Further radii in topological algebras

L. Oubbi

Abstract

We introduce two new radii in general topological algebras. The first one, η , plays a role similar to that of the norm in Banach algebras in the sense that the series $\sum x^n$ converges whenever $\eta(x) < 1$. The second one permits, among others, to give new expressions of the spectral radius ρ and the boundedness radius β in a non-commutative locally m-convex algebra. Finally, we show that, in contrast to the locally convex setting, β need not be dominated by ρ in a topological (even F-) algebra with continuous inversion.

1 Introduction

In a Banach algebra (A, || ||), the series $\sum x^n := \sum_{n=1}^{\infty} x^n$ converges in A whenever ||x|| < 1 and its limit is nothing but $-x^o$, x^o being the quasi-inverse of x in A. Actually, this is also true [7] in any normed algebra whose set of quasi-invertible elements is open, i.e. which is a Q-algebra in the sense of I. Kaplanski [6]. In some non-normed topological algebras, the spectral radius ρ still plays the role of the norm in the sense that, if $\rho(x) < 1$, then the series above converges. In some other algebras, it is the boundedness radius β which plays this role. However, there exist topological algebras with elements x such that the series diverges although $\rho(x) < 1$ or $\beta(x) < 1$. In section 2, we introduce a new radius in any topological algebra, called radius of nig-boundedness and denoted by η , in such a way that the series $\sum x^n$ converges for every x with $\eta(x) < 1$. We show by examples that $\rho \neq \eta$ and $\eta \neq \beta$ in general. However, we obtain that η is exactly the maximum of ρ and β . We finally compare η to some known radii introduced by W. Zelazko [9] and studied

Bull. Belg. Math. Soc. 9 (2002), 279–292

Received by the editors February 2001.

Communicated by F. Bastin.

¹⁹⁹¹ Mathematics Subject Classification : 46H05, 46H99.

Key words and phrases : topological algebras, spectral radius, boundedness radius.

by H. Arizmendi and K. Jaroz [3]. In section 3, we define a second new radius called radius of daw-boundedness and denoted by δ . It is known that in a complete commutative locally m-convex algebra A, the spectral radius of an element x is given by the expression $\rho(x) = \sup\{|\chi(x)|, \chi \in M(A)\}$, where M(A) denotes the set of all continuous characters of A. This expression does not hold anymore in general in the non-commutative case since M(A) may be empty. Here, we introduce the notion of a local character at a point $x \in A$. This is any linear functional on A such that $f(x^n) = f(x)^n$ for every $n \in \mathbb{N}$. Then we define the daw-boundedness radius $\delta(x)$ of x as being the quantity $\sup\{|f(x)|, f \in M_x\}, M_x$ being the set of all continuous local characters at x. We then show that, in a (not necessarily commutative) locally m-convex algebra A, δ coincides with β . If in addition A is complete, δ coincides with ρ , giving new formulas of both the boundedness radius β and the spectral one ρ in a non-commutative locally m-convex algebra.

On the other hand, it is known that β is dominated by ρ in any locally convex algebra A which has either continuous (quasi-) inversion or all its elements bounded [1]. In section 4, we first exhibit an example showing that, without the local convexity, β is no more dominated by ρ even in a commutative and complete metrizable algebra with continuous inversion. Next, we provide two further examples of F-algebras in which $\rho = \beta$, leading to some open problems.

In all what follows A will stand for an associative algebra over the field \mathbb{K} (= \mathbb{R} or \mathbb{C}). For arbitrary x and $y \in A$, denote by xoy the Jordan product x + y - xy of x and y. We will say that x is quasi-invertible in A if some $y \in A$ exists such that xoy = yox = 0. Such an element y is called the quasi-inverse of x and is denoted by x^o . The spectrum of an element x of A is the set

 $\operatorname{Sp}(x) := \{\lambda \in \mathbb{K} \setminus \{0\} : \frac{x}{\lambda} \text{ is not quasi-invertible in } A\} \cup O$

O being the empty set or the singleton $\{0\}$ according to whether x is invertible in A or not. The spectral radius of x is then defined as

$$\rho(x) := \sup\{|\lambda|, \lambda \in \operatorname{Sp}(x)\}.$$

If τ is a Hausdorff linear topology on A, we will say that (A, τ) is a topological algebra if the multiplication of A is separately continuous with respect to τ . If in addition τ is locally pseudo-convex (resp. *p*-convex for some $0) [5], then <math>(A, \tau)$ will be called a locally pseudo-convex (resp. *p*-convex) algebra. In case p = 1, we simply say a locally convex algebra (l.c.a. in short). A bounded absolutely *p*-convex set (i.e. *p*-disc) is said to be completing or a *p*-Banach disc if the linear span $A_B := \bigcup \{rB, r > 0\}$ of B, endowed with the *p*-homogeneous gauge $|| \ ||_B$ of B is a *p*-Banach space, where $||y||_B := \inf\{|\mu|^p; \mu \in \mathbb{K} : y \in \mu B\}, y \in A_B$. A locally *p*-convex algebra will be said to be m-complete if every closed bounded and idempotent *p*-disc is *p*-Banach. A net $(x_i)_i$ in a topological algebra A is said to converge to 0. A topological algebra is advertibly sequentially complete if every Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ converges in A whenever it converges advertibly. Finally, we will say that a series $\Sigma a_n x^n$ is Cauchy in A if the sequence $\left(s_n := \sum_{k=1}^{k=n} a_k x^k\right)_n$ of its partial sums is.

