On copies of c_0 and ℓ_{∞} in $L_{w^*}(X^*, Y)$

J.C. Ferrando *

Abstract

The aim of this paper is to prove that (a) $L_{w^*}(X^*,Y)$ contains a copy of c_0 if and only if either X or Y contains a copy of c_0 , or $L_{w^*}(X^*,Y)$ contains a copy of ℓ_{∞} , and (b) If both X and Y contain a copy of c_0 , then $L_{w^*}(X^*,Y)$ contains a copy of ℓ_{∞} . From these facts we extract some consequences.

1 Preliminaries

If X and Y are two Banach spaces over the same field \mathbb{K} (\mathbb{R} or \mathbb{C}), we denote by L(X,Y) the Banach space of all bounded linear operators from X into Y equipped with the operator norm and by $L_{w^*}(X^*,Y)$ the closed linear subspace of $L(X^*,Y)$ formed by all weak*-weakly continuous linear operators. The closed subspace of $L_{w^*}(X^*,Y)$ consisting of all those compact operators will be designed by $K_{w^*}(X^*,Y)$, whereas W(X,Y) will stand for the closed linear subspace of L(X,Y) consisting of all weakly compact operators. If (Ω,Σ,μ) is a non-trivial positive finite measure space and X a Banach space, we will denote by $\mathcal{P}_1(\mu,X)$ the linear space over the field K of all X-valued [classes of scalarly equivalent] weakly μ -measurable Pettis integrable functions f defined on Ω , equipped with the norm

$$||f||_1 = \sup \left\{ \int_{\Omega} |x^* f(\omega)| d\mu(\omega) : x^* \in X^*, ||x^*|| \le 1 \right\}.$$

In what follow we will shorten the sentence 'weakly unconditionally Cauchy' by 'wuC'. Three relevant results concerning copies of c_0 and ℓ_{∞} in $L_{w^*}(X^*, Y)$ and $K_{w^*}(X^*, Y)$ are in order.

Communicated by F. Bastin.

1991 Mathematics Subject Classification: 47L05, 46E30.

Key words and phrases: Weak*-weakly continuous linear operator, copy of c_0 , copy of ℓ_{∞} .

^{*}Supported by DGESIC grant PB97-0342 and Presidencia de la Generalitat Valenciana Received by the editors March 2001.

260 J.C. Ferrando

Theorem 1.1. ([1, main Thm.]) $K_{w^*}(X^*, Y)$ contains a copy of ℓ_{∞} if and only if either X contains a copy of ℓ_{∞} or Y contains a copy of ℓ_{∞} .

Theorem 1.2. ([2, main Thm.]) Assuming $L_{w^*}(X^*, Y)$ contains a complemented copy of c_0 , then either X contains a copy of c_0 or Y contains a copy of c_0 .

Theorem 1.3. ([3, main Thm.]) If c_0 embeds into $K_{w^*}(X^*, Y)$, either $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$ or $K_{w^*}(X^*, Y)$ is uncomplemented in $L_{w^*}(X^*, Y)$.

The aim of this paper is to complete the study of copies of c_0 in $L_{w^*}(X^*, Y)$ by proving the two theorems below, from which we will obtain several consequences; among them, Theorem 1.2.

Theorem 1.4. $L_{w^*}(X^*, Y)$ contains a copy of c_0 if and only if either (a) X or Y contains a copy of c_0 , or (b) $L_{w^*}(X^*, Y)$ contains a copy of ℓ_{∞} .

Theorem 1.5. If both X and Y contain a copy of c_0 , then $L_{w^*}(X^*, Y)$ contains a copy of ℓ_{∞} .

2 Proof of Theorem 1.4

We will show the nontrivial 'only if' part, which is essentially contained in [2]. So assume that c_0 embeds into $L_{w^*}(X^*,Y)$ but neither X nor Y contain a copy of c_0 . Let $\{T_n\}$ be a normalized sequence in $L_{w^*}(X^*,Y)$ equivalent to the unit vector basis $\{e_n\}$ of c_0 , and let J be a topological isomorphism from c_0 into $L_{w^*}(X^*,Y)$ such that $Je_n = T_n$ for each $n \in \mathbb{N}$. Since the formal series $\sum_{n=1}^{\infty} T_n$ is wuC and the linear form on $L_{w^*}(X^*,Y)$ given by $T \to y^*Tx^*$ is continuous for each $x^* \in X^*$ and $y^* \in Y^*$, it follows that $\sum_{n=1}^{\infty} |y^*T_nx^*| < \infty$. Hence, the series $\sum_{n=1}^{\infty} T_nx^*$ in Y is wuC for each $x^* \in X^*$ and, as Y contains no copy of c_0 , this implies that the series $\sum_{n=1}^{\infty} \xi_n T_n x^*$ converges [in norm] in Y for each $\xi \in \ell_{\infty}$ and $x^* \in X^*$. This fact allows us to consider the linear map $\varphi: \ell_{\infty} \to L(X^*, Y)$ defined by

