level ω of the Von Neumann
hierarchy over U , such that:
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Ext(x) ⊆ UAr(x) for x ∈ U \ Ar−1({0}), and Ext(ar) = Ar;

Ext(rfond) = Rfond and Ext(Rfond(h)) =
⋃

Ar(x)=h ({x} × Ext(x)).

We call (Ar, ar, Rfond, rfond) a fundamental structure and ((Ar, ar, Rfond,
rfond), Ext) a coherent basis, and we also say that Ext is an extension function
coherent with the given fundamental structure.

Definition 2: We call a first order structure U = (U, I), on L, a basic structure if
for some coherent basis ((Ar, ar, Rfond, rfond), Ext) one has:

A) the interpretation I is injective, I(ar) = ar, I(0) = 0, I(1) = 1, I(rfond) =
rfond;

the interpretation of each symbol of constant is an element of Ar−1(n), where
n is the arity assigned to this symbol in the corresponding axiom of BTP;

B) I(U) = Ext(Rfond(1)), I(B) = Ext(Rfond(2)), I(T) = Ext(Rfond(3)).

Remark: Fixed an interpretation of constants satisfying the condition A, a co-
herent extension function Ext determines uniquely, up to the interpretation of ||=,
a basic structure. We denote such a basic structure by UExt.

Notation: If I is an interpretation satisfying condition A we denote the I-inter-
pretation of a symbol for a constant by its name in italic characters (instead of
boldface). We adopt this convention also for defined terms. This is coherent with
the notation adopted in the above definitions.

Consider a fundamental structure (Ar, ar, Rfond, rfond) and an interpretation I
of the constants of L satisfying condition A. Our purpose is to extend these data,
I, (Ar, ar, Rfond, rfond), to a basic structure that satisfies the desired axioms.

3.1.2 First conditions on the extension function

We introduce distinguished sets Qual, Coll, Relh and Oph (h ∈ IN), Pred, Prop,
such that:

- qualities are collected in the set Qual ⊂ Ar−1(1) that contains the I-
interpretations of all the symbols of constants for qualities: qqual, qrelb, qrelt,
qops, qopb, qcoll, qnat, qrel, qop, qpred, qprop, qfals, qver;

- collections are collected in the infinite set Coll ⊂ (Ar−1(1) \Qual), contain-
ing V , I(∅̄), coll, ins, N ;

- relations of arity equal to h are collected in the set Relh ⊂ Ar−1(h) such that
nord ∈ Rel2, Rfond(h) ∈ Relh+1;

- operations of arity equal to h+1 are collected in the set Oph ⊆ (Ar−1(h+1)\
Relh+1). The set Op1 is infinite. Moreover: id ∈ Op1, nadd ∈ Op2, ar ∈ Op1,
bpred ∈ Op1, ide ∈ Op2, et ∈ Op2, vel ∈ Op2, neg ∈ Op1, exists ∈ Op1,
univ ∈ Op1, rfond ∈ Op1, gbp ∈ Op1;

- predicates and propositions are collected in the sets Pred and Prop such
that: Prop ⊆ Pred ⊆ Op2, Pred \ Prop and Prop are countable.
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We put Rel =
⋃

hRelh, Op =
⋃

hOph.

The elements of the above sets are the “qualified” elements of the model. Some
among the remaining elements of the universe U can be “activated” to get models
of extensions of the theory.

Remark: The conditions on the powers of Coll, Op1, Pred \ Prop and Prop will
be used in section 3.1.3.

Now we give a first group of conditions that the extension function Ext must satisfy
in order to allow the construction of our models. These conditions will be kept fixed
throughout this section. For sake of simplicity the extensions of several objects are
only partially specified. In particular, the extensions of qver, qfals are completely
unspecified.

1) Ext(ar) = Ar, Ext(rfond) = Rfond, Ext(x) ⊆ UAr(x) for any x ∈ U \
Ar−1({0}).

2) Ext(qqual) = Qual, Ext(qrelb) = Rel2, Ext(qrelt) = Rel3, Ext(qops) = Op1,
Ext(qopb) = Op2,

Ext(qnat) = IN, Ext(qcoll) = Coll, Ext(qrel) = Rel, Ext(qop) = Op.

Ext(V ) = U , Ext(I(∅̄)) = ∅, Ext(coll) = Coll, Ext(N) = IN.

{I(∅̄), N} ⊆ Ext(ins) ⊆ Coll.

Ext(nord) = {(m,n) ∈ IN× IN : m ≤ n}.

Ext(id) = {(x, x) : x ∈ U}, Ext(nadd) = {(m,n, s) ∈ IN3 : m+ n = s}.

Ext(qprop) = Prop, Ext(qpred) = Pred.

3) For the extensions of operations different from id, nadd, ar, rfond, we only
assume that they are univalent graphs so as to satisfy axiom A.3.