2 Nig-boundedness in topological algebras

Let x be an element of a topological algebra (A, τ) . As in a locally convex algebra, we will say that x is bounded [1] if there exists some r > 0 such that the set $\{(\frac{x}{r})^n, n \in \mathbb{N}\}$ is bounded in (A, τ) . This is easily seen to be equivalent to the existence of some r > 0 so that the sequence $((\frac{x}{r})^n)_{n \in \mathbb{N}}$ converges to 0. Hence the quantities $\beta(x), \beta'(x)$ and $\beta''(x)$ coincide, where

 $\beta(x) := \inf\{r > 0 : ((\frac{x}{r})^n)_n \text{ is bounded}\}\$

 $\beta'(x) := \inf\{r > 0 : ((\frac{x}{r})^n)_n \text{ tends to } 0\}$

 $\beta''(x) := \inf\{r > 0 : ((\frac{x}{\lambda})^n)_n \text{ tends to } 0 \text{ for all } \lambda \in \mathbb{K} \text{ with } |\lambda| > r \}.$

with the convention : $\inf \emptyset = +\infty$. This common value is called the boundedness radius of x with respect to (A, τ) . This radius satisfies the following properties:

i) $\beta(x) \ge 0$ and $\beta(\lambda x) = |\lambda|\beta(x)$ for any $\lambda \in \mathbb{K}$, here $0\infty = 0$.

ii) $\beta(x) < +\infty$ if and only if x is bounded.

iii) If $|\lambda| > \beta(x)$, then the sequence $\left(\left(\frac{x}{\lambda}\right)^n\right)_n$ converges to 0 and if $|\lambda| < \beta(x)$, the sequence is unbounded.

iv) For every $x \in A$ and $s \in \mathbb{N}$, $\beta(x^s) = \beta(x)^s$. Indeed, if $(\frac{x}{r})^n$ converges to 0, then so does also $(\frac{x^s}{r^s})^n$ and then $\beta(x^s) \leq \beta(x)^s$. Conversely, if $((\frac{x^s}{r^s})^n)_n$ converge to 0, then

$$\{(\frac{x}{r})^n, n \in \mathbb{N}\} = \left(\cup_{p=1}^{s-1} (\frac{x}{r})^p \{(\frac{x}{r})^{ms}, m \in \mathbb{N}\}\right) \cup \{(\frac{x}{r})^{ms}, m \in \mathbb{N}\}.$$

Hence $\{(\frac{x}{r})^n, n \in \mathbb{N}\}$ is bounded and then $\beta(x)^s \leq \beta(x^s)$.

v) If A happens to be commutative and its multiplication continuous with respect to τ , then β is submultiplicative, i.e.

$$\beta(xy) \le \beta(x)\beta(y), \quad \forall x, y \in A; \text{ here } 0\infty = 0.$$

Indeed, let x and y be arbitrary in A. The inequality is trivial if $\beta(x)$ or $\beta(y)$ is infinite. Assume then that $r > \beta(x)$ and $s > \beta(y)$, then $((\frac{x}{r})^n)_n$ as well as $((\frac{y}{x})^n)_n$ converge to 0. If V is any 0-neighbourhood. Choose another 0-neighbourhood U such that $UU \subset V$. Then there exists some n_0 such that $(\frac{x}{r})^n \in U$ and $(\frac{y}{s})^n \in U$ whenever $n_0 \leq n$. For such an n, we have $(\frac{xy}{rs})^n = (\frac{x}{r})^n (\frac{y}{s})^n \in UU \subset V$. Hence $\beta(xy) \leq rs$, whereby $\beta(xy) \leq \beta(x)\beta(y)$.

At this point, let us note that if τ is in addition locally convex, then (see [4], Lemma 2.9) β is also subadditive, i.e.

$$\beta(x+y) \le \beta(x) + \beta(y), \quad \forall x \ y \in A$$

One can give a further expression of $\beta(x)$ using the gauges of 0-neighborhoods from a local basis at 0. To this aim, let U be a circled absorbent subset of A and P_U its gauge functional. This is the function defined on A by

$$P_U(x) := \inf\{r > 0 : x \in rU\}.$$

Proposition 1 : Let (A, τ) be a topological algebra, x an element of A and $(U_i)_{i \in I}$ a pseudo-basis of 0-neighborhoods consisting of circled sets. Then

$$\beta(x) = \sup_{i \in I} \limsup [P_{U_i}(x^n)]^{\frac{1}{n}}.$$

Proof : Set $\alpha(x) := \sup_{i \in I} \lim_{n} \sup_{i \in I} [P_{U_i}(x^n)]^{\frac{1}{n}}$ and let us show that $\beta(x) \leq \alpha(x)$ for every $x \in A$. Fix $x \in A$. If $\alpha(x) = +\infty$, then there is nothing to show. Now, suppose that $\alpha(x) < +\infty$. For arbitrary $r > \alpha(x)$, one has $r > \limsup_{m \ge n_i} P_{U_i}(x^n)^{\frac{1}{n}}$. Let U be an arbitrary 0-neighborhood in (A, τ) . There is some finite subset J of I so that $\bigcap_{j \in J} U_j \subset U$. Fix $n_0 \in \mathbb{N}$ larger that each $n_j, j \in J$. We have

$$\sup_{m \ge n_0} [P_U(x^m)]^{\frac{1}{m}} \le \max_{j \in J} \sup_{m \ge n_j} [P_{U_j}(x^m)]^{\frac{1}{m}} < r,$$

showing that $(\frac{x}{r})^m$ belongs to U for every $m \ge n_0$ and then that $((\frac{x}{r})^n)_n$ tends to 0. Hence $\beta(x) \le r$ and consequently $\beta(x) \le \alpha(x)$. Conversely, fix an arbitrary $x \in A$. If $\beta(x) = +\infty$, the inequality is obvious. Assume then that $\beta(x) < +\infty$ and that $r > \beta(x)$ is arbitrary. Then $(\frac{x}{r})^n$ tends to 0. Hence, for every $i \in I$, there exists $n_i \in \mathbb{N}$ so that $(\frac{x}{r})^m \in U_i$ for every $m \ge n_i$. This shows that $\sup_{m \ge n_i} P_{U_i}(x^m)^{\frac{1}{m}} \le r$. Hence $\limsup_{p \ge n_i} P_{U_i}(x^m)^{\frac{1}{m}} \le r$. Since i was arbitrary, $\alpha(x) \le r$ whereby $\alpha(x) \le \beta(x)$.

In the previous proposition, one can take any pseudo-basis $(U_i)_{i \in I}$ of 0-neighborhoods for an arbitrary linear topology on A having the same bounded sets as τ . Moreover, if each U_i is pseudo-convex and $|| ||_i$ is its p_i -homogeneous seminorm, $0 < p_i \leq 1$, then clearly

$$\beta(x) = \sup_{i \in I} \limsup ||x^n||_i^{\frac{1}{np_i}}.$$

In particular, if each $p_i = p$ for some p, e.g. if (A, τ) is a locally p-convex algebra, then

$$(\beta(x))^p = \sup_{i \in I} \limsup ||x^n||_i^{\frac{1}{n}}.$$

Inspired by the expression $\beta''(x)$, we introduce the

Definition 2: Let x be an element of a topological algebra (A, τ) . We will say that x is ńig-bounded if there exists some r > 0 such that, the series $\sum (\frac{x}{\lambda})^n$ converges in (A, τ) for every $\lambda \in \mathbb{K}$ with $|\lambda| > r$. The radius of ńig-boundedness of x is then defined as

$$\eta(x) := \inf\{r > 0 : \sum (\frac{x}{\lambda})^n \text{ converges in } (A, \tau), \ \forall \lambda \in \mathbb{K} : \ |\lambda| > r\}$$

again with the convention : $\inf \emptyset = +\infty$.

