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1 Introduction

We consider a differential equation of the form

Lu = −(r(t)u′)′ + p(t)u = 0,

where r is a (strictly) positive continuous function on an open interval ]a, b[ in the
real numbers R (a = −∞ and/or b = +∞ are allowed) and p is a locally integrable
function on ]a, b[. In [9] and [1], we can find a complete study of the asymptotic
behaviour of the solutions of Lu = 0, in the neighborhood of b, in the special case
when p ≥ 0. In [2], we can find a similar study for the case when p ≤ 0. Note that
in these papers, the authors assume that p is continuous, does not vanish (in the
neighborhood of b) and that b = +∞, but it is easily seen that most of their results
remain true in the more general situation considered here. We just point out that
we cannot use the ”duality principle” of [1] and [2], because our hypotheses on 1/r
and p are not symmetric. Nevertheless, when a result of [1] or [2] is proved by means
of this principle, it is always possible to give a direct proof avoiding this principle.

Some results on the asymptotic behaviour of solutions are also known when p is
not necessarily of constant sign (see [7], XI, 9 or [3], for example).
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In the following, we show by means of examples that if p changes of sign in every
neighborhood of b, then the solutions of Lu = 0 are not necessarily monotone near b
(contrarily to the case when p is of constant sign). Next we use results of [1], [2], [9]
and [10] in order to obtain, by a very simple method, new results in the case when
p is not of constant sign.

This simple method (see [7], p. 330, for example) consists in observing that if a
function ϕ satisfies ϕ(t) 6= 0 on some subinterval J of ]a, b[ and if we define v = u/ϕ,
then

Lv = −(rϕ2v′)′ + (ϕLϕ)v = ϕLu.

It follows that u is a solution on J of Lu = 0 if and only if v is a solution of Lv = 0.

This method has already been used in [8] and [4] (resp. [6]) in order to transform
a situation where 1/r 6∈ L1(a, b) (resp. p 6≥ 0) in a situation where 1/r ∈ L1(a, b)
(resp. p ≥ 0). In the following, we take for ϕ a solution of −(rϕ′)′ − p−ϕ = 0,
−(rϕ′)′+p+ϕ = 0 or −(rϕ′)′+ |p|ϕ = 0, giving respectively ϕLϕ = p+ϕ2, −p−ϕ2 or
−2p−ϕ2. We shall also consider ϕ(t) =

∫ b
t ds/r(s), in order to transform a situation

where 1/r ∈ L1(b] (see the preliminaries) in a situation where 1/r 6∈ L1(b].

2 Preliminaries

We work on an interval ]a, b[ of R (−∞ ≤ a < b ≤ +∞) and we consider

• a continuous function r : ]a, b[→ ]0,+∞[ ;

• a function p ∈ L1
loc(a, b) ;

• the Sturm-Liouville operator

L : W (2,r) → L1
loc(a, b) : Lu = −(r(t)u′)′ + p(t)u,

where W (2,r) is the set of all u ∈ C(]a, b[) such that u has a weak derivative u′ and
ru′ a weak derivative (ru′)′. Note that W (2,r) ⊂ C1(]a, b[).

We define :

L1[a) = {u ∈ L1
loc(a, b) ; u ∈ L1(a, c) for a < c < b} ;

L1(b] = {u ∈ L1
loc(a, b) ; u ∈ L1(c, b) for a < c < b} ;

r1 : ]a, b[→ R : r1(t) =
∫ t

a

ds

r(s)
, when 1/r ∈ L1[a) ;

r2 : ]a, b[→ R : r2(t) =
∫ b

t

ds

r(s)
, when 1/r ∈ L1(b] ;

r3 : ]a, b[→ R : r3(t) =
∫ t

c

ds

r(s)
, with c arbitrarily fixed in ]a, b[ .

When 1/r ∈ L1(b] (resp. 1/r 6∈ L1(b]), we define :

Ab = {h ∈ L1
loc(a, b) ; hr2 (resp. hr3) ∈ L

1(b]}.
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We obviously have : L1(b] ⊂ Ab (resp. Ab ⊂ L1(b]). We also define :

S = {u ∈ W (2,r) ; u 6= 0 and Lu = 0} ;

S0 = {u ∈ S ; lim
t→b

u(t) = 0} ;

SB = {u ∈ S ; lim
t→b

u(t) exists, finite, 6= 0} ;

S∞ = {u ∈ S ; lim
t→b

u(t) = ±∞} ;

M+ = {u ∈ S ; ∃tu ∈ ]a, b[ , ∀t ∈ [tu, b[ , u(t)u
′(t) > 0} ;

M− = {u ∈ S ; ∃tu ∈ ]a, b[ , ∀t ∈ [tu, b[ , u(t)u
′(t) < 0} ;

O = {u ∈ S ; u is oscillatory near b}.

