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Abstract

The Toomer invariant of a simply connected space X, e(X), is the least
integer k for which the inclusion BkΩX ↪→ BΩX, where BkΩX is the kth
stage of the classifying construction on ΩX, is surjective in homology. The
Toomer invariant of X is a lower bound of the Lusternik-Schnirelmann cate-
gory of X. We construct CW-complexes Z and Z∪e

m such that e(Z) = 2 and
e(Z ∪ e

m) = 4. This exhibits the Toomer invariant as the first approximation
of the L.-S. category which fails to increase by at most one when a cell is
attached to a space. We deduce from our result that there may be gaps in
the Milnor-Moore spectral sequence in the sense that one may have E

∞
p,∗ = 0

and E
∞
p+1,∗ 6= 0.

Introduction

The Lusternik-Schnirelmann category of a space X, denoted cat(X), is the least
integer n such that X can be covered by n+1 open sets each of which is contractible
in X. If no such n exists one sets cat(X) = ∞. Originally the L.-S. category was
introduced as an invariant which gave a lower bound for the number of critical points
of a differentiable function defined on a manifold. In spite of the simplicity of its
definition category is not an easy homotopy invariant, neither from a theoretical
nor from a computational point of view. Numerous approximations, such as the
weak categories of I. Berstein and P. J. Hilton [3] and of W. Gilbert [7], the rational
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category [4], and the A-category of S. Halperin and J.-M. Lemaire [9], have been
introduced in order to handle the difficulties with the category.

Let k be a commutative ring. In 1963 M. Ginsburg [8] showed that for a simply
connected space X cat(X) is always greater than or equal to the greatest integer p
for which the Milnor-Moore spectral sequence of X satisfies E∞

p,∗ 6= 0. Recall that
the Milnor-Moore spectral sequence of a simply connected space X converges to
H∗(X;k) and that E2 = TorH∗(ΩX)(k,k) when k is a field. The number sup{p ∈
N, E∞

p,∗ 6= 0} has been studied by G. H. Toomer [15] who showed, in particular,
that it coincides with the least integer n for which the morphism H∗(BnΩX;k) →
H∗(BΩX;k), induced by the inclusion of the nth stage of the classifying construction
on ΩX into the classifying space BΩX, is surjective. Today this number is known
as the Toomer invariant of X and is denoted by ek(X).

In order to attain a better understanding of the category and its approximations
it is natural to compare these homotopy invariants, and besides the numerical aspect
of the question it is interesting to compare the invariants through their properties.
For example, the category increases by at most one when a cell is attached to a space
and so do, for instance, the rational category, the weak category of Berstein-Hilton
[3], and the A-category [10]. In the course of a workshop in Oberwolfach in 1997, Y.
Félix asked whether this property is also shared by the rational Toomer invariant. In
this work we answer in the negative to this question. We construct CW-complexes
Z and Z ∪ em satisfying eQ(Z) = 2 and eQ(Z ∪ em) = 4. As a consequence we
obtain that there may be gaps in the Milnor-Moore spectral sequence in the sense
that one may have E∞

p,∗ = 0 and E∞
p+1,∗ 6= 0. Notice that such a phenomenon cannot

occur at the level of the E2 term of the Milnor-Moore spectral sequence. Indeed,
if k is a field and X is a simply connected space, then TorH∗(ΩX)

p (k,k) = 0 implies

Tor
H∗(ΩX)
p+1 (k,k) = 0.

Through our result the rational Toomer invariant appears as the first example
of an approximation of the category which fails to increase by at most one when a
cell is attached to a space. By computing them for the spaces Z and Z ∪ em we
show that the integral Toomer invariant eZ, the weak category of Gilbert, the strict
category weight of Yu. B. Rudyak [12], and the invariants σicat defined in [16] fail
also to have this property.

Acknowledgment. We are indebted to Yves Félix for a very useful conversation which
enabled us to improve our results significantly. The space Z ∪ em had originally 76
cells! Now it has 6 cells and its rational cohomology is a Poincaré duality algebra.

1 Preliminaries

Throughout this article a space is a well-pointed compactly generated Hausdorff
space of the homotopy type of a CW-complex. Any continuous map preserves the
base point. A CW-complex is 1-reduced if it has no 1-cells and only one 0-cell. A
space is of finite type if it has the homotopy type of a CW-complex having finitely
many cells in each dimension. For a space X we denote by ΩX the Moore loop
space of X.

We fix a commutative ring k. (Graded) modules are always (graded) k-modules.
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All homology groups are to be taken with coefficients in k. For a space X we denote
by C∗(X) the normalized singular chain complex of X with coefficients in k.