For the extensions of collections different from V, I(∅̄), coll, ins, N we only
assume that they are extensional so as to satisfy axiom C.2.

4) Ext(Rfond(h)) =
⋃

Ar(x)=h{x} × Ext(x).

Remark: The condition 4) gives inductively the extension of each Rfond(h) for
h ≥ 1. It is well posed no matter how we choose the extensions of the objects
different from Rfond(h). In fact, the extension of Rfond(h), which has arity h+ 1,
depends only on the extensions Ext(x) for Ar(x) = h.

It needs only a straightforward check to prove the following proposition:

Proposition: If Ext verifies 1), 2), 3), 4) then: UExt |= A.1 − A.4, B.1 −
B.10, C.1− C.4, D.1.

3.1.3 Coding functions and predicative extensions

Let us now specify the extension function so as to get models satisfying also
the axioms from D.2 to D.10 and E.1, E.2, E.3. We begin by defining a first order
language ∗L associated to (Ar, U).

Language of the arity. The first order language relative to (Ar, U), has a symbol
for constant cx for each x ∈ U , a symbol for predicate px with arity equal to Ar(x)
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for each x ∈ U such that Ar(x) 6= 0, and it does not have the symbol = for equality.
Moreover we distinguish, à la Takeuti, a sequence of symbols for free variables, say
{ξn}, and a sequence of symbols for bounded variables, say {ηn}.

We denote the set of the well formed formulae of ∗L by F∗L.

Normal Form. A ∗L-formula ϕ is in normal form if:

(a) ξn is the free variable whose first occurrence in ϕ is the nth first occurrence
of a free variable in ϕ;

(b) the nth quantifier appearing in ϕ bounds ηn;

(c) the formula ϕ has no subformula of the kind pRfond(h)(cx, t1, . . . th), with
Ar(x) = h > 0.

Reduction steps. Given any ∗L-formula ψ, we define:

- Sa(ψ) as the ∗L-formula obtained by replacing the m free variables of ψ with
ξ1 . . . ξm in such a way to satisfy point (a) above;

- Sb(ψ) as the ∗L-formula obtained by replacing in the formula ψ each free
occurrence of a variable in the scope of the hth quantifier with ηh in such a
way to satisfy point (b) above;

- Sc(ψ) as the ∗L-formula obtained by replacing in ψ every subformula of the
kind pRfond(h)(cx, t1, . . . th), with Ar(x) = h > 0, by the formula px(t1, . . . th).

Remark: Starting from any formula ψ and applying Sa, Sb and a finite number
of steps Sc one gets a formula in normal form. The normal form of a formula is
uniquely determined. We call N∗L the set of all the formulae in normal form.

Coding–function. We call coding–function a bijection G between N∗L and Pred,
mapping the formulae without free variables onto Prop. If ϕ has normal form ψ we
denote by ϕ the predicate G(ψ).

Since both Coll and Op1 are infinite we can choose the following distinguished
elements of U in such a way that:

- bpredn ∈ Coll\{V, ∅̄, coll, ins, N}, n ∈ IN, bpredn 6= bpredm if n 6= m,
Coll \ {bpredn : n ∈ IN} is infinite;

- univn, existsn ∈ Op1\ {id, ar, bpred, neg, exists, univ, rfond, gbp},
n ≥ 1, univn 6= univm and existsn 6= existsm if n 6= m.
Moreover univn 6= existsm for all m,n;

- idemn, n,m ≥ 1, are elements of Op1 different from each univn and existsn

for n ≥ 1, and from id, ar, bpred, neg, exists, univ, rfond, gbp.
Moreover idemn = idenm, idemn are all different for m ≤ n, and Op1\ {idemn :
m,n ∈ IN}∪ {univn : n ∈ IN} ∪{existsn : n ∈ IN} is infinite.

Now we give a second group of conditions that the extension function Ext must
satisfy in order to allow the construction of models for the axioms from A.1 to D.10.
Also these conditions will be kept fixed throughout the section.

5) Ext(qpred) = Pred = G (N∗L), Ext(qprop) = Prop = {G(ϕ) : ϕ has no
free variables};
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-Ext(bpred) = {(n, bpredn) : n ∈ IN}, Ext(bpredn) = {G(ϕ) : ϕ has exactly
n free variables};

- Ext(neg) = {(G(ϕ), G(¬ϕ)) : ϕ ∈ N∗L};

- Ext(et) = {(G(ϕ), G(ψ), G(ϕ∧ψ′)) : ϕ, ψ ∈ N∗L}, Ext(vel) = {(G(ϕ), G(ψ),
G(ϕ ∨ ψ′)) : ϕ, ψ ∈ N∗L},

where ψ′ is obtained from ψ by replacing each occurrence of ξi with ξn+i and
each occurrence of ηj with ηm+j, where n and m are respectively the number
of free variables and the number of bounded variables in ϕ;

- Ext(univ) = {(n, univn) : n ∈ IN}, Ext(exists) = {(n, existsn) : n ∈ IN}.