We recall that a nonzero solution u of Lu = 0 is said to be oscillatory (near b) if
there exists a sequence (tn) in ]a, b[ such that u(tn) = 0 and tn → b. It is well-known
that S = O or O = ∅ (see [10], for example). When S = O, the equation Lu = 0 is
said to be oscillatory (near b).

For α ∈ {0, B,∞} and β ∈ {+,−}, let : Mβ
α = Sα ∩M

β. The sets M+
0 and M−

∞

being obviously void, we thus have :

M+ = M+
B ∪M+

∞
, M− = M−

0 ∪M−

B .

We finally denote by N0, NB and N∞ the set of all u ∈ S such that limt→b r(t)u
′(t)

exists and is respectively zero, finite and nonzero, infinite. If necessary, we shall
write S(L), S0(L), ... , instead of S, S0, ... .

In Theorem 2.1 below, we collect the results of [9], Theorems 1, 4, Lemma 2 and
of [1], Theorems 1 to 3, Lemma 1. In Theorem 2.2, we collect the results of [2],
Theorems 1 and 2.

Theorem 2.1. Assume p ≥ 0 (almost everywhere) and that, for all c ∈ ]a, b[, the
measure of {t ∈ ]c, b[ ; p(t) 6= 0} is > 0. Then :

• S = M+ ∪M−, ∅ 6= M+ ⊂ NB ∪N∞ and ∅ 6= M− ⊂ N0 ∪NB ;
• for all u ∈M− and all t ∈ ]a, b[, we have u(t)u′(t) < 0.

Moreover, when p ∈ Ab and
• 1/r ∈ L1(b], p ∈ L1(b], we have : S = M+

B ∪M
−, M−

0 6= ∅, M−

B 6= ∅, M+
B ⊂ NB

and M−

0 ⊂ NB ;
• 1/r ∈ L1(b], p 6∈ L1(b], we have : S = M+

B ∪M−

0 , M+
B ⊂ N∞ and M−

0 ⊂ NB ;
• 1/r 6∈ L1(b], we have : S = M+

∞
∪M−

B , M+
∞
⊂ NB and M−

B ⊂ N0.
Finally, when p 6∈ Ab, we have : S = M+

∞
∪M−

0 , M+
∞
⊂ N∞ and M−

0 ⊂ N0.

Theorem 2.2. Assume p ≤ 0 (almost everywhere) and that, for all c ∈ ]a, b[, the
measure of {t ∈ ]c, b[ ; p(t) 6= 0} is > 0. Then, when p ∈ Ab and

• 1/r ∈ L1(b], p ∈ L1(b], we have : S = M+
B ∪M−, M+

B ⊂ N0 ∪NB, M− ⊂ NB

and M−

B , M−

0 , M+
B ∩N0, M

+
B ∩NB 6= ∅ ;

• 1/r ∈ L1(b], p 6∈ L1(b], we have : S = M−, ∅ 6= M−

B ⊂ N∞ and ∅ 6= M−

0 ⊂ NB ;
• 1/r 6∈ L1(b], we have : S = M+, ∅ 6= M+

B ⊂ N0 and ∅ 6= M+
∞
⊂ NB.

When p 6∈ Ab and
• 1/r ∈ L1(b], we have : S = O or S = M−

0 = N∞ ;
• 1/r 6∈ L1(b], p ∈ L1(b], we have : S = O or S = M+

∞
= N0 ;

• 1/r 6∈ L1(b], p 6∈ L1(b], we have : S = O.



4 M. Duhoux

Six cases have been considered in Theorem 2.2. They respectively correspond to
cases (C6), (C5), (C3), (C4), (C2) and (C1) of [2]. In the next theorem, we collect
the results of [3], Propositions 2.2 and 2.3 (see also the proof of [6], Proposition 2.4),
where it is not necessary to assume that ]a, b[ is bounded. Some of these results are
also contained in [7], XI, 9.

Theorem 2.3. Without any hypothesis on the sign of p, when p ∈ Ab and
• 1/r ∈ L1(b], p ∈ L1(b], we have : S = M−

0 ∪ SB, ∅ 6= M−

0 ⊂ NB and
∅ 6= SB ⊂ N0 ∪NB ;

• 1/r ∈ L1(b], p 6∈ L1(b], we have : S = M−

0 ∪ SB, ∅ 6= M−

0 ⊂ NB and SB 6= ∅ ;
• 1/r 6∈ L1(b], we have : S = SB ∪ S∞, ∅ 6= SB ⊂ N0 and ∅ 6= S∞ ⊂ NB.