If V is a chain complex, then the homology class of a cycle z ∈ V will be denoted
by {z}. The suspension of a graded module V = (V )n∈Z is the graded module sV
defined by (sV )n = Vn−1. We follow the convention V n = V−n. (Differential) graded
algebras are assumed to be associative and augmented. (Differential) graded coal-
gebras are assumed to be coassociative and coaugmented. For a graded (co)algebra
B we denote by B̄ the (co)augmentation (co)ideal of B. For a graded module V
we denote by TV the tensor (co)algebra on V . When TV is the tensor coalgebra
on V we shall write for elements v1, . . . , vn ∈ V [v1| · · · |vn] instead of v1 ⊗ · · · ⊗ vn.
A differential graded (co)algebra B is connected if it is non negatively graded and
B0 = k. A chain algebra is a differential graded algebra A such that An = 0 for
n < 0. A cochain algebra is a differential graded algebra A such that An = 0 for
n < 0.

A morphism of differential graded modules (algebras, coalgebras) is called a
weak equivalence if it induces an isomorphism in homology. A morphism of filtered
differential graded modules (algebras, coalgebras) is a weak equivalence if it is a
homology isomorphism at each level of the filtration. Weak equivalences are denoted
by the symbol

∼
→. Two objects V and W of a category with weak equivalences are

said to be weakly equivalent if they are connected by a finite sequence of weak
equivalences V

∼
→ ·

∼
← · · ·

∼
→ ·

∼
← W . We consider the homotopy equivalences as

the weak equivalences in the category of topological spaces. Two spaces are thus
weakly equivalent if and only if they are homotopy equivalent. If a category has
weak equivalences, so does the morphism category. We can thus speak of weakly
equivalent continuous maps, chain maps, differential graded algebra morphisms etc.

The multiplication of the Moore loop space ΩX induces a multiplication on the
chain complex C∗(ΩX) which turns the latter into a chain algebra. Adams and
Hilton have shown that for any simply connected space X there is a chain algebra
(TV, d) with V positively graded and k-free which is weakly equivalent to C∗(ΩX).
Any such chain algebra will be called an Adams-Hilton model of X.

Definition 1.1. The bar construction on a differential graded algebra A is the
differential graded coalgebra BA = (T (sĀ), d1 + d2) where d1 and d2 are given by

d1[sa1| . . . |san] = −
n

∑

i=1

(−1)ε(i)[sa1| . . . |sdai| . . . |san],

d2[sa1| . . . |san] =
n

∑

i=2

(−1)ε(i)[sa1| . . . |sai−1ai| . . . |san].

Here, ε(1) = 0 and ε(i) = i− 1 +
i−1
∑

j=1
|aj| for i > 1.

The bar construction is a functor in the obvious way. It is well known that the bar
construction turns weak equivalences between differential graded algebras which are
free as k-modules into weak equivalences.

Consider a differential graded algebra (TV, d) and form the natural d-stable
graded submodule

sT >1(V )⊕ T >1(sTV )
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of B(TV, d). The quotient of B(TV, d) by this sub chain complex is the graded
module k ⊕ sV with a differential d̄. We denote by p the canonical projection
B(TV, d)→ (k⊕ sV, d̄).

Proposition 1.2. [5, 19.1] If V is positively graded, then the projection p : B(TV, d)→
(k⊕ sV, d̄) is a weak equivalence. �

2 L.-S. category and the Milnor-Moore spectral sequence

Recall from the introduction that the Lusternik-Schnirelmann category of a space
X, denoted cat(X), is the least integer n such that X can be covered by n + 1 open
sets each of which is contractible in X. If no such n exists one sets cat(X) =∞. The
L.-S. category can be characterized by means of the following sequence of fibrations
due to T. Ganea: Let g0(X) : G0(X) → X be the path fibration PX → X.
Suppose that the nth fibration gn(X) : Gn(X) → X has been defined. In order
to define the n + 1st fibration take the fibre Fn(X) of gn(X) and form the map
(gn(X), ∗) : Gn(X) ∪Fn(X) CFn(X)→ X. The fibration gn+1(X) : Gn+1(X)→ X is
then defined to be the mapping path fibration associated to the map (gn(X), ∗). It
is well known that the maps gn(X) can also be described as follows: Let ΩX denote
the Moore loop space of X. The classifying space BΩX of the topological monoid
ΩX comes equipped with an increasing filtration of subspaces B0ΩX ⊂ B1ΩX ⊂
· · · ⊂ BnΩX ⊂ · · · . If X is simply connected, the fibration gn(X) and the inclusion
BnΩX ↪→ BΩX are weakly equivalent. The link between the category and the
Ganea fibrations is given by the following theorem:

Theorem 2.1. [6] For a path-connected space X we have cat X ≤ n if and only if

the fibration gn(X) : Gn(X)→ X has a section. �

In this text we will mainly be concerned with the following approximation of the
category:

Definition 2.2. The Toomer invariant of space X, denoted by ek(X), is the least
integer n for which the morphism H∗(gn(X);k) : H∗(Gn(X);k) → H∗(X;k) is
surjective. If no such integer exists we set ek(X) = ∞. We shall write e(X) and
e0(X) instead of eZ(X) and eQ(X).