Let ∀nϕ and ∃nϕ be the normal forms of the formulae “obtained by quantify-
ing” the nth free variable of ϕ with ∀ and with ∃ respectively:

Ext(univn) is the graph of the correspondence that associates to G(ϕ) the
predicate G(ϕ) itself if ϕ has less than n free variables, and the predicate
G(∀nϕ) if ϕ has at least n free variables,

Ext(existsn) is the graph of the correspondence that associates to G(ϕ) the
predicate G(ϕ) itself if ϕ has less than n free variables, and the predicate
G(∃nϕ) if ϕ has at least n free variables.

-Ext(ide) = {(n,m, idenm) : m,n ∈ IN}, Ext(idemn) = {(G(ϕ), G(ϕ′′)) : ϕ ∈
N∗L}, where ϕ′′ is ϕ if either m = n or n > m ≥ 1 and ϕ has less than n free
variables, else, for n > m ≥ 1, ϕ′′ is the normal form of the formula obtained
from ϕ by replacing each occurrence of ξn with ξm;

6) For each ϕ ∈ N∗L let Ext(G(ϕ)) be the graph of the correspondence that
associates to (n, x), n ∈ IN and x ∈ U , the predicate G(ϕ′′′), where ϕ′′′ is ϕ
itself if this formula has less than n free variables, else the normal form of the
formula obtained from ϕ by replacing each occurrence of ξn with cx;

7) Ext(gbp) is the graph of the correspondence that associates to x ∈ U the
predicate G(px(ξ1, . . . , ξn)) if Ar(x) = n > 0.

Predicative extension. Any extension function Ext fullfilling conditions 1, 2, 3,
4, 5, 6 and 7 is called a predicative extension.

Proposition: If Ext is a predicative extension then: UExt |= A.1 − A.4, B.1 −
B.10, C.1− C.4, D.1−D.10.

Sketch of the proof:

By condition 5 the axioms D.2, D.4, D.5, D.6, D.7 are satisfied.
By condition 6 the axioms D.3, D.8 are satisfied.
By conditions 6 and 7 the axioms D.9, D.10 are satisfied. Notice that condition (c)
in the definition of normal form has been chosen so as to satisfy axiom D.10. �

Notation:

- We write ¬ϕ for ¬ϕ. When ϕ and ψ are sentences we write: ϕ ∧ ψ, ϕ ∨ ψ
for ϕ ∧ ψ, ϕ ∨ ψ, respectively. We write ∀nϕ, ∃nϕ for ∀nϕ, ∃nϕ, respectively.

- If Ar(x) = n > 0 we denote px(ξ1, . . . ξn) also by “x”.
Similarly “x x1 . . . xk” stands for px(cx1

, . . . , cxk
, ξk+1, . . . ξn).

Notice that: “Rfond(n+1)x” = pRfond(n+1)(cx, ξ2, . . . , ξn+1) = px(ξ1, . . . , ξn) = “x”.
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3.1.4 Truth structures

With the previous constructions the coding is over. In this section we give the
interpretation of ||=.

Predicative structures. Given a predicative extension function Ext we call pred-
icative structure the first order ∗L-structure ∗UExt = (U, J) such that J(cx) =
x, J(px) = Ext(x).

Definition 3: A basic structure U relative to a predicative extension Ext is called
truth structure if it satisfies conditions A and B in definition 2 and:

C) I(||=) = {ϕ̄ : ϕ̄ ∈ Prop , ∗UExt |= ϕ} .

Proposition: If U is a truth structure, then: U |= BTP \ {F.1, F.2}.

Proof : By definition 3 the following key identity holds for the elements x ∈ U such
that Ar(x) = n 6= 0:

{(x1, . . . xn) ∈ Un : U |= ||=“xx1 . . . xn”} =

{(x1, . . . xn) ∈ Un : ∗UExt |= px(x1 . . . xn)} = Ext(x)

The proof of axioms E.1, E.2, E.3 needs only a “word-by-word translation” according
to the above identity. Axiom E.1 is trivial. We only check that U satisfies the first
clause of axiom E.2. The remaining proofs are similar and we omit them.

Thanks to the above identity we have to prove that for each x ∈ Prop, x = ϕ ∈ I(||=)
if and only if ¬ϕ 6∈ I(||=). This follows since ∗UExt |= ϕ if and only if ∗UExt 6|= ¬ϕ.�

In order to get a trivial model of the axioms F.1, F.2, F.5, F.6, one may sim-
ply assume that there are neither verifiable nor falsifiable propositions, and put:
Ext(qver) = Ext(qfals) = ∅.

Proposition: If U is a truth structure and Ext(qver) = Ext(qfals) = ∅ , then:
U |= BTP ∪ {F.5, F.6}.