Assuming that p ≥ 0 or p ≤ 0 (almost everywhere) in ]a, b[ and that, for all
c ∈ ]a, b[, the measure of {t ∈ ]c, b[ ; p(t) 6= 0} is > 0, it follows from Theorems 2.1
and 2.2 that S = M+ ∪M− or S = O (not possible if p ≥ 0). Roughly speaking, If
p does not change of sign, all the solutions of a nonoscillatory equation Lu = 0 are
monotone near b, with a nonoscillatory derivative (direct easy proofs are given in [9]
and [2]). We now show by means of three examples that the situation is different
when p changes of sign in every neighborhood of b.

Example 2.4. Let ]a, b[ = ]0,+∞[ , r(t) = 1 and p(t) = − sin t/(sin t + 2). The
equation Lu = 0 is nonoscillatory (near +∞) since u(t) = sin t+2 is a solution. The
derivative u′(t) = cos t is oscillatory since u′(tn) = 0 with tn = 2nπ + π/2 → +∞.
We now show that every solution w of this equation has also an oscillatory derivative.
There exists α, β ∈ R such that

w(t) = αu(t) + βu(t)
∫ t

0

ds

u2
, w′(t) = u′(t)

[
α + β

∫ t

0

ds

u2

]
+

β

u(t)
.

We may assume β 6= 0. Letting t′n = 2nπ + π , we have

w′(tn) =
β

3
, w′(t′n) = −

[
α + β

∫ t′
n

0

ds

u2

]
+
β

2
→ (−β)(+∞).

This shows that the derivative of each solution is not only oscillatory, but it changes
of sign in every neighborhood of +∞. Consequently, no solution is monotone near
+∞.

Example 2.5. Let ]a, b[ = ]1,+∞[ , r(t) = 1/t and p(t) = −(t sin t+cos t+2)/t2(sin t+
2t). The equation Lu = 0 is nonoscillatory (near +∞) since u(t) = sin t + 2t is a
solution. The derivative u′(t) = cos t+ 2 is nonoscillatory. Each solution w has also
a nonoscillatory derivative. Indeed, writing

w(t) = αu(t) + βu(t)
∫ t

1

ds

ru2
(we may assume β 6= 0),

we have :

w′(t) = u′(t)

[
α + β

∫ t

1

ds

ru2

]
+

β

r(t)u(t)
→ β(+∞), when t→ +∞.

It follows that each solution of Lu = 0 is monotone near +∞.
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Example 2.6. Let ]a, b[ = ]1,+∞[ , r(t) = 1 and p(t) = − sin t/(sin t + t). The
equation Lu = 0 is nonoscillatory (near +∞) since u(t) = sin t+ t is a solution. The
derivative u′(t) = cos t+1 is oscillatory but does not change of sign (u is increasing).
If α ≥ 0 and β > 0, the solution

w(t) = αu(t) + βu(t)
∫ t

1

ds

u2

is increasing and has a nonoscillatory derivative since

w′(t) = u′(t)

[
α + β

∫ t

1

ds

u2

]
+

β

u(t)
> 0.

But if α and β are chosen such that α+βK < 0 and β > 0, where K =
∫
∞

1 ds/u2 <
+∞, the solution w has an oscillatory derivative changing of sign in every neigh-
borhood of +∞ (hence w is not monotone near +∞). It suffices indeed to define
tn = 2nπ − π, t′n = 2nπ + π/2 and to observe that :

w′(tn) =
β

2nπ − π
> 0,

w′(t′n) ≤ α + βK +
β

1 + 2nπ + π/2
< 0, for n large enough.

We recall that if the equation Lu = 0 is nonoscillatory (near b), there always
exists a solution u such that

∫ b
c ds/ru

2 = +∞, where c ∈ ]a, b[ exceeds the largest
zero of u ; such a solution is uniquely determined up to a constant factor and is
called a principal solution (see [7], p. 355, Theorem 6.4, where the continuity of
q = −p is not necessary). We define :

P = {u ∈ S ; u is a principal solution} ;

M̃+ = {u ∈ S ; ∃tu ∈ ]a, b[ , ∀t ∈ [tu, b[ , u(t)u
′(t) ≥ 0} ;

M̃− = {u ∈ S ; ∃tu ∈ ]a, b[ , ∀t ∈ [tu, b[ , u(t)u
′(t) ≤ 0}.

Since each solution u is nonoscillatory, we may choose tu such that u(t) 6= 0 for all
t ∈ [tu, b[. The example 2.5 is a special case of (i) in the next result.

Proposition 2.7. If the equation Lu = 0 is nonoscillatory, we then have :

(i) P ∩ M̃+ 6= ∅ ⇒ S = M̃+ (and P ∩M+ 6= ∅ ⇒ S = M+) ;

(ii) M̃− 6= ∅ ⇒ P ⊂ M̃− (and M− 6= ∅ ⇒ P ⊂M−).