As for the radius of boundedness, one shows easily : i. $\eta(x) \ge 0$ and $\eta(\lambda x) = |\lambda| \eta(x)$ for any $\lambda \in \mathbb{K}$ and $x \in A$. Here also $0\infty = 0$. ii. $\eta(x) < +\infty$ if and only if x is nig-bounded. iii. If $|\lambda| > \eta(x)$, then the series $\sum (\frac{x}{\lambda})^n$ converges in (A, τ) .

Notice however that, in contrast to β , $\eta(x)$ need not coincide with $\eta'(x) := \inf\{r > 0 : \sum (\frac{x}{r})^n \text{ converges in } (A, \tau)\}.$

To give an instance where these are different, take the unital subalgebra A of the field $\mathbb{C}(X)$ of rational functions in one indeterminate X generated by X and $f := \frac{1}{1-X}$. Endow A with the topology τ of uniform convergence on the compacta of [0, 1[. Then (A, τ) is a locally m-convex algebra and the series $\sum X^n$ converges in A, while, for any $|\alpha| > 1$, $\sum (\frac{X}{\alpha})^n$ does not. The sum of the latter series in C[0, 1[, being the rational function $\frac{\alpha}{\alpha - X} - 1$, does not belong to A. This shows that $\eta(X) \neq \eta'(X)$.

Nevertheless, the equality $\eta = \eta'$ holds in a large class of topological algebras containing in particular the complete locally pseudo-convex ones. Recall that a topological (vector space or) algebra (A, τ) is said to be fundamental [2] if every sequence $(x_n)_n$ is Cauchy, whenever there exists some r > 1 such that $r^n(x_n - x_{n-1})$ tends to 0. Here, we introduce a more general class of algebras.

Definition 3 : A topological algebra (A, τ) is said to be Σ -fundamental if the series $\sum \left(\frac{x}{\alpha}\right)^k$ is Cauchy for every $x \in A$ and every $\alpha \in \mathbb{K}$ with $(x^n)_n$ bounded and $|\alpha| > 1$.

We also introduce the

Definition 4 : A topological algebra (A, τ) is said to be pointwise pseudo-m-complete if every $x \in A$ such that $(x^n)_n$ is bounded is contained in some idempotent bounded p-Banach disc $B \subset A$ with 0 . If p can be taken the same for all such x, $<math>(A, \tau)$ is then called pointwise p-m-complete, and if p = 1, we simply drop it.

It is easily seen that every locally pseudo-convex algebra is fundamental and that every fundamental one is Σ -fundamental. Furthermore, every m-complete locally *p*convex algebra is pointwise *p*-m-complete and every pointwise pseudo-m-complete algebra is Σ -fundamental. On the other hand, if $((A_i, \tau_i))_{i \in I}$ is an inductive system of locally p_i -Banach algebras, $i \in I$, and $A := \bigcup_{i \in I} A_i$ is its inductive limit, then A, endowed with the inductive limit linear topology of $((A_i, \tau_i))_i$, is a pointwise pseudo-m-complete algebra.

Proposition 5: In each of the following cases $\eta = \eta'$ on A: 1. (A, τ) is a pointwise pseudo-m-complete topological algebra. 2. (A, τ) is an advertibly sequentially complete Σ -fundamental topological algebra.

Proof: It is clear that $\eta' \leq \eta$ on A. Moreover if $\eta'(x) = +\infty$, then also $\eta(x) = +\infty$. Now, let $x \in A$ and $\alpha \in \mathbb{K}$ be such that $\eta'(x) \leq |\alpha|$. In the case 1., consider s so that $\eta'(x) < s < |\alpha|$ and $\sum (\frac{x}{s})^n$ converges in (A, τ) . By hypothesis, there exist 0 and an idempotent bounded p-Banach disc B containing $\frac{x}{s}$. Then we have

$$\begin{aligned} |\sum_{k=n}^{m} (\frac{x}{\alpha})^{k}||_{B} &= ||\sum_{k=n}^{m} (\frac{s}{\alpha})^{k} (\frac{x}{s})^{k}||_{B} \\ &\leq \sum_{k=n}^{m} ((\frac{s}{\alpha})^{p})^{k}||\frac{x}{s}||_{B}^{k} \\ &\leq \sum_{k=n}^{m} (\frac{s}{\alpha})^{pk} \to 0. \end{aligned}$$

showing that $\left(\sum_{k=1}^{n} \left(\frac{x}{\alpha}\right)^{k}\right)_{n}$ is Cauchy in the *p*-Banach algebra $(A_{B}, || ||_{B})$. Therefore, it converges in A_{B} and then also in A. This gives $\eta(x) \leq \eta'(x)$ since $|\alpha| > \eta'(x)$ is arbitrary. In the case 2., the sequence $\left(\left(\frac{x}{\alpha}\right)^{n}\right)_{n}$ tends to 0 and then is bounded. By our assumption, for $|\lambda| > 1$, the series $\sum \left(\frac{x}{\lambda \alpha}\right)^{k}$ is Cauchy. Since $\frac{x}{\lambda \alpha} \circ \left(-\sum_{k=1}^{n} \left(\frac{x}{\lambda \alpha}\right)^{k}\right) = \left(\frac{x}{\lambda \alpha}\right)^{n+1}$ tends to 0 and (A, τ) is advertibly sequentially complete, the series converges in (A, τ) . Hence $\eta(x) \leq |\alpha|$ and again $\eta(x) \leq \eta'(x)$ since $|\alpha| > \eta'(x)$ was arbitrary.