$$(\varphi \xi) x^* = \sum_{n=1}^{\infty} \xi_n T_n x^*$$

for each $x^* \in X^*$. This linear operator is well-defined and bounded. Indeed, choosing C>0 such that

$$\sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^{n} \xi_{i} T_{i} x^{*} \right\|_{Y} \le C \|x^{*}\| \|\xi\|_{\infty}$$

for each $\xi \in \ell_{\infty}$ and $x^* \in X^*$, for each fixed pair $(\xi, x^*) \in \ell_{\infty} \times X^*$ there exists $n_0 \in \mathbb{N}$ with $\left\|\sum_{i=n_0+1}^{\infty} \xi_i T_i x^*\right\|_{Y} < \epsilon$, which implies that

$$\|(\varphi\xi) x^*\|_Y \le C \|x^*\| \|\xi\|_{\infty} + \epsilon.$$

This shows at the same time that $\varphi \xi \in L(X^*, Y)$ and that φ is bounded. Now let us prove that $\varphi(\ell_{\infty}) \subseteq L_{w^*}(X^*, Y)$.

Let ξ be a fixed non null element of ℓ_{∞} . We are going to see that $\varphi \xi$ is weak*-weakly continuous. Since $T \to x^* (T^* y^*) = y^* T x^*$ is a continuous linear form on $L(X^*,Y)$, then $\sum_{n=1}^{\infty} |x^* (T_n^* y^*)| < \infty$ and thus the series $\sum_{n=1}^{\infty} T_n^* y^*$ in X is

wuC for each $y^* \in Y^*$. Given that c_0 is not embedded into X, then $\sum_{n=1}^{\infty} T_n^* y^*$ is unconditionally convergent in norm for each $y^* \in Y^*$. In particular, $\sum_{n=1}^{\infty} \xi_n T_n^* y^*$ converges in X for each $y^* \in Y^*$. Let $\{x_d^* : d \in D\}$ be a net in X^* which converges to some $x^* \in X^*$ under the weak* topology of X^* . Working from now onwards with some concrete $y^* \in Y^*$ and given $\epsilon > 0$, there is $k \in D$ such that

$$\left| \left\langle x_d^* - x^*, \sum_{n=1}^{\infty} \xi_n T_n^* y^* \right\rangle \right| < \epsilon$$

for each d > k. On the other hand, since $\sum_{n=1}^{\infty} \xi_n T_n^* y^*$ converges in norm in X, then

$$\lim_{n \to \infty} \sum_{i=1}^{n} \xi_i (x_d^* - x^*) T_i^* y^* = \left| \left\langle x_d^* - x^*, \sum_{n=1}^{\infty} \xi_n T_n^* y^* \right\rangle \right|$$

for each $d \in D$, and due to the fact that $\sum_{n=1}^{\infty} \xi_n T_n (x_d^* - x^*)$ converges in norm in Y to $(\varphi \xi) (x_d^* - x^*)$ for each $d \in D$, one has that

$$y^* (\varphi \xi) (x_d^* - x^*) = \lim_{n \to \infty} \sum_{i=1}^n \xi_i y^* T_i (x_d^* - x^*) = \lim_{n \to \infty} \sum_{i=1}^n \xi_i (x_d^* - x^*) T_i^* y^*$$
$$= \left| \left\langle x_d^* - x^*, \sum_{n=1}^\infty \xi_n T_n^* y^* \right\rangle \right|$$

for each $d \in D$. Therefore,

$$|y^* (\varphi \xi) (x_d^* - x^*)| < \epsilon$$

for each d > k, i.e. $y^*(\varphi\xi) x_d^* \to y^*(\varphi\xi) x^*$. Since this is true for every $y^* \in Y^*$, it follows that $(\varphi\xi) x_d^* \to (\varphi\xi) x^*$ under the weak topology of Y. Consequently, we have that $\varphi(\ell_\infty) \subseteq L_{w^*}(X^*Y)$ as stated. Finally, since

$$\|\varphi e_n\| = \sup \{ \|(\varphi e_n) x^*\|_Y : x^* \in X^*, \|x^*\| \le 1 \}$$
$$= \sup \{ \|T_n x^*\|_Y : x^* \in X^*, \|x^*\| \le 1 \} = \|T_n\| = 1$$

for each $n \in \mathbb{N}$, Rosenthal's ℓ_{∞} theorem implies that ℓ_{∞} embeds into $L_{w^*}(X^*Y)$.