Proof. (i) Let u ∈ P ∩ M̃+. We may assume that u(t) > 0 and u′(t) ≥ 0 for all
t ∈ [tu, b[. Every solution w of Lu = 0, linearly independent of u, can be written
(for t ≥ tu)

w(t) = u(t)

[
α+ β

∫ t

tu

ds

ru2

]
(β 6= 0)

and then

w′(t) = u′(t)

[
α+ β

∫ t

tu

ds

ru2

]
+

β

r(t)u(t)
.

Since
∫ b
tu
ds/ru2 = +∞, it follows that w(t) 6= 0 and w′(t) 6= 0 for t near b, with the

same sign as β, and we conclude that w ∈ M̃+.
(ii) Let u ∈ M̃−. If u ∈ P , then P ⊂ M̃−. If u 6∈ P , then v(t) = u(t)

∫ b
t ds/ru

2

is in P ([7], p. 355, Corollary 6.3) and it is clear that v ∈ M̃−. �
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3 The asymptotic behaviour of the solutions

In order to study the asymptotic behaviour of the solutions of Lu = 0 in some
situations where p 6∈ Ab and is not of constant sign, we consider the following
conditions :

(P+) ∀c ∈ ]a, b[, the measure of {t ∈ ]c, b[ ; p(t) > 0} is > 0 ;
(P−) ∀c ∈ ]a, b[, the measure of {t ∈ ]c, b[ ; p(t) < 0} is > 0.

Theorem 3.1. Assume that p− ∈ Ab and p+ 6∈ Ab. Then, if
(1) 1/r ∈ L1(b], p− ∈ L1(b], we have : S = M+

∞
∪M−

0 , ∅ 6= M+
∞
⊂ N∞ and

∅ 6= M−

0 ⊂ N0 ;
(2) 1/r ∈ L1(b], p− 6∈ L1(b], we have : S = M−

0 ∪ S∞, M−

0 6= ∅ and S∞ 6= ∅ ;
(3) 1/r 6∈ L1(b], we have : S = M+

∞
∪ S0, ∅ 6= M+

∞
⊂ N∞ and ∅ 6= S0 ⊂ N0.

Proof. We may assume that condition (P−) is true. Indeed, if not, then p− = 0
and p = p+ almost everywhere in the neighborhood of b and the result follows from
Theorem 2.1. Suppose now there exists a solution ϕ ∈ C(]a, b]) of the equation

Λϕ = −(rϕ′)′ − p−ϕ = 0,

such that ϕ(b) > 0. Without lost of generality (since we are only interested by the
behaviour of the solutions of Lu = 0 in the neighborhood of b), we may then assume
that ϕ(t) > 0 for all t ∈ ]a, b]. Letting v = u/ϕ, we immediately verify that

Lv = −(rϕ2v′)′ + (p+ϕ2)v = ϕLu,

hence that u is a solution of Lu = 0 if and only if v is a solution of Lv = 0. It is
easy to see that 1/r ∈ L1(b] if and only if 1/rϕ2 ∈ L1(b] and that r and rϕ2 define
the same set Ab.

(1) By Theorem 2.2, we may choose ϕ = ϕ1 ∈ M+
B (Λ) ∩ NB(Λ) or ϕ = ϕ2 ∈

M−

B (Λ) ∩ NB(Λ). We denote by Lk the operator L corresponding to ϕ = ϕk (k =
1, 2). By Theorem 2.1, we know that for k = 1, 2, we have :

S(Lk) = M+
∞

(Lk) ∪M
−

0 (Lk),

∅ 6= M+
∞

(Lk) ⊂ N∞(Lk), ∅ 6= M−

0 (Lk) ⊂ N0(Lk).

Given functions u and v such that v = u/ϕk, the following equivalences hold

u ∈ S ⇔ v ∈ S(Lk), u ∈ S∞ ⇔ v ∈M+
∞

(Lk), u ∈ S0 ⇔ v ∈M−

0 (Lk),

and it follows obviously that S = S∞ ∪ S0, S∞ 6= ∅ and S0 6= ∅.
Given u ∈ S∞, we have v = u/ϕ1 ∈M

+
∞

(L1)∩N∞(L1) and, since u′ = v′ϕ1 +vϕ′1
with ϕ1 ∈M

+
B (Λ)∩NB(Λ), it follows that u ∈M+

∞
∩N∞. In the same way, if u ∈ S0,

then v = u/ϕ2 ∈ M−

0 (L2) ∩ N0(L2) with ϕ2 ∈ M−

B (Λ) ∩ NB(Λ) and, consequently,
u ∈M−

0 ∩N0. The result (1) follows.
(2) The proof is similar but, here, using Theorem 2.2, we can only choose ϕ ∈

M−

B (Λ) ∩N∞(Λ) and, by Theorem 2.1, we have S(L) = M+
∞

(L) ∪M−

0 (L).
(3) Here, we can only choose ϕ ∈ M+

B (Λ) ∩ N0(Λ) and we have again S(L) =
M+
∞

(L) ∪M−

0 (L). �
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Corollary 3.2. If p− ∈ Ab, then the equation Lu = 0 is nonoscillatory.