Now, whenever the series $\sum \left(\frac{x}{\lambda}\right)^n$ converges, the sequence $\left(\left(\frac{x}{\lambda}\right)^n\right)_n$ obviously converges to 0. Hence $\beta(x) \leq \eta(x)$ for all $x \in A$. Moreover, if $\lambda \in \mathbb{K}$ and $x \in A$ are so that $|\lambda| > \eta(x)$, then the sum $\sum \left(\frac{x}{\lambda}\right)^n$ enjoys: $\frac{x}{\lambda} \circ \left(-\sum \left(\frac{x}{\lambda}\right)^n\right) = \left(-\sum \left(\frac{x}{\lambda}\right)^n\right) \circ \frac{x}{\lambda} = 0$ which shows that $\frac{x}{\lambda}$ is quasi-invertible and $\left(\frac{x}{\lambda}\right)^o = -\sum \left(\frac{x}{\lambda}\right)^n$. This gives $\rho(x) \leq \eta(x)$ for every $x \in A$. The three radii may fail to coincide with each other as show the

Examples :

1. Let A be the complex algebra $\mathbb{C}[X]$ of polynomials in one indeterminate X endowed with the topology of uniform convergence on the unit interval [0, 1]. Then $\beta(X) = 1$, while the series $\sum (\frac{X}{\lambda})^n$ does not converge for any complex number λ . Hence $\beta(X) < \eta(X)$.

2. Let $A = \mathbb{C}(X)$ be the field of rational functions of the indeterminate X over the complex field \mathbb{C} . Endow A with its strongest locally convex linear topology τ^* . Then (A, τ) is a complete locally convex Q-algebra. For x = X, the series $\sum (\frac{x}{\lambda})^n$ does not converge for any complex number λ , since otherwise, A will contain a bounded subset of infinite dimension which is not true. Hence $\eta(X) = +\infty$. However, the spectrum of X is empty and then $\rho(X) = 0$. Whence $\rho \neq \eta$.

3. In order to get an example in which $\rho \neq \eta$ and $\beta \neq \eta$ simultaneously, take the product of $\mathbb{C}[X]$ and $\mathbb{C}(X)$ from examples 1 and 2 above with the pointwise operations and the product topology. For instance, $\beta((X,0)) = 1$ but $\eta((X,0)) =$ $+\infty$ and $\rho((0,X)) = 0$ while $\eta((0,X)) = +\infty$. However, we have:

Proposition 6 : Let (A, τ) be a topological algebra. Then the following equality holds:

$$\eta(x) = \max\left(\beta(x), \rho(x)\right), \forall x \in A.$$

Proof: We just have to show that $\eta(x) \leq \max(\beta(x), \rho(x))$, for every $x \in A$. Fix $x \in A$. If $\max(\beta(x), \rho(x)) = +\infty$, the inequality is obvious. Assume now that $\max(\beta(x), \rho(x)) < +\infty$ and let $\lambda \in \mathbb{K}$ satisfy $|\lambda| > \max(\beta(x), \rho(x))$. Then $\frac{x}{\lambda}$ is quasi-invertible and $\left(\frac{x}{\lambda}\right)^n$ converges to 0. Then from

$$\frac{x}{\lambda} \circ \left(-\sum_{k=1}^{n} \left(\frac{x}{\lambda} \right)^{k} \right) = \left(\frac{x}{\lambda} \right)^{n+1},$$

follows

$$\sum_{k=1}^{n} \left(\frac{x}{\lambda}\right)^{k} = -\left(\left(\frac{x}{\lambda}\right)^{o} \circ \left(\frac{x}{\lambda}\right)^{n+1}\right).$$

Since $(\frac{x}{\lambda})^{n+1}$ tends to 0 as *n* tends to infinity, the series $\sum (\frac{x}{\lambda})^n$ converges in *A* and its limit is nothing but $-(\frac{x}{\lambda})^o$. Whence $\eta(x) \leq \max(\beta(x), \rho(x))$ for every $x \in A$.

By the proposition above if $\rho(x) \leq \beta(x)$ (resp. $\beta(x) \leq \rho(x)$) for every $x \in A$, then $\eta = \beta$ (resp. $\eta = \rho$). In [4], it is shown that, in a unital locally convex algebra, $\rho \leq \beta$ if and only if ($\forall x \in A, \ \beta(x) < 1 \Longrightarrow \sum_{n=0}^{\infty} x^n$ converges)

and

$$\beta \leq \rho$$
 if and only if $(\forall x \in A, \ \rho(x) < 1 \Longrightarrow \sum_{n=0}^{\infty} x^n \text{ converges }).$

The following proposition yields further necessary and sufficient conditions for the inequality $\rho \leq \beta$ (resp. $\beta \leq \rho$) to hold in the general setting.

Proposition 7 : Let (A, τ) be a topological algebra. The conditions 1) to 4) are equivalent and so are also 1') to 4'). 1) $\eta = \beta$ (i.e. $\rho \leq \beta$). 2) The series $\sum x^n$ converges whenever $\beta(x) < 1$. 3) The series $\sum (\frac{x}{\alpha})^n$ converges whenever $\beta(x) \leq 1$ and $|\alpha| > 1$. 4) ρ is bounded on idempotent bounded subsets of A.

1') $\eta = \rho$ (i.e. $\beta \leq \rho$). 2') The series $\sum x^n$ converges whenever $\rho(x) < 1$. 3') The series $\sum (\frac{x}{\alpha})^n$ converges whenever $\rho(x) \leq 1$ and $|\alpha| > 1$. 4') The set $\{\sum_{k=1}^n (\frac{x}{\alpha})^k, n \in \mathbb{N}\}$ is bounded whenever $\rho(x) \leq 1$ and $|\alpha| > 1$.

Proof: Under the assumption 1), if $\beta(x) < 1$, then also $\rho(x) < 1$ and either x is quasi-invertible and $(x^n)_n$ converges to 0. But $\sum_{k=1}^n x^k = -x^o - x^{n+1} + x^o x^{n+1}$