We say that x ∈ U is judgeable in a basic structure if x ∈ Ext(qver) ∪ Ext(qfals).
We say that a ∗L-sentence ϕ is judgeable in a predicative structure ∗UExt if ϕ is
judgeable in UExt, i.e. ∗UExt |= pqver(cϕ) ∨ pqfals(cϕ).

3.2 Getting judgements

In this section we modify the model defined in the previous sections by suitably
enlarging the extensions of qver and qfals. This cannot be done in the straightfor-
ward and näıve way. In fact let us consider U and ∗U , the truth structure and the
predicative structure relative to the same predicative extension function, without
judgeable propositions. If one adds to the extension of qver the propositions that
are true in ∗U , and to the extension of qfals those that are false in ∗U , one gets
a new predicative extension function, hence a new truth structure Ũ satisfying all
the axioms from A.1 to E.3. This structure Ũ verifies also F.1, F.5, F.6 (and the
natural conditions on qver and qfals listed after F.2) in a non-trivial way. But then
Ũ does not satisfy F.2. In fact ∗U |= pqqual(cqqual), hence Ũ |= qver“qqual qqual”,
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i.e. ∗Ũ |= pqver(c“qqual qqual”), and ∗Ũ 6|= ¬pqver(c“qqual qqual”). The latter is in turn
equivalent to Ũ 6|= ||=(¬“qver “qqual qqual” ”). On the other hand U |= ∀x¬qverx,
in particular U |= ¬qver“qqual qqual”, i.e. ∗U |= ¬pqver(c“qqual qqual”). Hence
Ũ |= qver(¬“qver “qqual qqual” ”), and Ũ 6|= ||=(¬“qver “qqual qqual” ”), there-
fore F.2 does not hold in Ũ .

The basic idea in this section is that of level of judgement. First we add to the
extension of qver only those basic propositions that are not judgements and are true
in ∗U and the sentences that are logically true. Similarly we add to the extension
of qfals the basic propositions that are not judgements and are false in ∗U , the
judgements on objects that are not propositions, and the sentences that are logically
refutable. Moreover, to get also F.5, we add all the boolean combinations of these
particular propositions. Then we add just the boolean combinations of judgements
involving them, and so on. Thus we build a sequence of predicative extensions based
on this hierarchy.

At each step the extensions of both qver and qfals increase. Moreover at each
step the only changing extensions are those of qver, qfals, and Rfond(h), h ≥ 1.
Consequently the extension of each Rfond(h) changes by increasing, thanks to the
inductive definition of extension, given with condition 4 in section 3.1.2. In fact the
extension of Rfond(1) changes depending on the new extensions of qver and qfals.
Similarly for each h > 0 the extension of Rfond(h + 1) changes according to the
new extension of Rfond(h).

Since the scheme for extensions given with condition 4 in section 3.1.2 is continuous
for increasing union, we consider the limit extension function simply by taking the
pointwise increasing union. This limit truth structure satisfies BTP and F.5 in a
non-trivial way, and also the axiom scheme F.3. In fact all the basic propositions
which are true in the model are verifiable.

This limit structure does not satisfy the axiom scheme F.4. In fact there are a lot
of basic predicates that are not judgeable. They are exactly the judgements on
predicates excluded from the hierarchy of the level of judgement. To get rid of this
we need to modify suitably the coding-function so as to get all the judgements to
be “well founded”: e.g. we have to avoid self-references of the kind “qver x” = x.
This allows to extend inductively the previous hierarchy to all the judgements.

We start with a basic structure. We define inductively the partition S = {Q} ∪
{Sn}n∈IN of N∗L, as follows. Fix a countable partition P = {Q̄} ∪ {S̄n}n∈IN of Prop
such that each component of the partition is countable. Put S̄∞ =

⋃

n∈IN S̄n.

Definition 1: Let ϕ ∈ N∗L.

- ϕ ∈ Q if and only if neither |=∗L ϕ nor |=∗L ¬ϕ, i.e. ϕ is neither logically valid
nor logically refutable, and either ϕ begins with a quantifier or one of its boolean
components begins with a quantifier and is in turn neither logically valid nor logically
refutable;

- ϕ ∈ S0 if and only if ϕ is a sentence, or a boolean combination of sentences, of
the following kinds:

either |=∗L ϕ or |=∗L ¬ϕ, i.e. ϕ is logically valid or logically refutable,

or ϕ is px(cx1
. . . cxm

), with x 6= qver, qfals,

or ϕ is pqver(cx), pqfals(cx) with x 6∈ Prop,
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or ϕ is pqver(cx), pqfals(cx) with x ∈ Q̄;
- ϕ ∈ Sn+1 if and only if ϕ 6∈ S0 ∪ · · · ∪ Sn and ϕ is either pqver(cx), pqfals(cx), for
some x ∈ S̄n, or a boolean combination of this kind of sentences and of sentences
belonging to S0 ∪ · · · ∪ Sn.