Proof. If p ∈ Ab, it follows from Theorem 2.3 that the equation Lu = 0 is not
oscillatory. If p+ 6∈ Ab and p− ∈ Ab, this follows from Theorem 3.1. �

Remark 3.3. More generally, if the equation −(rϕ′)′ − p−ϕ = 0 is nonoscillatory,
then Lu = 0 is also nonoscillatory. That follows easily from the beginning of the
proof of Theorem 3.1 (since p+ϕ2 ≥ 0), but it is also a consequence of the Sturm’s
comparison theorem ([10], Theorem 1.1).

Theorem 3.4. Assume that p+ ∈ Ab and p− 6∈ Ab. Then, if
(1) 1/r ∈ L1(b], p+ ∈ L1(b], we have : S = O or S = M−

0 = N∞ ;
(2) 1/r ∈ L1(b], p+ 6∈ L1(b], we have : S = O or S = S0 ;
(3) 1/r 6∈ L1(b], p− ∈ L1(b], we have : S = O or S = S∞ ;
(4) 1/r 6∈ L1(b], p− 6∈ L1(b], we have : S = O.

Proof. We may assume that condition (P+) is true. Indeed, if not, then p+ = 0 and
p = −p− almost everywhere in the neighborhood of b and the result follows from
Theorem 2.2. Let ϕ ∈ C(]a, b]) be a solution of the equation

Λϕ = −(rϕ′)′ + p+ϕ = 0,

such that ϕ(b) > 0. We may assume that ϕ(t) > 0 for all t ∈ ]a, b]. Letting v = u/ϕ,
we have

Lv = −(rϕ2v′)′ − (p−ϕ2)v = ϕLu

and, consequently, u is a solution of Lu = 0 if and only if v is a solution of Lv = 0.
(1) By Theorem 2.1, we may choose ϕ ∈ M−

B (Λ)∩ [N0(Λ)∪NB(Λ)]. By Theorem
2.2, we know that

S(L) = O(L) or S(L) = M−

0 (L) ⊂ N∞(L).

The result (1) follows.
(2) We can only choose ϕ ∈M+

B (Λ) ∩N∞(Λ) and we have :

S(L) = O(L) or S(L) = M−

0 (L) ⊂ N∞(L).

(3) We can only choose ϕ ∈M−

B (Λ) ∩N0(Λ) and we have :

S(L) = O(L) or S(L) = M+
∞

(L) ⊂ N0(L).

(4) We can choose ϕ ∈M−

B (Λ) and we have S(L) = O(L). �

Remark 3.5. The result (4) of Theorem 3.4 can be stated as follows :

1/r 6∈ L1(b], p+ ∈ Ab and p− 6∈ L1(b] ⇒ Lu = 0 is oscillatory.

On the other hand, the proof of Theorem 2.2 uses the next Leighton’s result :

1/r 6∈ L1(b] and lim
t→b

∫ t

c
p(s) ds = −∞⇒ Lu = 0 is oscillatory
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(c is any fixed member of ]a,b[). This result, without any hypothesis on the sign of
p, can be found in [10], Theorem 2.24 (with stronger hypotheses than here, but the
proof continues to operate). Since, we obviously have

p+ ∈ L1(b], p− 6∈ L1(b] ⇒ lim
t→b

∫ t

c
p(s) ds = −∞ (⇒ p− 6∈ L1(b]),

the result (4) of Theorem 3.4 can be improved as follows :

1/r 6∈ L1(b], p+ ∈ L1(b] and p− 6∈ L1(b] ⇒ Lu = 0 is oscillatory.

Examples 3.6. In the result (4) of Theorem 3.4, improved as above, the condition
p+ ∈ L1(b] cannot be omitted. There exist, indeed, examples such that

1/r 6∈ L1(b], p+ 6∈ L1(b], p− 6∈ L1(b] and O = ∅.

We may take ]a, b[ = ]0, 1[, r(t) = (1− t)2 and

p(t) =
− 1

(1−t)2
sin 1

1−t

2 + sin 1
1−t

.

The equation −(ru′)′+ p(t)u is not oscillatory near 1 since u(t) = 2+sin (1/(1− t))
is a solution. We may also consider example 2.4.

In view of the next Theorem 3.7 we assume, this time, that p 6∈ Ab and that
condition (P−) is satisfied. Considering the equation

Λϕ = −(rϕ′)′ + |p|ϕ = 0,

it follows from Theorem 2.1 that

S(Λ) = M+
∞

(Λ) ∪M−

0 (Λ),

∅ 6= M+
∞

(Λ) ⊂ N∞(Λ), ∅ 6= M−

0 (Λ) ⊂ N0(Λ).