converges to $-x^o$ and 2) follows. 3) derives obviously from 2). As to 3) \Longrightarrow 4), let *B* be an idempotent bounded subset of *A*. Then, $\beta(x) \leq 1$ for every $x \in B$. By 3), for arbitrary α with $|\alpha| > 1$, the series $\sum \left(\frac{x}{\alpha}\right)^n$ converges. Hence $\frac{x}{\alpha}$ is quasiinvertible and then $\rho(x) \leq 1$. Whence ρ is bounded on *B*. To show 4) \Longrightarrow 1), let $x \in A$ be given. If $\beta(x) = +\infty$, nothing is to be proved. Now, if $\beta(x) < r$, then ρ is bounded on the idempotent bounded set $\{(\frac{x}{r})^n, n \in \mathbb{N}\}$. Therefore, $\rho((\frac{x}{r})^n) \leq c$ for some c > 0 and then $\rho(x)^n \leq cr^n$. Since *n* is arbitrary, $\rho(x) \leq r$, whereby $\rho(x) \leq \beta(x)$. Now, a similar proof shows that $1') \Longrightarrow 2') \Longrightarrow 3'$, while 4') derives obviously from 3'). As to 4') \Longrightarrow 1'), let $x \in A$ be given. If $\rho(x) = +\infty$, nothing is to be proved. Now, assume that $\rho(x) < r$ but $\beta(x) > r$. Then, for $\alpha \in \mathbb{K}$ such that $\beta(\frac{x}{\alpha r}) > |\alpha| > 1$, the set $\{\sum_{k=1}^n (\frac{x}{\alpha r})^k, n \in \mathbb{N}\}$ is bounded and $((\frac{x}{\alpha r})^k)_k$ is unbounded. Let *U* and *V* be circled 0-neighborhoods such that, for every $k \in \mathbb{N}$, $(\frac{x}{\alpha r})^{m_k} \notin kU$ for some $m_k \geq k$ and $V + V \subset U$. Since $\{\sum_{k=1}^n (\frac{x}{\alpha r})^k, n \in \mathbb{N}\}$ is bounded, there exists c > 0 with $\sum_{k=1}^n (\frac{x}{\alpha r})^k \in cV$, $n \in \mathbb{N}$. In particular, for $n \geq c$, $\binom{x}{\alpha r}^{m_n} = \sum_{k=1}^{m_n} \binom{x}{\alpha r}^k = kU$ for $k \geq n$.

$$\left(\frac{x}{\alpha r}\right)^{m_n} = \sum_{k=1}^{m_n} \left(\frac{x}{\alpha r}\right)^k - \sum_{k=1}^{m_n-1} \left(\frac{x}{\alpha r}\right)^k \in cV + cV \subset cU \subset nU$$

This is a contradiction.

The boundedness of the set $\{\sum_{k=1}^{n} (\frac{x}{\alpha})^{k}, n \in \mathbb{N}\}$ whenever $\beta(x) \leq 1$ and $|\alpha| > 1$ need not be equivalent to 1) - 4) even in a normed algebra. Indeed, in the algebra $\mathbb{C}[X]$ with the norm $||P|| = \sup_{t \in [0,1]} |P(t)|$, the set $\{\sum_{k=1}^{n} (\frac{P}{\alpha})^{k}, n \in \mathbb{N}\}$ is bounded whenever $\beta(P) \leq 1$ and $|\alpha| > 1$. However, such a series does not converge for any non-constant P.

The following proposition yields general instances where $\rho \leq \beta$ so that $\eta = \beta$.

Proposition 8 : Let (A, τ) be a topological algebra. Then $\rho \leq \beta$ holds whenever (A, τ) is either pointwise pseudo-m-complete or advertibly sequentially complete and Σ -fundamental.

Proof: It is clear that $\rho(x) \leq \beta(x)$ whenever $\beta(x) = +\infty$. Assume next that $x \in A$ and $\alpha \in \mathbb{K}$ are such that $\beta(x) < |\alpha|$. In the first situation, take $\beta(x) < s < |\alpha|$ and consider an idempotent bounded *p*-Banach disc *B* containing $\frac{x}{s}$. As in the proof of Proposition 5, the series $\sum (\frac{x}{\alpha})^k$ converges in $(A_B, || \, ||_B)$ and then also in (A, τ) . In the second situation, the sequence $\left(\sum_{k=1}^n (\frac{x}{\alpha})^k\right)_n$ is either Cauchy and advertibly convergent, then it converges. In both cases, we get $\eta(x) \leq \beta(x)$. ■

We end this section with a comparison of η to some other radii. For an element x of a topological algebra (A, τ) , several radii were introduced in [9] among which

$$r_6(x) := \inf\{r > 0: \exists (a_n)_n \subset \mathbb{K} \text{ with } R((a_n)_n) = r \text{ and } \sum_{n \ge 1} a_n x^n \text{ converges in } A\}$$

$$r_7(x) := \inf\{r > 0 : \forall (a_n)_n \subset \mathbb{K} \text{ with } R((a_n)_n) = r, \sum_{n \ge 1} a_n x^n \text{ converges in } A\}.$$

Here $R((a_n)_n)$ designates the radius of convergence of the series $\sum a_n z^n$. Obviously, one has $\beta \leq r_6 \leq r_7$ in general. Moreover, we get :

Proposition 9 : Let (A, τ) be a topological algebra. Then $r_6 \leq \eta$ on A. Moreover, $\eta \leq r_7$ whenever (A, τ) is either pointwise pseudo-m-complete or advertibly sequentially complete and Σ -fundamental.

Proof : Let $x \in A$ be given. If $\eta(x) = +\infty$, then obviously $r_6(x) \leq \eta(x)$. Otherwise, let $r \geq \eta(x)$. Then the series $\sum \left(\frac{x}{r}\right)^n$ converges and then, by the very definition of $r_6, r_6(x) \leq r$. This gives $r_6 \leq \eta$ on the whole of A. As to r_7 , let $x \in A$ be arbitrary. If $r_7(x) = +\infty$, then there is nothing to prove. Assume then that $r_7(x)$ if finite and that $|\alpha| > r_7(x)$. Then there is some s such that $r_7(x) < s < |\alpha|$ and, for every series $\sum a_n z^n$ whose radius of convergence is s, $\sum a_n x^n$ converges in A. In particular, $\sum \left(\frac{x}{s}\right)^n$ converges. Again, as in the proof of Proposition 5, the series $\sum \left(\frac{x}{\alpha}\right)^n$ converges in (A, τ) . Hence $|\alpha| \geq \eta(x)$. Since $|\alpha| > r_7(x)$ is arbitrary, $\eta(x) \leq r_7(x)$.

In the example after Definition 2, the series $\sum X^n$ converges to f - 1 which belongs to A. Then $r_6(X) \leq 1$. However, $\eta(X) = +\infty$ since $\sum \left(\frac{X}{\alpha}\right)^n$ does not converge for any $\alpha \neq 1$. Hence $\eta \neq r_6$ in general. Now, if B is the unital subalgebra of $\mathbb{C}(X)$ generated by X and the functions $f_\alpha = \frac{1}{\alpha - X}$, $|\alpha| > 1$, then $\eta(X) = 1$, for the series $\sum (\frac{X}{\alpha})^n$ converges in B to $f_\alpha - X$. But, for $|\alpha| > 1$, the series $\sum \frac{1}{n} \left(\frac{X}{\alpha}\right)^n$, having $|\alpha|$ as radius of convergence, does not converge in B, for $x \mapsto -\text{Log}(1 - \frac{x}{\alpha})$ is not a rational function. This proves that $r_7(X) = +\infty$ and then that $r_7 \neq \eta$ in general.