We say that a ∗L-sentence ϕ has level of judgement equal to n if its normal form is
in Sn. We define the function γ giving the level of judgement by: γ(ϕ) = n if the
normal form of ϕ is in Sn. Put S∞ =

⋃

n∈IN Sn.

Since P is a partition of Prop, S is a partition of N∗L. In fact, if ϕ ∈ N∗L is of
the kind px(x1, . . . , xn), Ar(x) = n > 0, then ϕ belongs to some Sh. If ϕ ∈ N∗L
begins with a quantifier, then ϕ belongs to S0∪Q. Since every ϕ ∈ N∗L is a boolean
combination of atoms with normal form of the previous kinds, ϕ belongs to Sh ∪Q
for some h.

In this section we consider only coding functions inducing bijections between Q and
Q̄, and between Sn and S̄n, for all n ∈ IN.

For each x = ϕ ∈ S̄∞ we put γ(x) = γ(ϕ).

A model for the axioms from A.1 to F.5.

We start from a predicative extension function Ext such that Ext(qver) =
Ext(qfals) = ∅. Notice that:

- For each n ∈ IN the normal forms of boolean combinations of elements of S0∪Sn are
in turn elements of S0 ∪ Sn. Similarly for S0 ∪ Q. Moreover judgements transform
Sn and Q into Sn+1 and S0, respectively, i.e. if ϕ ∈ Sn then both pqver(cϕ̄) and
pqfals(cϕ̄) belong to Sn+1, and similarly for ϕ ∈ Q.

It is useful to fix the notation for extension functions obtained by changing the
values of a previous one only on qver and qfals:

Given an extension function Ext on U , if A, B are disjoint subsets of Prop, we
define Ext(A,B) as follows:

Ext(A,B)(x) = Ext(x) , if x 6= qver , qfals , Rfond(h) (h ≥ 1);

Ext(A,B)(qver) = A , Ext(A,B)(qfals) = B;

Ext(A,B)(Rfond(h)) =
⋃

Ar(x)=h

(

{x} × Ext(A,B)(x)
)

.

- If A ⊆ A′, and B ⊆ B′, then Ext(A,B)(x) ⊆ Ext(A′, B′)(x) for all x. In particular
equality holds unless x is qver, qfals, or Rfond(h).
- If Ext is a predicative extension function then also Ext(A,B) is a predicative
extension function based on the same coding-function.

We denote by ∗U(A,B) and by U(A,B), the predicative structure, and the truth
structure, respectively, relative to the predicative extension function Ext(A,B).
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Definition 2: Ext0 = Ext, A0 = Ext(qver) = ∅, B0 = Ext(qfals) = ∅ ,
∗Un = ∗UExtn, U

n = UExtn;

An+1 =
{

ϕ̄ : γ(ϕ) ≤ n and ∗Un |= ϕ
}

,

Bn+1 =
{

ϕ̄ : γ(ϕ) ≤ n and ∗Un |= ¬ϕ
}

,

Extn+1 = Extn
(

An+1, Bn+1
)

;

Ext∞ = Ext
(

⋃

n∈IN

An,
⋃

n∈IN

Bn
)

,

∗U∞ = ∗UExt∞ , U∞ = UExt∞.

We notice that the propositions judgeable in Un+1 are exactly the propositions which
have level of judgement at most n. Hence the propositions judgeable in U∞ are ex-
actly those not belonging to Q̄. In particular all the basic propositions are judgeable
in U∞.

Theorem 1: Un |= BTP ∪ {F.5} for all n ∈ IN. U∞ |= BTP ∪ {F.3, F.4, F.5}.

Proof : All Un, n ∈ IN, as well as U∞, are truth structures. Hence all of them
verify the axioms from A.1 to E.3. They verify F.1 since An and Bn are disjoint
subsets of Prop.
All Un, n ∈ IN, verify F.5, since S̄0∪S̄n is closed under boolean combinations. On the
other hand a finite family of propositions judgeable in U∞ is contained in Am ∪Bm,
for a suitable m ∈ IN. Hence U∞ |= F.5 since Ext∞(qver) and Ext∞(qfals) are
the unions of all the An and of all the Bn, respectively.
Moreover Un, n ∈ IN, and U∞ verify the natural properties concerning qver and
qfals listed after F.2.
In order to prove that Un |= F.2, and U∞ |= F.2, F.3, F.4, we make the following
claims, to be proved later on.

Claim 1: If ϕ is judgeable in ∗Un+1 then: ∗Un+1 |=ϕ if and only if ∗Un|=ϕ;
Claim 2: If ϕ is judgeable in ∗Un+1 then: ∗U∞ |= ϕ if and only if ∗Un |= ϕ.

Assuming the claims, we prove that F.2 is true in Un and in U∞. For n = 0 this
is trivial, since the premises of the axiom are false in U 0. Assume ϕ judgeable in
∗Un+1. Then:

Un+1 |= qverϕ if and only if ∗Un |= ϕ if and only if (by claim 1) ∗Un+1 |= ϕ if and
only if Un+1 |= ||=ϕ.