It follows immediately from the definition that for a path-connected space X ek(X) ≤
cat(X). Thanks to the following theorem by M. Ginsburg ek(X) can, if X is sim-
ply connected, be calculated from an Adams-Hilton model of X. For a differential
graded algebra A we denote by BnA the sub differential graded coalgebra T≤n(sĀ)
of BA.

Theorem 2.3. [8] For a simply connected space X the filtered chain complexes

C∗(B∗ΩX) and B∗C∗(ΩX) are weakly equivalent. �
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The spectral sequence associated with the filtered differential module B∗C∗(ΩX)
is the Milnor-Moore spectral sequence of X. It is well known that the Milnor-
Moore spectral sequence converges to H∗(X) when X is simply connected and that
E2

p,q = TorH∗(ΩX)
p,q (k,k) when, furthermore, k is a field. Using 2.3, Toomer established

the following theorem:

Theorem 2.4. [15] Let X be a simply connected space of finite category and {Er}
be the Milnor-Moore spectral sequence of X. Then ek(X) = sup{p ∈ N|E∞

p,∗ 6= 0}. �

It follows from this that cat(X) ≥ sup{p ∈ N|E∞
p,∗ 6= 0}. This inequality appeared

first in Ginsburg [8].

For the rest of this section we suppose that k is a field.

For a differential graded algebra (TV, d) we denote by pn the restriction to
Bn(TV, d) of the canonical projection p : B(TV, d) → (k ⊕ sV, d̄). Our calcula-
tions of the Toomer invariant will be based on the following proposition:

Proposition 2.5. Let X be a simply connected space and (TV, d) be an Adams-

Hilton model of X. Then ek(X) ≤ n if and only if the inclusion Bn(TV, d) ↪→
B(TV, d) is surjective in homology. If n > 0, then this is the case if and only if the

projection pn : Bn(TV, d)→ (k⊕ sV, d̄) has a differential section.

Proof: Since (TV, d) and C∗(ΩX) are weakly equivalent chain algebras, the mor-
phisms Bn(TV, d) ↪→ B(TV, d) and BnC∗(ΩX) ↪→ BC∗(ΩX) are weakly equivalent.
By 2.3, these morphisms are weakly equivalent to the chain map C∗(BnΩX) ↪→
C∗(BΩX) and thus to the chain map C∗(gn(X)) : C∗(Gn(X)) → C∗(X). It follows
that ek(X) ≤ n if and only if the inclusion Bn(TV, d) ↪→ B(TV, d) is surjective in
homology. By 1.2, this is the case if and only if the projection pn : Bn(TV, d) →
(k⊕ sV, d̄) is surjective in homology. For n > 0 the map pn is surjective. Since, over
a field, a surjective chain map has a section if and only if it is surjective in homology,
it follows that for n > 0 we have ek(X) ≤ n if and only if pn has a section. �

The main objective of this article is to show that the Toomer invariant fails to
have the basic property of the category to increase by at most one when a cell is
attached to a space. This is equivalent to the fact that gaps can occur in the Milnor-
Moore spectral sequence in the sense that one may have E∞

p,∗ = 0 but E∞
p+1,∗ 6= 0.

More precisely:

Proposition 2.6. Let X be a simply connected space and f : Sn → X (n > 0)
be a map. If there exists an integer p such that ek(X) < p and ek(X ∪f Dn+1) =
p + 1, then the Milnor-Moore spectral sequence of X ∪f Dn+1 satisfies E∞

p,∗ = 0 and

E∞
p+1,∗ 6= 0. Conversely, if the Milnor-Moore spectral sequence of a 1-reduced CW-

complex Y , whose cellular chain complex differential is zero, satisfies E∞
r,∗ = 0 and

E∞
r+1,∗ 6= 0 for some r ∈ N, then Y contains subcomplexes Q and Q ∪ em such that

ek(Q) + 1 < ek(Q ∪ em).