3 Daw-boundedness radius

In this section we introduce the daw-boundedness radius δ and use it to deduce new expressions of β and ρ in non-commutative locally m-convex algebras.

Let then (A, τ) be a topological algebra and A' (resp. A^+ , A^*) its continuous (resp. bounded, algebraic) dual. Let x be an element of A. A non-zero functional $f \in A^*$ is said to be a local character at x if it satisfies $f(x^n) = f(x)^n$ for every $n \in \mathbb{N}$. The set of all such functionals is denoted by M_x^* . Similarly, M_x and M_x^+ denote the sets of all local characters at x which belong to A' and A^+ , respectively.

Definition 10 : The daw-boundedness radius of x with respect to (A, τ) is the quantity

$$\delta(x) := \sup\{|f(x)|; f \in M_x\}.$$

Of course, one can also consider the bounded and the algebraic daw-boundedness radii as being respectively $\delta^+(x) := \sup\{|f(x)|, f \in M_x^+\}$ and $\delta^*(x) := \sup\{|f(x)|, f \in M_x^+\}$ $f \in M_x^*$.

We gather the properties of the daw-boundedness radii in the following:

Proposition 11 : Let (A, τ) be a topological algebra and $x \in A$. Then 1. $\delta(x) \leq \delta^+(x) \leq \delta^*(x)$.

2. For every subalgebra B of A containing x, $\delta_A^*(x) = \delta_B^*(x)$. Moreover, if τ is locally convex, then also $\delta_A(x) = \delta_B(x)$.

- 3. $\delta^+(x) \le \beta(x)$.
- 4. $\delta^*(x) < +\infty$ if and only if x is algebraic.
- 5. $\eta(x) \leq \delta^*(x)$.
- 6. If (A, τ) is a locally m-convex algebra, then $\beta(x) = \delta(x)$.

7. If (A, τ) is either a sequentially advertibly complete or a pointwise m-complete locally m-convex algebra, then $\rho(x) = \delta(x) = \delta^+(x)$.

Proof: 1. is obvious.

2. The first equality derives from the fact that every $f \in M_x^*(B)$ extends to A by linearity. The second one is due to Hahn-Banach theorem, for every element of $M_x(B)$ extends to an element of $M_x(A)$.

For 3., let $x \in A$ be given. If $\beta(x) = +\infty$, there is nothing to show. Otherwise assume that $r > \beta(x)$ and $f \in M_x^+$. Then f is bounded on the bounded set $\{(\frac{x}{r})^n, n \in \mathbb{N}\}$ by some M > 0. This gives $|f(x)|^n \leq Mr^n$ for every $n \in \mathbb{N}$, which leads to $|f(x)| \leq r$ and therefore to $\delta^+(x) \leq \beta(x)$.

4. If x is algebraic and P is a polynomial with P(x) = 0, then for every $f \in M_x^*$, f(P(x)) = P(f(x)) = 0. Hence f(x) is a zero of P. But P has only finitely many zeros. Whence $\delta^*(x)$ is finite. Now, if x is not algebraic, consider for every $\alpha \in \mathbb{K}$ a linear functional f_α on A assigning to x^n the value α^n , $n \in \mathbb{N}$. The functional f_α belongs to M_x^* and then $|\alpha| \leq \delta^*(x)$. Since α is arbitrary, $\delta^*(x)$ is infinite.

5. Let $\lambda \in \operatorname{Sp}(x)$ be given. Since $P(\operatorname{Sp}(x)) \subset \operatorname{Sp}(P(x))$ for every polynomial P, the assignment $x^n \to \lambda^n$ extends to a well-defined character χ on the subalgebra $\mathbb{K}[x]$ of A generated by x. Consider now any linear functional χ_{λ} on A whose restriction to $\mathbb{K}[x]$ coincides with χ . Then χ_{λ} belongs to M_x^* . Since λ is arbitrary in $\operatorname{Sp}(x)$ and $\chi_{\lambda}(x) = \lambda$, we obtain $\rho(x) \leq \delta^*(x)$. In order to show that $\eta(x) \leq \delta^*(x)$, it suffices to establish $\beta(x) \leq \delta^*(x)$. If x fails to be algebraic, by 3., $\delta^*(x) = +\infty$ and then $\eta(x) \leq \delta^*(x)$. Now, if x is algebraic, then $\mathbb{K}[x]$ is a (finite dimensional) Banach algebra and $\beta(x)$ is nothing but $\rho_{\mathbb{K}[x]}(x)$. According to 2. and the fact that $\rho(x) \leq \delta^*(x)$, we have $\beta(x) = \beta_{\mathbb{K}[x]}(x) = \rho_{\mathbb{K}[x]}(x) \leq \delta^*(x)$.

6. Assume that (A, τ) is a locally m-convex algebra. We just have to show that $\beta(x) \leq \delta(x)$. For this purpose, let us first notice that, if A is commutative, then $\beta(x) = \sup\{|\chi(x)|, \chi \in M(A)\}$, for this is true in the completion \hat{A} of A, $M(A) = M(\hat{A})$ and $\beta_A(x) = \beta_{\hat{A}}(x)$. Now, let us return back to the general case. Consider again the subalgebra $E := \mathbb{K}[x]$. This is a commutative algebra and then $\beta(x) = \sup\{|\chi(x)|, \chi \in M(E)\}$. But, by Hahn-Banach theorem, every $\chi \in M(E)$ can be extended to some $f \in M_x$. This shows that $\beta(x) \leq \delta(x)$.

7. is a consequence of 3. and 6. together with Proposition 8 since a locally m-convex algebra is Σ -fundamental.

In spite of Proposition 11, δ may fail to be dominated by ρ although the algebra is a commutative complete locally convex Q-algebra. This occurs, for instance, in the field $\mathbb{C}(X)$ with its strongest locally convex topology. Actually $\rho(X) = 0$ while $\delta(X) = +\infty$. Indeed, for every $\alpha \in \mathbb{C}$, let $f_{\alpha} : \mathbb{C}[X] \to \mathbb{C}$ be the linear functional assigning to X^n the scalar α^n , $n \in \mathbb{N}$. This is a continuous character on $\mathbb{C}[X]$ with the induced topology. Then f_{α} extends to an element in M_X . This yields $\delta(X) \ge |\alpha|$ for every α . Whence $\delta(X) = +\infty$.