We choose 0 ≤ ϕ ∈ M−

0 (Λ)∩N0(Λ) and, by Theorem 2.1 again, we know that ϕ(t),
−ϕ′(t) > 0 for all t ∈ ]a, b[. We also consider the equation

Lv = −(rϕ2v′)′ − (2p−ϕ2)v = 0.

As before, u is a solution of Lu = 0 if and only if v = u/ϕ is a solution of Lv = 0
but, here, since ϕ(b) = 0, the asymptotic behaviours of u and v cannot be easily
compared, except the fact that u is oscillatory if and only if v is oscillatory.

We recall that r3(t) is defined by means of a fixed member c of ]a, b[ (see the
introduction). We now define :

R3(t) =
∫ t

c

ds

r(s)ϕ(s)2
.

Since (ϕ2)′ = 2ϕϕ′ < 0, we have :

ϕ(t)2R3(t) =
∫ t

c

ϕ(t)2 ds

r(s)ϕ(s)2
≤

∫ t

c

ϕ(s)2 ds

r(s)ϕ(s)2
= r3(t).
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On the other hand, ϕ(t) = ϕ(t)R3(t) is a solution of Λϕ = 0, linearly independent
of ϕ. Hence ϕ ∈ M+

∞
(Λ), which shows that limt→bR3(t) = +∞, i.e. 1/rϕ2 6∈

L1(b]. The function p−ϕ2 is in the space Ab corresponding to rϕ2 if and only if
p−ϕ2R3 = p−ϕϕ ∈ L1(b] or, equivalently, if p−ϕψ ∈ L1(b], where ψ is any solution
of Λϕ = 0, linearly independent of ϕ. Note also that |p|ϕ ∈ L1(b] is always true,
hence p−ϕ2 ∈ L1(b], since ϕ ∈ N0(Λ) and

∫ t

c
|p|ϕds =

∫ t

c
(rϕ′)′ds = r(t)ϕ′(t)− r(c)ϕ′(c) (c < t < b).

Now it follows from Theorem 2.2 that :

• p−ϕψ ∈ L1(b] ⇒ S(L) = M+(L), ∅ 6= M+
B (L) ⊂ N0(L) and ∅ 6= M+

∞
(L) ⊂

NB(L) ;

• p−ϕψ 6∈ L1(b] ⇒ S(L) = O(L) or S(L) = M+
∞

(L) = N0(L).

Unfortunately we can only deduce from this that :

p−ϕψ ∈ L1(b] ⇒ O(L) = ∅ and S0(L) ∩N0(L) 6= ∅.

The relations p−ϕϕ = p−ϕ2R3 ≤ p−r3 show that the condition p− ∈ Ab implies
p−ϕψ ∈ L1(b], when 1/r 6∈ L1(b]. This is also true when 1/r ∈ L1(b] because, in
this case, we have p−ϕϕ ≤ λp−r2 (in the neighborhood of b). Indeed, ϕ is a linear
combination of ϕ and

ϕ̃(t) = ϕ(t)
∫ b

t

ds

r(s)ϕ(s)2

and it follows that ϕ = λϕ̃ for some λ > 0, hence that

ϕ(t)ϕ(t) = λϕ(t)2
∫ b

t

ds

r(s)ϕ(s)2
≤ λ

∫ b

t

ϕ(s)2 ds

r(s)ϕ(s)2
= λr2(t).

We have thus obtained the next result (in which we may now forget the condition
(P−)).

Theorem 3.7. Assume that p 6∈ Ab and let ϕ, ψ be two solutions of the equation
−(rϕ′)′ + |p|ϕ = 0 such that limt→b ϕ(t) = 0 and limt→b ψ(t) = ±∞. Then :

(p− ∈ Ab ⇒) p−ϕψ ∈ L1(b] ⇒ O = ∅ and S0 ∩N0 6= ∅.

Example 3.8. When p 6∈ Ab, the condition p−ϕψ ∈ L1(b] may be true even if
p− 6∈ Ab. To show it, we modify the example 4.1 of [5]. Let ]a, b[ = ]0, 1[, r(t) = 1− t
and

p(t) = −
t2 − 2t+ 2

t2(1− t)
< 0 if t ∈ [1− αn, 1− βn] (n = 1, 2, ...),

p(t) =
t2 − 2t+ 2

t2(1− t)
> 0 in the other cases (0 < t < 1),

where the sequences αn = exp ( 1
2n2 − n) and βn = exp (− 1

2n2 − n) have the following
properties :

0 < αn+1 < βn < αn < 1 (n = 1, 2, ...), limαn = 0.
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Since 1/r ∈ L1[0) and 1/r 6∈ L1(1], we have

A1 = {h ∈ L1
loc(0, 1) ; hr1 ∈ L

1(1]},

with

r1(t) =
∫ 1

0

ds

1− s
= − ln (1− t) (0 ≤ t < 1).