Proof: Let first X be a simply connected space and f : Sn → X (n > 0) be a
map such that there exists an integer p for which ek(X) < p and ek(X ∪f Dn+1) =
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p + 1. Let A = (TV, d) be an Adams-Hilton model of X. Thanks to [2] we may
suppose that the differential d̄ of k ⊕ sV is zero. Adjoin a generator to A and
extend the differential d to construct an Adams-Hilton model U = (T (V ⊕ ke), d)
of X ∪f Dn+1. Then the differential d̄ of k ⊕ s(V ⊕ ke) is zero. Otherwise the
inclusion (k ⊕ sV, 0) ↪→ (k ⊕ s(V ⊕ ke), d̄) would be surjective in homology and
this would imply that ek(X ∪f Dn+1) ≤ ek(X) < p. We denote by Fk the image
of the homomorphism H∗BkU → H∗BU = k ⊕ s(V ⊕ ke). We then have E∞

k,l =
(Fk/Fk−1)k+l. As ek(X ∪f Dn+1) = p + 1, we have Fp $ Fp+1 = k ⊕ s(V ⊕ ke)
and hence E∞

p+1,∗ 6= 0. As ek(X) < p, the morphism H∗BkA → H∗BA = k ⊕ sV
is surjective for k ≥ p − 1. Since the homomorphism H∗BA → H∗BU induced
by the inclusion BA ↪→ BU is the inclusion k ⊕ sV ↪→ k ⊕ s(V ⊕ ke), it follows
that k ⊕ sV ⊂ Fk for k ≥ p − 1. Since Fp $ k ⊕ s(V ⊕ ke), it follows that
Fp−1 = Fp = k⊕ sV and thus that E∞

p,∗ = 0.
Let now Y be a 1-reduced CW-complex such that the differential in the cellular

chain complex of Y is zero and such that the Milnor-Moore spectral sequence of Y
satisfies E∞

r,∗ = 0 and E∞
r+1,∗ 6= 0 for some r ∈ N. Let R = (TW, d) be an Adams-

Hilton model of Y which is constructed as described in [1]. Then the cellular chain
complex of Y is isomorphic to the differential graded module (k ⊕ sW, d̄). By
assumption, d̄ = 0. Let B ⊂ W be a basis the elements of which correspond to the
cells of Y . As E∞

r+1,∗ 6= 0, there exists an element of B which is not in the image
of the homomorphism H∗BrR → H∗BR = k ⊕ sW . Suppose that x ∈ B is such
an element with minimal degree m − 1. Let Q be the m − 1 skeleton of Y and em

be the cell corresponding to x. Then Q and Q ∪ em are subcomplexes of Y and the
sub differential graded algebras S = (T (W<m−1), d) and T = (T (W<m−1 ⊕ kx), d)
of R are Adams-Hilton models of Q and Q ∪ em. By the minimality of m − 1,
we have k ⊕ sW<m−1 ⊂ im(H∗BrR → H∗BR). Since E∞

r,∗ = 0, it follows that
k ⊕ sW<m−1 ⊂ im(H∗Br−1R → H∗BR). As the inclusion Br−1S ↪→ Br−1R is
surjective in homology up to degree m − 1 and the map H∗BS → H∗BR induced
by the inclusion BS ↪→ BR is the inclusion k ⊕ sW<m−1 ↪→ k ⊕ sW , we obtain
that the inclusion Br−1S ↪→ BS is surjective in homology and hence that ek(Q) ≤
r − 1. Since the map H∗BT → H∗BR induced by the inclusion BT ↪→ BR is the
inclusion k ⊕ s(W<m−1 ⊕ kx) ↪→ k ⊕ sW , the element x cannot be in the image
of the morphism H∗BrT → H∗BT as it otherwise would also lie in the image of
the morphism H∗BrR → H∗BR. It follows that ek(Q ∪ em) > r and hence that
ek(Q) + 1 < ek(Q ∪ em). �

At the E2 term of the Milnor-Moore spectral sequence there cannot be any gaps
as is showing the following well known result:

Proposition 2.7. If X is a simply connected space, then TorH∗(ΩX)
p (k,k) = 0 im-

plies Tor
H∗(ΩX)
p+1 (k,k) = 0.

Proof: Set A = H∗(ΩX) and consider the free resolution of the graded A-module k

0← k
ε
← A⊗ V0

d1← A⊗ V1 ← · · ·
dp
← A⊗ Vp

dp+1

← A⊗ Vp+1 ← · · ·

where V0 = k, ε is the augmentation, Vp+1 = s(ker dp/Ā ker dp), and dp+1 is the
A-linear extension of a section of the projection (of degree 1) ker dp → Vp+1. Then
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im dp+1 ⊂ Ā⊗Vp. It follows that the differential of the DG vector space V obtained
from the resolution by killing the action of A is zero. This identifies Vp = TorA

p (k,k).
By construction, if Vp = 0, then also Vp+1 = 0. The result follows. �

3 The rational Toomer invariant

In this section we construct CW-complexes Z and Z ∪ e16 such that e0(Z) = 2 and
e0(Z ∪ e16) = 4. We suppose that k = Q.