The foregoing example shows that, for $f \in M_x$, f(x) need not belong to the spectrum of x. Hence f need not be a character on A.

4 Spectral and boundedness radii in F-algebras

It is known that in a locally convex algebra with continuous inversion, the boundedness radius β is dominated by the spectral one ρ . We start this section by showing by an example that the local convexity cannot be released, although the algebra is metrizable and complete (i.e. an F-algebra).

Example Let F be the algebra of all Lebesgue measurable functions on X := [0, 1] with values in \mathbb{C} . Endow E with the topology of convergence in measure and consider the quotient algebra $E := F/\mathcal{N}$, where \mathcal{N} is the ideal of F consisting of all functions vanishing almost everywhere. Then E is a commutative unital F-algebra with continuous inversion [8]. Recall that a basis for the neighborhoods of the origin is given by the sets of the form

$$N(k,\epsilon) := \{ f \in E : \mu(\{x \in [0,1] : |f(x)| \ge k\}) < \epsilon \}$$

k and ϵ being arbitrary positive numbers.

Proposition 12 : In the algebra E, the boundedness radius is nothing but the essential norm

$$||f|| := \inf\{r > 0 : \mu(\{x \in X : |f(x)| \ge r\}) = 0\},\$$

while the spectral radius is given by

$$\rho(f) = \sup\{|\lambda| : \mu(\{x \in X : f(x) = \lambda\}) > 0\}.$$

Proof : Let $f \in E$ be given. If $||f|| = +\infty$, then $\beta(f) \leq ||f||$. Now, if $||f|| < r < +\infty$, then $\mu(\{x \in X : |f(x)| \geq r\}) = 0$. Hence, $\mu(\{x \in X : (\frac{|f(x)|}{r})^n \geq 1\}) = 0$ for every $n \in \mathbb{N}$. Therefore, $\mu(\{x \in X : k(\frac{|f(x)|}{r})^n \geq k\}) = 0 < \epsilon$, for all $n \in \mathbb{N}$ and arbitrary k and ϵ . This means that $k\{(\frac{f}{r})^n, n \in \mathbb{N}\} \subset N(k, \epsilon)$. Hence $((\frac{f}{r})^n)_n$ is bounded and $r \geq \beta(f)$, whereby $\beta(f) \leq ||f||$. Since f is arbitrary, we get $\beta \leq || ||$ on E. Conversely, let f again be arbitrary in E. If $\beta(f) = +\infty$, then $||f|| \leq \beta(f)$. Now, if $\beta(f) < r < +\infty$, then $(\frac{f}{r})^n$ tends to 0 as n tends to infinity. Hence, for every k > 0, there exists $n_k \in \mathbb{N}$ so that $(\frac{f}{r})^n \in N(1, \frac{1}{k})$, whenever $n \geq n_k$. This means that $\mu(\{x \in X : (\frac{|f(x)|}{r})^n \geq 1\}) < \frac{1}{k}$. But $\{x \in X : (\frac{|f(x)|}{r})^n \geq 1\} = \{x \in X : |f(x)| \geq r\}$. Hence $\mu(\{x \in X : |f(x)| \geq r\} \leq \frac{1}{k}$, for all k, whereby $r \geq ||f||$ and the equality $\beta = \frac{1}{k}$.

|| || follows. Concerning the spectral radius, let $f \in E$ be given. For f^{-1} to belong to E, it is necessary and sufficient that $z(f) := \{x \in X : f(x) = 0\}$ be of measure 0. Hence the spectrum of f is given by $\operatorname{Sp}(f) := \{\lambda \in \mathbb{C} : \mu(\{x \in X : f(x) = \lambda\}) > 0\}$. This shows that $\rho(f) := \sup\{|\lambda| : \mu(\{x \in X : f(x) = \lambda\} > 0\}$.

If f is the function defined by $f(x) = \frac{1}{x}$, then $\rho(f) = 0$ while $\beta(f) = +\infty$. This shows that β is not dominated by ρ on the algebra E above.

In the locally convex setting the pointwise m-completeness implies $\rho \leq \beta$ (see Proposition 8). When one deals with F-algebras, one disposes instead of local convexity of either a stronger completeness condition and the metrizability. However, we do not know whether or not $\rho \leq \beta$ on any arbitrary F-algebra. On the other hand, on any locally convex algebra whose elements are all bounded, $\beta \leq \rho$ [1]. We also ignore whether or not this still holds on an arbitrary F-algebra whose elements are all bounded. In the following we provide two examples of such F-algebras, but in which ρ even coincides with β .

Examples : 1. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be defined by $\varphi(t) := \frac{t}{1+t}$ and μ the Lebesgue measure on \mathbb{R} . Consider the set E of all continuous functions $f : \mathbb{R} \to \mathbb{K}$ such that $\lim_{|x|\to\infty} f(x) = 0$ and $||f||_{\varphi} := \int_{\mathbb{R}} \frac{|f|}{1+|f|} d\mu < +\infty$. This is a vector space and, endowed with the pointwise multiplication, it becomes an algebra over \mathbb{K} . Indeed, if $f, g \in E$, then $\lim_{|x|\to\infty} (fg)(x) = 0$ and $||f\frac{g}{||g||_u}||_{\varphi} \leq ||f|| < +\infty$, where $|| ||_u$ denotes the uniform norm. Hence $f\frac{g}{||g||_u}$ belongs to E and then so does also fg. Now equip E with the F-norm