We observe that p 6∈ A1 and it is easy to see that the functions

ϕ(t) =
(1− t)(t + 2)

t
, ψ(t) =

t2

1− t
,

are solutions of the equation Λϕ = −(rϕ′)′ + |p|ϕ = 0, with the required properties.
Since ϕ(t)ψ(t) = t(t+2), it follows that, for h ∈ L1

loc(0, 1), the condition hϕψ ∈ L1(1]
will mean that h ∈ L1(1] and the condition h ∈ A1 will mean that −h(t) ln (1− t) ∈
L1(1]. Given the function

q(t) = −
1

1− t
if t ∈ [1− αn, 1− βn] (n = 1, 2, ...),

q(t) = 0 in the other cases (0 < t < 1),

we have :
∫ 1−βn

1−αn

q(t) dt = [− ln (1− t)]1−βn

1−αn

=
1

n2
;

∫ 1−βn

1−αn

−q(t) ln (1− t) dt = [
1

2
ln2 (1− t)]1−βn

1−αn

=
1

n
;

∫ 1

0
q(t) dt =

+∞∑

n=1

1

n2
< +∞ ;

∫ 1

0
−q(t) ln (1− t) dt =

+∞∑

n=1

1

n
= +∞.

Since p−(t) = q(t)(t2 − 2t + 2)/t2, we conclude that p− ∈ L1(1] and that
−p−(t) ln (1− t) 6∈ L1(1]. Note, finally, that Theorem 3.7 says that the equation
−(ru′)′ + pu = 0 is not oscillatory near 1 and that it has nonzero solutions u such
that limt→1 u(t) = limt→1 r(t)u

′(t) = 0. The next theorem shows there also exist
solutions u such that limt→1 u(t) = ±∞.

Theorem 3.9. Assume that p 6∈ Ab and let ϕ, ψ be two solutions of the equation
Λϕ = −(rϕ′)′ + |p|ϕ = 0 such that limt→b ϕ(t) = 0 and limt→b ψ(t) = ±∞. Then :

p−ϕψ ∈ L1(b] and p−ψ2 6∈ L1(b] ⇒ S∞ 6= ∅.

The conditions p 6∈ Ab and p−ψ2 6∈ L1(b] are true, in particular, if p− 6∈ Ab.

Proof. We may assume that the condition (P−) is satisfied. By Theorem 2.1, we
know that ϕ ∈M−

0 (Λ)∩N0(Λ) and ψ ∈M+
∞

(Λ)∩N∞(Λ). We may assume without
lost of generality that ψ(t) 6= 0 for all t ∈ ]a, b[. The function u is a solution of
Lu = 0 if and only if v = u/ψ is a solution of

Lv = −(rψ2v′)′ − (2p−ψ2)v = 0.



On the asymptotic behaviour of the solutions of −(r(t)u′)′ + p(t)u = 0 11

It follows from [9], Theorem 2, that 1/rψ2 ∈ L1(b] and we may define

R2(t) =
∫ b

t

ds

r(s)ψ(s)2
.

Since ψ(t) = ψ(t)R2(t) is a solution of Λϕ = 0, linearly independent of ψ, there
exists real numbers α, β such that ϕ = αψ + βψ = ψ(α + βR2), and this implies
that α = 0. It follows that p−ψ2 is in the space Ab corresponding to rψ2 if and only if
p−ψ2R2 = p−ψψ is in L1(b], hence if and only if p−ϕψ ∈ L1(b]. It remains to use the
hypotheses and Theorem 2.2 to obtain S(L) = M−(L), with M−

B (L),M−

0 (L) 6= ∅,
in order to conclude that S∞(L) 6= ∅.

Finally, if 1/r ∈ L1(b], we obviously have limt→b(ψ
2(t)/r2(t)) = +∞ and, if 1/r 6∈

L1(b], we obtain by the L’Hospital’s rule limt→b(ψ
2(t)/r3(t)) = limt→b 2ψ(t)r(t)ψ′(t) =

+∞. This shows that if p−ψ2 ∈ L1(b], then p− ∈ Ab. The proof is complete. �

4 Oscillation and nonoscillation criteria

Many results on oscillation and nonoscillation of solutions of second order differential
equations are very often given (maybe only for convenience) in the situation when
b = +∞ and r(t) = 1 or, equivalently, by a classical change of variable (see the
proof of Corollary 4.3 (1)), when b ≤ +∞ and 1/r 6∈ L1(b]. In this section, we show
how to apply theses results to the case 1/r ∈ L1(b] and to the case when p is not of
constant sign.

Given q ∈ L1
loc(0,+∞) such that q(t) ≤ 0 almost everywhere, we consider the

differential equation

lv = −v′′(s) + q(s)v(s) = 0 (0 < s < +∞)

and we define :

g(s) = s
∫ +∞

s
|q(σ)| dσ (= +∞ if q 6∈ L1(+∞]),

g? = lim inf
s→+∞

g(s), g? = lim sup
s→+∞

g(s).