The space Z is the CW-complex S2 ∨ S3 ∪ e8 ∪ e13 ∪ e14 where the cells are
attached as follows. The attaching map of e8 is the composite [S2, S3] ◦ η where
η : S7 → S4 is the Hopf map. The cells e13 and e14 are attached by the Whitehead
products [S2, φ ◦ ω] and [S3, φ ◦ ω] where ω : S11 → HP 2 is the attaching map
of the top cell of HP 3 and φ is the cobase extension of the Whitehead product
[S2, S3] : S4 → S2 ∨ S3 by the inclusion S4 ↪→ HP 2.

In order to define the attaching map γ : S15 → Z of the cell e16 in the CW-
complex Z ∪ e16 we look at a Quillen model of Z. Recall that a Quillen model of a
space X is a differential graded Lie algebra representing the rational homotopy type
of X. References on Quillen models include [2], [14], and [5]. For the convenience
of the reader we recall that a graded Lie algebra is a graded vector space L with
a bracket [ , ] : L ⊗ L → L satisfying [x, y] = −(−1)|x||y|[y, x] (antisymmetry) and
[[x, y], z] = [x, [y, z]] − (−1)|x||y|[y, [x, z]] (Jacobi identity). A differential graded Lie

algebra is a couple (L, d) consisting of a graded Lie algebra L and a boundary
operator d satisfying d([x, y]) = [dx, y] + (−1)|x|[x, dy]. For a graded vector space
V we denote by L(V ) the free graded Lie algebra on V . A Quillen model of Z is
given by the differential graded Lie algebra (L(V ), d) where V is the graded vector
space generated by elements x, y, u, a, and b of degrees 1, 2, 7, 12, and 13 and the
differential is given by

dx = 0, dy = 0, du =
1

2
[[x, y], [x, y]], da = [x, [[x, y], u]], and db = [y, [[x, y], u]].

The fact that the differential graded Lie algebra (L(V ), d) represents the rational
homotopy type of Z means in particular that there is an isomorphism (of degree 1) τ :

H∗(L(V ), d)
∼=→ π∗(Z)⊗Q (cf. [5, 24(b)]). This isomorphism converts the Lie bracket

in H∗(L(V ), d) to the Whitehead product by the rule τ [α, β] = (−1)|α|[τα, τβ] (cf.
[5, 24.5]). The element z = [x, b] + [y, a] + 1

2
[u, u] is a cycle in (L(V ), d). Define

the attaching map γ : S15 → Z of the cell e16 to be a cellular map such that
τ{mz} = [γ]⊗ 1 for some positive integer m.

A Quillen model of Z ∪ e16 is given by the differential graded Lie algebra (L(V ⊕
Qe), d) where d extends the differential on L(V ) and de = z. We remark that, by
the link between the quadratic part of the differential of a minimal Quillen model
and the cup product in rational cohomology (cf. for ex. [2, 2.14]), H∗(Z ∪ e16) is a
Poincaré duality algebra.

Recall that the universal enveloping algebra of a graded Lie algebra L is the
graded algebra UL = TL/I where I is the ideal generated by the elements xy −
(−1)|x||y|yx− [x, y], x, y ∈ L. The universal enveloping algebra of a free Lie algebra
L(W ) is the tensor algebra TW . If (L, d) is a differential graded Lie algebra, then UL
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is canonically a differential graded algebra. Baues and Lemaire [2] have shown that
if (L(W ), d) is a Quillen model of a simply connected space of finite type X, then
the differential graded algebra (UL(W ), d) = (TW, d) is an Adams-Hilton model of
X. We therefore have

Proposition 3.1. The differential graded algebra (UL(V ), d) = (TV, d) is an Adams-

Hilton model of Z and the differential graded algebra (UL(V ⊕ Qe), d) = (T (V ⊕
Qe), d) is an Adams-Hilton model of Z ∪ e16. �

The basis B = {x, y, u, a, b, e} of the graded vector space V ⊕Qe induces a basis

Mn of the graded vector space
n
⊕

i=1
T i(sT (V ⊕Qe)) = BnT (V ⊕Qe). The elements

of Mn will be called monomials. The element [s(x3ey2x)|s(y3u)|s(u2)] is a typical
monomial in Mn, n ≥ 3. In order to lighten the presentation we will suppress the
s’s from the notation and write [x3ey2x|y3u|u2] instead of [s(x3ey2x)|s(y3u)|s(u2)].
We denote by < , > the symmetric bilinear form on the graded vector space
BnT (V ⊕Qe) defined on monomials by

< m, m′ >=

{

1 m = m′,
0 m 6= m′.