Similarly for qfals. Therefore Un+1 |= F.2.
The propositions judgeable in U∞ are judgeable in some Un+1. Hence:

U∞ |= qverϕ if and only if ∗Un |= ϕ if and only if (by claim 2) ∗U∞ |= ϕ if and only
if U∞ |= ||=ϕ.

Similarly for qfals. Therefore U∞ |= F.2.

It remains to prove that the schemes F.3, F.4 are true in U∞. In order to prove
F.3 take x with Ar(x) = m > 0 and different from Rfond(m − 1), and assume
U∞ |= (||=“x x1 . . . xm”). We have to show that U∞ |= qver “x x1 . . . xm”. In fact
“x x1 . . . xm” is a basic proposition, therefore it is judgeable in U∞. But U∞ |= F.2,
hence if U∞ |= (||=y), and y is judgeable then U∞ |= qver y.
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The proof of the axiom scheme F.4 is quite similar. In fact “x x1 . . . xm” is judgeable
in U∞. Hence also ¬“x x1 . . . xm” is judgeable in U∞, i.e. it belongs to Ext∞(qver)∪
Ext∞(qfals).
If U∞ |= ¬(||=“x x1 . . . xm”), then also U∞ |= (||=¬“x x1 . . . xm”), and then the
thesis follows since U∞ verifies F.3 and F.2. �

Proof of claim 1: Assume first that ϕ has level of judgement equal to 0. We
distinguish five cases.
If ϕ is either logically true or logically false, then the thesis is straightforward.
If ϕ is a sentence of the kind px(cx1

, . . . cxn
), with x different from qver, qfals and

Rfond(n−1), then the thesis follows since the extension of x does not change when
passing from ∗Un to ∗Un+1.
If ϕ is of the kind pqver(cx), pqfals(cx), with x 6∈ Prop, then the thesis follows since
the extensions of both qver and qfals are included in Prop.
If ϕ is of the kind pqver(cx), pqfals(cx), with x ∈ Q̄ then the thesis follows because
ϕ is false in every ∗Un. In fact Q̄ is disjoint from each An ∪ Bn.
Finally, if ϕ is a boolean combination of sentences of the previous kinds, the state-
ment follows by induction on the boolean complexity.

In order to prove the claim in general we proceed by induction on n ∈ IN.
- If n = 0 then by definition ϕ has level of judgement equal to 0. The thesis has
been proved just above.
- In order to prove the inductive step we proceed by induction on the boolean
complexity of the decomposition of ϕ. Clearly, it suffices to prove the case of an
atomic formula or of a formula beginning with a quantifier. Now by hypothesis we
consider only judgeable formulae, so that the only case to prove is when ϕ has the
form pqver(cθ̄) or pqfals(cθ̄), θ̄ 6∈ Q̄. In fact every judgeable sentence beginning with
a quantifier has level 0 as well as all the atomic sentences which are not judgements
of propositions and all the judgements on elements of Q̄.

Hence assume that ϕ ∈ S1 ∪ · · · ∪ Sn+1 has the form pqver(cθ̄) (θ̄ 6∈ Q̄). Then
by definition θ has normal form in S0 ∪ · · · ∪ Sn: i.e. θ is judgeable in ∗Un+1.
Therefore one has ∗Un+1 |= ϕ if and only if θ̄ ∈ Extn+1(qver) = An+1, by definition
of predicative structure. This is equivalent to ∗Un |= θ, by definition of An+1.
Then by inductive hypothesis one gets ∗Un |= θ if and only if ∗Un+1 |= θ. Since
γ(θ) ≤ n < n + 1 this happens if and only if θ̄ ∈ Extn+2(qver). This is equivalent
to ∗Un+2 |= ϕ.
If ϕ = pqfals(cθ̄), one argues similarly.

Proof of claim 2: Arguing as in the above proof, we limit ourselves to prove the
thesis for judgements ϕ on propositions θ̄ which are judgeable in ∗Un+1. The proof
is a straightforward consequence of the fact that Ext∞(qver), and Ext∞(qfals),
are the increasing unions of An, and of Bn, respectively, taking into account that
An =An+1 ∩ {p : γ(p) ≤ n− 1}, Bn =Bn+1 ∩ {p : γ(p) ≤ n− 1}. �
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3.3 A model of axiom F.6

In this section we propose a model of BTP together with axioms F.3, F.5, F.6
(clearly, one cannot satisfy also F.4, by theorem 2 of section 2.6). The clauses in
the following definitions are chosen so as to get an increasing sequence of extension
functions.

Definition 1: Let E be a predicative extension function on U . We define E(E) as
the collection of the extension functions W , such that:

W (qver) ⊇ E(qver), W (qfals) ⊇ E(qfals);

W (qver) ∩W (qfals) = ∅, W (qver) ∪W (qfals) ⊆ Prop;

W = E(W (qver),W (qfals)).