$$||f|| := \max(||f||_u, ||f||_{\varphi}).$$

Since $||f\frac{g}{||g||_u}|| \leq ||f||$ for all $f, g \in E$, the multiplication of E is separately continuous and (E, || ||) is a topological algebra. Actually E is even an F-algebra. Indeed, if $(f_n)_n$ is a Cauchy sequence in (E, || ||), then so is it also either in $C_0(\mathbb{R})$ with the uniform norm $|| ||_u$ and in the Orlicz space $(L_{\varphi}(\mathbb{R}), || ||_{\varphi})$. Hence $(f_n)_n$ converges uniformly to some $f \in C_0(\mathbb{R})$ and $(\varphi \circ |f_n|)_n$ converges in $L^1(\mathbb{R})$ to some $h \in L^1(\mathbb{R})$. But then $(\varphi \circ |f_{n_k}|)_k$ converges almost everywhere to h for some subsequence $(f_{n_k})_k$ of $(f_n)_n$. By continuity of φ , $h = \varphi \circ |f|$ almost everywhere. Whence $f \in E$ and $(f_n)_n$ converges to f in (E, || ||). We claim that $\rho = \beta = || ||_u$. Indeed, if $f \in E$ is quasi-invertible in $C(\mathbb{R})$, its quasi-inverse is given by $f^o = \frac{f}{f-1}$. Since f is continuous and vanishes at infinity, $||f||_u < 1$. Therefore, $|1 - f(t)| > \delta$ for some $\delta > 0$ and then f^o belongs to E. Hence f is quasi-invertible in E if and only if $f(x) \neq 1$ for every $x \in \mathbb{R}$. Whereby $\rho = || ||_u$. As to β , notice that for every $r > ||f||_u$ and $\epsilon > 0$, owing to the Lebesgue's dominated convergence theorem, there exists some n_0 such that $\int_{|t|>n_0} \frac{|f|}{1+|f|} d\mu < \frac{\epsilon}{2}$. Then, for every $m \in \mathbb{N}$,

$$\int_{\mathbb{R}} \frac{|(\frac{f}{r})^{m}|}{1+|(\frac{f}{r})^{m}|} d\mu = \int_{[-n_{0},n_{0}]} \frac{|(\frac{f}{r})^{m}|}{1+|(\frac{f}{r})^{m}|} d\mu + \int_{|t|>n_{0}} \frac{|(\frac{f}{r})^{m}|}{1+|(\frac{f}{r})^{m}|} d\mu \\
\leq \int_{[-n_{0},n_{0}]} |(\frac{f}{r})^{m}| d\mu + \int_{|t|>n_{0}} \frac{|\frac{f}{r}|}{1+|\frac{f}{r}|} d\mu \\
\leq 2n_{0} \left(\frac{||f||_{u}}{r}\right)^{m} + \frac{\epsilon}{2} < \epsilon \text{ for } m \text{ large enough.}$$

Hence $\beta(f) \leq r$ whereby $\beta \leq || ||_u$. Conversely, if $r > \beta(f)$ and $|f(x_0)| > r$ for some $x_0 \in \mathbb{R}$, then $\left(\left(\frac{f}{r}\right)^m\right)_m$ cannot be bounded in $(C_0(\mathbb{R}), || ||_u)$ and then also in E. Whence $|| ||_u \leq \beta$.

2. For every 0 , consider the*p* $-Banach space <math>(\ell_p, || ||_p)$, where

$$\ell_p := \{ x := (x_n)_{n \in \mathbb{N}} \subset \mathbb{K} : ||x||_p := \sum_{n=1}^{+\infty} |x_n|^p < +\infty \}.$$

Let ℓ_0 be the intersection of all such ℓ_p spaces. Endow ℓ_0 with the topology τ given by the family $(|| ||_{\frac{1}{p}})_{p \in \mathbb{N}}$ of pseudo-seminorms. Then (ℓ_0, τ) is an F-space ([5], p. 121). Moreover $||xy||_{\frac{1}{p}} \leq ||x||_{\frac{1}{p}} ||y||_{\frac{1}{p}}$ for every $x, y \in \ell_0$ and $p \in \mathbb{N}$. Then (ℓ_0, τ) is a locally m-pseudo-convex algebra and in particular an F-algebra. Now, if $x \in \ell_0$, $||x||_u := \sup\{|x_n|, n \in \mathbb{N}\}$ and $r > ||x||_u$, then $|\frac{x_n}{r}|^{\frac{m}{p}} \leq |\frac{x_n}{r}|^{\frac{1}{p}}$ for every $m \in \mathbb{N}$. Then $||(\frac{x}{r})^m||_{\frac{1}{p}} \leq ||\frac{x}{r}||_{\frac{1}{p}} < +\infty$ and $((\frac{x}{r})^m)_m$ is then bounded in ℓ_0 . This yields $\beta(x) \leq ||x||_u$ for all $x \in \ell_0$. Conversely, if $\beta(x) < r$, then $((\frac{x}{r})^m)_m$ converges to 0. In particular, for every $n \in \mathbb{N}$, $(\frac{x_n}{r})^{\frac{m}{p}}$ tends to 0. This holds only if $|x_n| < r$. Consequently, $||x||_u \leq r$ and then $|| ||_u \leq \beta$. To see that $\rho = || ||_u$, just notice that $x \in \ell_0$ is quasi-invertible if and only if $x_m \neq 1$ for every $m \in \mathbb{N}$.

Acknowledgement : The referee suggested the terminology : summable, summability radius and local character radius instead of nig-bounded, nig-boundedness radius and daw-boundedness radius, respectively. The author would like to thank him for his suggestions and other valuable remarks.

References

- G.R. Allan : A spectral theory for locally convex algebras. Proc. London Math. Soc. 15 (1965), 399-421.
- [2] E. Ansari-Piri: A class of factorable topological algebras. Proc. Edinburgh Math. Soc. 33 (1990), 53-59.
- [3] H. Arizmendi, K. Jaroz : Extended spectral radius in topological algebras. Rocky Mountain J. Math. 23 (4) (1993), 1179-1195.
- [4] A. El Kinani, L. Oubbi, M. Oudadess : Spectral and boundedness radii in locally convex algebras. Georgian Math. J. 5 (3) (1997), 233-241.
- [5] H. Jarchow : Locally Convex Spaces. B.G. Teubner Stuttgart 1981.
- [6] I. Kaplanski : Topological rings. Amer. J. Math. 69 (1947), 153-183.
- [7] V. Mascioni : Some characterizations of complex normed Q-algebras. El. Math. 42 (1986), 10-14.
- [8] J.H. Williamson : On topologizing the field $\mathbb{C}(t)$. Proc. Amer. Math. Soc. 5 (1954), 729-734.
- [9] W. Zelazko : Selected topics in topological algebras. Lecture Notes 31 (1971), Mathematik Institut Aarhus Univ. Aarhus.

Department of Mathematics, Ecole Normale Supérieure de Rabat P.B. 5118, Takaddoum, 10105 Rabat, Morocco E-mail : l_oubbi@hotmail.com