Theorem 3.2. The spaces Z and Z ∪ e16 satisfy e0(Z) = 2 and e0(Z ∪ e16) = 4.

Proof: We first show that e0(Z) = 2. From degree 2 on the projection B1(TV, d)→
(Q⊕ sV, 0) is just the suspension of the projection (TV, d)→ (V, 0). As the element
u ∈ V7 = H7(V, 0) is not in the image of the homomorphism H7(TV, d)→ H7(V, 0)
(which is null), the homomorphism H8B1(TV, d)→ H8(Q⊕ sV, 0) is not surjective.
This shows that e0(Z) ≥ 2. A section ι of the projection B2(TV, d)→ (Q⊕ sV, 0) is
given by ι(1) = 1, ι(x) = x, ι(y) = y, ι(u) = u+[[x, y]|[x, y]], ι(a) = a+[x|[[x, y], u]]+
[[[x, y], u]|x], ι(b) = b − [y|[[x, y], u]] + [[[x, y], u]|y]. As the section ι commutes with
the differentials, we have e0(Z) = 2.

We now show that e0(Z∪e16) = 4. We clearly have cat(Z∪e16) ≤ 4 and therefore
e0(Z ∪ e16) ≤ 4. It remains to show that e0(Z ∪ e16) ≥ 4. Let n be an integer such
that the projection

pn : Bn(T (V ⊕Qe), d)→ (Q⊕ s(V ⊕Qe), 0)

has a differential section σ. We show that n ≥ 4. Set ξ = e−σe. Clearly, ξ ∈ ker pn.
As Mn\B is a basis of

ker pn = sT >1(V ⊕Qe)⊕
n

⊕

i=2

T i(sT (V ⊕Qe)),

we have ξ =
∑

m∈Mn\B
< ξ, m > m. As σ is a differential section, we have

dξ = de− dσe = de− σdQ⊕s(V⊕Qe)e = de.

It follows that < dξ, u2 >=< de, u2 >6= 0. We thus have

0 6=< dξ, u2 >=< d(
∑

m∈Mn\B

< ξ, m > m), u2 >=
∑

m∈Mn\B

< ξ, m >< dm, u2 > .
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This implies that there exists a monomial m ∈ Mn\B such that < ξ, m >6= 0 and
< dm, u2 >6= 0. The only possible monomial is [u|u]. It follows that < ξ, [u|u] >6= 0.
We have

0 = < de, [xyxy|u] >

= < dξ, [xyxy|u] >

= < d(
∑

m∈Mn

< ξ, m > m), [xyxy|u] >

=
∑

m∈Mn

< ξ, m >< dm, [xyxy|u] > .

It follows that
∑

m6=[u|u]

< ξ, m >< dm, [xyxy|u] >= − < ξ, [u|u] >< d[u|u], [xyxy|u] >6= 0.

There exists thus a monomial m 6= [u|u] such that < ξ, m >6= 0 and < dm, [xyxy|u] >
6= 0. The possible monomials are [x|yxy|u], [xy|xy|u], and [xyx|y|u]. We thus are
in one of the following situations:

1) < ξ, [x|yxy|u] >6= 0,

2) < ξ, [xy|xy|u] >6= 0,

3) < ξ, [xyx|y|u] >6= 0.

Suppose that we are in the first situation. Then we have

0 = < de, [x|yxy|xyxy] >

= < dξ, [x|yxy|xyxy] >

= < d(
∑

m∈Mn

< ξ, m > m), [x|yxy|xyxy] >

=
∑

m∈Mn

< ξ, m >< dm, [x|yxy|xyxy] > .

It follows that

∑

m6=[x|yxy|u]

< ξ, m >< dm, [x|yxy|xyxy] >=

− < ξ, [x|yxy|u] >< d[x|yxy|u], [x|yxy|xyxy] >6= 0.

There exists thus a monomial m 6= [x|yxy|u] such that

< ξ, m >6= 0 and < dm, [x|yxy|xyxy] >6= 0.

The possible monomials are m1 = [x|y|xy|xyxy], m2 = [x|yx|y|xyxy],
m3 = [x|yxy|x|yxy], m4 = [x|yxy|xy|xy], and m5 = [x|yxy|xyx|y]. It follows that
there exists an index i ∈ {1, . . . , 5} such that

< σe, mi >=< e− ξ, mi >=< e, mi > − < ξ, mi >= − < ξ, mi >6= 0.