- Since E is a predicative extension function defined by a coding-function G, then
each W ∈ E(E) is a predicative extension based on the same G.

In the following we start from a predicative extension Ext such that Ext(qver) =
Ext(qfals) = ∅.

Definition 2: E0 = Ext

Eα+1(qver) = {ϕ̄ : ∗UW |= ϕ, for all W ∈ E(Eα)},

Eα+1(qfals) = {p : ¬p ∈ Eα+1(qver)};

Eα+1 = Eα (Eα+1(qver), Eα+1(qfals)), for all ordinals α;

Eλ(x) =
⋃

γ<λE
γ(x), for x ∈ U \Ar−1({0}), for each limit ordinal λ.

Lemma 1. For each ordinal β one has:

1.1: Eβ(qver)∩ Eβ(qfals) = ∅, Eβ(qver) ∪Eβ(qfals) ⊆ Prop. In particular the
definition is well posed.

1.2: Eβ = E0
(

Eβ(qver), Eβ(qfals)
)

.

1.3: Eβ(qver) ⊆ Eβ+1(qver), and Eβ(qfals) ⊆ Eβ+1(qfals). Hence the functions
α 7→ Eα(qver), α 7→ Eα(qfals) are monotone non decreasing functions with respect
to set inclusion.

1.4: For all α ≤ β Eβ ∈ E(Eα). In particular Eβ = Eα(Eβ(qver), Eβ(qfals)).

Proof : 1.1 is straightforward by ordinal induction.

1.2. By ordinal induction. For β = 0 it is the definition of E(A,B).

Assume Eβ = E0
(

Eβ(qver), Eβ(qfals)
)

.

Since Eβ+1 = Eβ
(

Eβ+1(qver), Eβ+1(qfals)
)

by definition, and (E(A,B))(C,D)

= E(C,D) in general for any extension function E, the desired equality follows.

If β is a limit ordinal the equality Eβ(x) = E0(Eβ(qver), Eβ(qfals))(x) is straight-
forward for x = qver, qfals by definition of local modification.

If x 6= qver, qfals then Eβ(x) =
⋃

γ<β E
γ(x) =

⋃

γ<β E
0 (Eγ(qver), Eγ(qfals))(x),

by the inductive hypothesis.

When x 6= qver, qfals, Rfond(h), h ∈ IN, each term of the union
⋃

γ<β E
0 (Eγ(qver), Eγ(qfals))(x) is equal to E0(x), as observed after the definition

of local modification in section 3.2. In particular Eβ(x) =E0(Eβ(qver), Eβ(qfals))(x)
= E0(x).
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If x is Rfond(h), h ∈ IN then:

Eβ(Rfond(h)) =
⋃

γ<β

Eγ(Rfond(h)) =
⋃

γ<β

⋃

Ar(x)=h

(

{x} × Eγ(x)
)

=

⋃

Ar(x)=h

(

{x} ×
⋃

γ<β

Eγ(x)
)

.

Using the inductive hypothesis we get the thesis.
1.3. It is sufficient to prove Eβ(qver) ⊆ Eβ+1(qver). By ordinal induction. The
basis is true: E0(qver) = ∅.
For β = α + 1, if x ∈ Eβ(qver), then ∗UW |= pqver(cx) for all W ∈ E(Eα). By the
inductive hypothesis and point 1.1, one has: E(Eα+1) ⊆ E(Eα). Thus by definition
x ∈ Eβ+1(qver).
For β limit ordinal one has E(Eβ) ⊆ E(Eγ), for all γ < β. If ϕ̄ = x ∈ Eβ(qver) then
for some γ < β we have x ∈ Eγ(qver), in particular ∗UW |= ϕ for all W ∈ E(Eβ).
That is x ∈ Eβ+1(qver).
1.4 follows from the previous points for each fixed α ≤ β. �

Definition 3: For each ordinal β, we put: ∗Uβ = ∗UEβ (the predicative structure
relative to Eβ) and Uβ = UEβ (the truth structure relative to Eβ).

Proposition 1: For each ordinal β one has Uβ |= BTP ∪ {F.5}. If β is limit then
also Uβ |= F.3.

Proof : For any ordinal β the extension function Eβ is predicative by 1.2 above.
Hence the truth structure Uβ satisfies BTP \ {F.1, F.2}. Moreover qver and qfals
have disjoint extensions in Uβ by 1.1. It follows that the structure Uβ verifies all
the properties of qver and qfals listed after axiom F.2.
Moreover, by definition 2, the set Eβ(qver) ∪ Eβ(qfals) is closed under boolean
combinations. Hence Uβ |= F.5.
We have to prove F.2. If α ≤ β then Eβ ∈ E(Eα) by 1.4. If β = γ + 1 and Uβ |=
qver x, i.e. x = ϕ̄ ∈ Eβ(qver), then ∗Uβ |= ϕ, i.e. Uβ |= (||=x), since Eβ ∈ E(Eγ).
Similarly if β is limit and Uβ |= qver x, i.e. x = ϕ̄ ∈ Eγ+1(qver) for some γ < β,
then Uβ |= ||=x since Eβ ∈ E(Eγ). Thus we have proved F.2.