The next result, due to Hille, can be found in [10], Theorem 2.1.

Theorem 4.1. (Hille) If g? < 1/4, then the equation lv = 0 is nonoscillatory. If
g? > 1/4 or g? > 1, then lv = 0 is oscillatory.

An equation −(r(t)u′)′+p(t)u = 0 is said to be strongly oscillatory (resp. strongly
nonoscillatory) if, for all λ > 0, the equation −(r(t)u′)′ + λp(t)u = 0 is oscillatory
(resp. nonoscillatory). The next result, due to Nehari, can be found in [10], Theorem
2.9.

Theorem 4.2. (Nehari) The above equation lv = 0 is strongly oscillatory if and
only if g? = +∞. It is strongly nonoscillatory if and only if lims→+∞ g(s) = 0.
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Corollary 4.3. (1) If 1/r 6∈ L1(b], p ∈ L1
loc(a, b) and p ≤ 0 almost everywhere, then

the conclusions of Theorems 4.1 and 4.2 are true for the equation Lu = −(r(t)u′)′+
p(t)u = 0, if we define g, g? and g? by

g(t) = r3(t)
∫ b

t
|p(τ)| dτ, g? = lim inf

t→b
g(t), g? = lim sup

t→b

g(t).

(2) The same is true when 1/r ∈ L1(b], if the function g is defined by

g(t) =
1

r2(t)

∫ b

t
|p(τ)|r2(τ)

2 dτ.

Proof. (1) The usual change of variable s = r3(t) =
∫ t
c ds/r(s) reduces the equation

−(r(t)u′(t))′ + p(t)u(t) = 0 (c ≤ t < b)

to the equation

−v′′(s) + p(r−1
3 (s))r(r−1

3 (s))v(s) = 0 (0 ≤ s < +∞).

The function g associated with this last equation is

g(s) = s
∫ +∞

s
|p(r−1

3 (σ))|r(r−1
3 (σ)) dσ

and, consequently :

g(t) = g(s) = g(r3(t)) = r3(t)
∫ +∞

r3(t)
|p(r−1

3 (σ))|r(r−1
3 (σ)) dσ

= r3(t)
∫ b

t
|p(τ)| dτ.

(2) If v = u/r2, we see that

Lv = −(rr2
2v
′)′ + (pr2

2)v = r2Lu

and, consequently, the equation Lu = 0 is (strongly) oscillatory if and only if the
equation Lv = 0 is (strongly) oscillatory. Defining R3(t) =

∫ t
c ds/r(s)r2(s)

2, we
have :

R3(t) = −
∫ r2(t)

r2(c)

dσ

σ2
=

1

r2(t)
−

1

r2(c)

=
r2(c)− r2(t)

r2(c)r2(t)
=

r3(t)

r3(b)r2(t)
.

Hence limt→bR3(t) = +∞, i.e. 1/rr2
2 6∈ L1(b]. By (1), the function g associated

with the equation Lv = 0 is g(t) = R3(t)
∫ b
t |p|r

2
2 dτ . Since limt→b(r3(t)/r3(b)) = 1,

we may replace g by the one defined in (2). �
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Remark 4.4. The proof of (2) shows that the next result, where p is not necessarily
of constant sign, can be deduced from Leighton’s criterion given in Remark 3.5 :

1/r ∈ L1(b] and lim
t→b

∫ t

c
p(s)r2(s)

2 ds = −∞⇒ Lu = 0 is oscillatory.

This is a special case of a result due to Moore (see [10], p. 74).

Theorem 4.5. Without any hypothesis on the integrability of 1/r or the sign of p,
we assume that p 6∈ Ab, we choose any solution ϕ of the equation −(rϕ′)′+ |p|ϕ = 0
such that limt→bϕ(t) = 0 and we consider the function

g(t) =
∫ t

c

dτ

r(τ)ϕ(τ)2

∫ b

t
2p−(τ)ϕ(τ)2 dτ.

The conclusions of Theorem 4.1 are then true for the equation Lu = 0.

Proof. This follows easily from the proof of Theorem 3.7 and from Corollary 4.3 (1).
�

Remark 4.6. The condition p−ϕψ ∈ L1(b] of Theorem 3.7 implies that limt→b g(t) =
0. Indeed, using the notations of the proof of Theorem 3.7, we obtain successively
for c ≤ t < b :

0 ≤ g(t) = R3(t)
∫ b

t
2p−(τ)ϕ(τ)2 dτ ≤ 2

∫ b

t
p−(τ)ϕ(τ)2R3(τ) dτ

= 2
∫ b

t
p−ϕϕdτ → 0 (when t→ b).
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