As each mi ∈ T 4(sTV ), this implies that σe /∈ B3TV and thus that n ≥ 4. The
proof of the fact that n ≥ 4 in the other two situations is analogous. �
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By 2.6, we have the following corollary:

Corollary 3.3. The Milnor-Moore spectral sequence of Z ∪ e16 satisfies E∞
3,∗ = 0

and E∞
4,∗ 6= 0. �

Remark 3.4. Let Z0 be a rationalization of the space Z. Then we have e0(Z0) = 2
and cat(Z0) = 3. Indeed, we have e0(Z0) = e0(Z) = 2 and, as Z0 is the homotopy
cofibre of a map into a two-cone, cat(Z0) ≤ 3. The equality cat(Z0) = 3 holds since
for any rationalization γ0 : S15

0 → Z0 of γ

4 = e0(Z ∪ e16) = e0(Z0 ∪γ0
CS15

0 ) ≤ cat(Z0 ∪γ0
CS15

0 ) ≤ cat(Z0) + 1 ≤ 3 + 1 = 4.

As cat increases by at most one when a cell is attached to a space, it was, of course,
a priori clear that the space Z0 would satisfy e0(Z0) < cat(Z0). It should be noticed
here that Toomer originally conjectured that e0 equals cat for rational spaces. The
first counterexample to this conjecture has been given by J.-M. Lemaire and F.
Sigrist who showed that the rationalization Y0 of the CW-complex Y = S2∨CP 2∪e7,
where the cell e7 is attached by the Whitehead product of S2 and the Hopf map
S5 → CP 2, satisfies e0(Y0) = 2 and cat(Y0) = 3 [11].

4 The integral Toomer invariant and the σi-category

In [16] the following sequence of approximations of the L.-S. category has been
introduced:

Definition 4.1. Let X be any space and i ≥ 1 be an integer. The σi-category of
X, σicat(X), is the least integer n such that the i-fold suspension of the nth Ganea
fibration Σign(X) : ΣiGn(X) → ΣiX has a homotopy section. If no such n exists,
one sets σicat(X) = ∞. The σ-category of X is the (possibly infinite) number
σcat(X) = inf i∈N σicat(X).

The σicat(X) form a decreasing sequence whose first term σ1cat coincides for
path-connected spaces with the weak category G-wcat(X) in the sense of Gilbert
[7] and whose limit σcat(X) coincides for path-connected finite CW-complexes with
Rudyak’s strict category weight [12]. As the existence of a homotopy section for
Σign(X) : ΣiGn(X) → ΣiX implies the existence of a section for H∗(gn(X)), we
have e(X) ≤ σicat(X). This inequality fits into the following sequence of inequalities
where i ≥ j and X is path-connected:

e0(X) ≤ e(X) ≤ σcat(X) ≤ σjcat(X) ≤ σicat(X) ≤ σ1cat(X) ≤ cat(X).

When X is a simply connected rational space we have e0(X) = e(X) = σcat(X) =
σicat(X) = σ1cat(X) = G-wcat(X). The σicat can therefore be interpreted as
topological versions of the Toomer invariant. We can easily deduce from the result
of the previous section that the invariants e, σcat, σicat, and G-wcat may increase by
more than 1 when a cell is attached to a rationalization Z0 of the space Z constructed
in section 3. However, Z0 is not a finite CW-complex and it has seemed interesting
to us to show that such a phenomenon can also occur when all the spaces are finite
CW-complexes.
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Theorem 4.2. Let Z and Z ∪ e16 be the CW-complexes defined in section 3. Then

for any i ≥ 1

e(Z) = σicat(Z) = 2 and e(Z ∪ e16) = σicat(Z ∪ e16) = 4.

In particular, G-wcat(Z) = σcat(Z) = 2 and G-wcat(Z ∪ e16) = σcat(Z ∪ e16) = 4.

Proof: The equalities e(Z∪e16) = 4 and σicat(Z∪e16) = 4 follow from e0(Z∪e16) =
cat(Z ∪ e16) = 4 and from the inequalities e0 ≤ e ≤ σicat ≤ cat. To obtain the
remaining equalities it suffices to prove that σicat(Z) ≤ 2. This follows from the
construction of the space Z and from the following proposition. �

Proposition 4.3. Let X be any space and i ≥ 1 be an integer. Suppose that

σicat(X) ≤ k with k ≥ 2 and consider a map ω : Sp+n−1 → X representing the

Whitehead product of two homotopy classes α ∈ πp(X) and β ∈ πn(X) (p, n ≥ 1) .

Then σicat(X ∪ω Dp+n) ≤ k.