Now we suppose λ to be a limit ordinal. We have to prove that Uλ verifies F.3. It
is sufficient to prove that for any basic proposition p = “x y1 . . . yh”, if Uλ |= ||=p,
then Uλ |= qver p.
If Uλ |= (||=“x y1 . . . yh”) and x 6= qver, qfals, Rfond(h), then: Ar(x) = h 6= 0 and
∗Uλ |= px(cy1

. . . cyh
), i.e. (y1, . . . yh) ∈ Eλ(x) = E0(x) = W (x), for any W ∈ E(E0).

Moreover if W ∈ E(Eα) then W ∈ E(E0) since Eα ∈ E(E0). It follows that ∗UW |=
px(cy1

. . . cyh
) for all γ < λ and all W ∈ E(Eγ) , i.e. “x y1 . . . yh” ∈ Eγ+1(qver)

⊆ Eλ(qver). Thus Uλ |= qver“x y1 . . . yh”.
If Uλ |= (||=“qver y”), i.e ∗Uλ |= pqver(cy), i.e. y ∈ Eλ(qver) then y ∈ Eγ+1(qver)
for some γ < λ. Hence y ∈ W (qver) ⊇ Eγ+1(qver) for all W ∈ E(Eγ+1). This
means that ∗UW |= pqver(cy), for all W ∈ E(Eγ+1). Hence “qver y” ∈ Eγ+2(qver) ⊆
Eλ(qver), since λ is a limit ordinal. Thus Uλ |= qver “qver y”.
The case Uλ |= (||=“qfals y”) is analogous.
Finally if x = Rfond(h), h > 0, the thesis follows by a simple induction on h, since
Uλ |= D.10. �
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Lemma 2: There is a countable limit ordinal τ such that Eτ = Eτ+1

Proof : The functions α 7→ Eα(qver), α 7→ Eα(qfals) are monotone increasing with
respect to set inclusion. Then, since U is countable, there is a countable ordinal α
such that Eα+1(qver) = Eα(qver) and Eα+1(qfals) = Eα(qfals). By definition
Eα+1 = Eα. Put τ equal to the first limit greater than α. (Notice that in fact the
first such α is limit). �

Proposition 2: If τ is limit and Eτ = Eτ+1 then U τ |= BTP ∪ {F.3, F.5, F.6}.

Proof : We have to show that U τ |= F.6. Let ϕ̄ = p be a b-predicate of order 1,
where ϕ is a N ∗L-formula with only ξ1 free. If for all u ∈ U : p[u] ∈ Eτ (qver) =
Eτ+1(qver), then for all W ∈ E(Eτ ), and for all u ∈ U : ∗UW |= ϕ[u/ξ1], that is for
all W ∈ E(Eτ ) it holds ∗UW |= ∀η1ϕ[η1/ξ1]. Hence ∀1p ∈ Eτ+1(qver) = Eτ (qver). If
for some u ∈ U : p[u] ∈ Eτ (qfals) = Eτ+1(qfals), then for all W ∈ E(Eτ ): ∗UW |=
¬ϕ[u/ξ1], that is for all W ∈ E(Eτ ) it holds ∗UW |= ∃η1¬ϕ[η1/ξ1], i.e. ∗UW |=
¬∀η1ϕ[η1/ξ1]. Hence ¬∀1p ∈ Eτ+1(qver) = Eτ (qver), that is ∀1p ∈ Eτ (qfals). The
same argument works for the existential quantifier. �
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cations – Contributions en l’honneur de Jacques-Louis Lions, Gauthier-Villars,
Paris 1988, pp. 67-115.

[4] E.DE GIORGI – Fundamental Principles of Mathematics, relation held at the
Plenary Session of the ‘Accademia Pontificia delle Scienze’, 25-29 October 1994.

[5] E.DE GIORGI – Dal superamento del riduzionismo insiemistico alla ricerca di una
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Autoriferimento, tesi di laurea, Pisa 1988.

[24] G.LENZI – Estensioni contraddittorie della teoria Ampia, Atti Acc. Naz. Lincei
Cl. Sc. Fis. Mat. Nat. Rend. Lincei Mat. App. (8) 83 (1989), 13-28.

[25] G.LENZI, V. M.TORTORELLI – Introducing predicates into a basic theory for the
foundations of Mathematics, Preprint di Matematica della Scuola Normale Su-
periore di Pisa (51), Luglio 1989.



100 G. Lenzi –V. M. Tortorelli

[26] D.SCOTT – Combinators and Classes, in λ-Calculus and Computer Science,
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