In [13] H. Scheerer, D. Stanley, and D. Tanré show that the σ-category of the
Lemaire-Sigrist space S2 ∨ CP (2) ∪ e7 (cf. 3.4) is 2. The proof of Proposition 4.3
is a generalization of their computation. Before we give this proof we fix some
notations. We denote by Ω̄X the ordinary loop space of the space X. For a map
f : Sp → X (p ≥ 1) we denote by f ] : Sp−1 → Ω̄X the adjoint map. Recall
that there exists a natural homotopy equivalence λ1 : ΣΩ̄X → G1(X) such that
g1(X) ◦ λ1 = ev where ev : ΣΩ̄X → X is the evaluation map. For k ≥ 2 denote
by λk the natural map ΣΩ̄X → Gk(X) which is the composition of λ1 and the map
G1(X)→ Gk(X) coming from the Ganea construction. For any cofibration sequence

Sp f
→ X

j
→ Y = X ∪f Dp+1 the map ΣΩ̄j ◦Σf ] = Σ(j ◦ f)] is homotopically trivial

and so is each composition Sp λn◦Σf]

−→ Gn(X)
Gn(j)
−→ Gn(Y ). Using the adjunction,

we can construct an extension χ : Dp+1 → ΣΩ̄X of the map ΣΩ̄j ◦ Σf ] such that
ev ◦ χ : Dp+1 → Y = X ∪f Dp+1 is the canonical map. Then for each n ≥ 1 the

composite λn ◦ χ is an extension of the composition Sp λn◦Σf]

−→ Gn(X)
Gn(j)
−→ Gn(Y )

and gn(Y ) ◦ λn ◦ χ : Dp+1 → Y is the canonical map. By the universal property of
pushouts, we obtain thus a map g̃n : Gn(X) ∪λn◦Σf] Dp+1 → Y which sends Dp+1

identically to Dp+1 and a commutative diagram in which ϕn ◦ jn = Gn(j):

Gn(X)
jn

//

gn(X)

��

Gn(X) ∪λn◦Σf] Dp+1 ϕn
//

g̃n

��

Gn(Y )

gn(Y )

��

X
j

// Y Y.

In order to obtain a homotopy section of gn(Y ) (resp. Σign(Y )) it suffices thus to
construct a homotopy section of g̃n (resp. Σig̃n).

Proof of Proposition 4.3: In what follows we fix a representative [ιp, ιn] : Sp+n−1 →
Sp∨Sn of the Whitehead product of the generators of πp(S

p) and πn(Sn) and for two

maps φ : Sp →W and γ : Sn →W we denote by [φ, γ] the composition Sp+n−1 [ιp,ιn]
→
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Sp ∨ Sn φ∨γ
→ W ∨ W

∇
→ W where ∇ is the folding map. Let f : Sp → X and

g : Sn → X be representatives of the classes α and β. The hypothesis σicat(X) ≤ k
means that the map Σigk(X) admits a homotopy section σ : ΣiX → ΣiGk(X). We
will use σ to construct a homotopy section of the map

Σig̃k : Σi(Gk(X) ∪λk◦Σ[f,g]] Dp+n)→ Σi(X ∪[f,g] D
p+n).

In order to do this we first show that λk◦Σ[f, g]] ' [λk◦Σf ], λk◦Σg]]: By adjointness
and the naturality of the Whitehead product, we have ev ◦ Σ[f, g]] = [f, g] and
ev ◦ [Σf ], Σg]] = [ev ◦ Σf ], ev ◦ Σg]] = [f, g]. Therefore g1(X) ◦ λ1 ◦ (Σ[f, g]] −
[Σf ], Σg]]) ' ∗ and the map λ1◦(Σ[f, g]]−[Σf ], Σg]]) lifts up to homotopy to F1(X).
As the map G1(X) → Gk(X) factors for k ≥ 2 through G1(X) ∪F1(X) CF1(X),
it follows that λk ◦ (Σ[f, g]] − [Σf ], Σg]]) is homotopically trivial. We have thus
λk ◦ Σ[f, g]] ' λk ◦ [Σf ], Σg]] = [λk ◦ Σf ], λk ◦ Σg]].

As i ≥ 1, the map Σi[λk ◦ Σf ], λk ◦ Σg]] is homotopically trivial. It follows
that the map Σi(λk ◦Σ[f, g]]) is homotopically trivial and thus that the map Σig̃k :
Σi(Gk(X) ∪λk◦Σ[f,g]] Dp+n) → Σi(X ∪[f,g] Dp+n) is weakly equivalent to the map
Σigk(X) ∨ id : ΣiGk(X) ∨ Sn+p+i → ΣiX ∨ Sn+p+i. This map admits σ ∨ id as a
homotopy section and this implies that σicat(X ∪[f,g] D

p+n) ≤ k. �
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