3 Proof of Theorem 1.5

Let $\{x_n\}$ and $\{y_n\}$ be two normalized basic sequences in X and Y, respectively, equivalent to the unit vector basis $\{e_n\}$ of c_0 . Since the formal series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ are wuC, it follows that $x_n \to 0$ under the weak topology of X and $y_n \to 0$ under the weak topology of Y. Consider the linear mapping $\psi : \ell_{\infty} \to L(X^*, Y)$ defined by

$$(\psi \xi) x^* = \sum_{n=1}^{\infty} \xi_n x^* x_n \cdot y_n$$

for each $x^* \in X^*$. This linear operator is well-defined and bounded. Indeed, first note that $\xi_n x^* x_n \to 0$, so $\sum_{n=1}^{\infty} \xi_n x^* x_n \cdot y_n$ converges in Y in norm. On the other hand, if C > 0 satisfies that

$$\sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^{n} \xi_{i} x^{*} x_{i} \cdot y_{i} \right\|_{Y} \leq C \sup_{n \in \mathbb{N}} |\xi_{n} x^{*} x_{n}| \leq C \|\xi\|_{\infty} \|x^{*}\|$$

262 J.C. Ferrando

for each $\xi \in \ell_{\infty}$ and $x^* \in X^*$, then

$$\|(\psi\xi) x^*\|_Y = \left\| \sum_{i=1}^{\infty} \xi_i x^* x_i \cdot y_i \right\|_Y \le C \|\xi\|_{\infty} \|x^*\|$$

for each $\xi \in \ell_{\infty}$ and $x^* \in X^*$. Hence, $\psi \xi \in L(X^*,Y)$ for each $\xi \in \ell_{\infty}$ and ψ is bounded. Now, let us show that $\psi(\ell_{\infty}) \subseteq L_{w^*}(X^*,Y)$. So, choose some fixed $\xi \in \ell_{\infty}$ and consider a net $\{x_d^* : d \in D\}$ in X^* converging to some $x^* \in X^*$ under the weak* topology of X^* . We have to prove that $y^*(\psi \xi) x_d^* \to y^*(\psi \xi) x^*$ for each $y^* \in Y^*$. Thus, let us work with some concrete $y^* \in Y^*$. Since $\sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x_n \in X$, we have

$$x_d^* \left(\sum_{n=1}^\infty \xi_n y^* y_n \cdot x_n \right) \to x^* \left(\sum_{n=1}^\infty \xi_n y^* y_n \cdot x_n \right)$$

But, since $\sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x_d^* x_n = x_d^* \left(\sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x_n \right)$ for each $d \in D$ and

$$\sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x^* x_n = x^* \left(\sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x_n \right),$$

we obtain that

$$\sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x_d^* x_n \to \sum_{n=1}^{\infty} \xi_n y^* y_n \cdot x^* x_n. \tag{3.1}$$

On the other hand, since $\sum_{n=1}^{\infty} \xi_n x^* x_n \cdot y_n$ converges in Y, we have

$$\sum_{n=1}^{\infty} \xi_n x_d^* x_n \cdot y^* y_n = y^* \left(\sum_{n=1}^{\infty} \xi_n x_d^* x_n \cdot y_n \right) = y^* \left(\psi \xi \right) x_d^*$$
 (3.2)

and

$$\sum_{n=1}^{\infty} \xi_n x^* x_n \cdot y^* y_n = y^* \left(\sum_{n=1}^{\infty} \xi_n x^* x_n \cdot y_n \right) = y^* (\psi \xi) x^*$$
 (3.3)

Therefore, from (3.1), (3.2) and (3.3), we conclude that

$$y^* (\psi \xi) x_d^* \to y^* (\psi \xi) x^*$$

as required.

Finally, since $\|\psi e_n\| = \sup \{\|x^*x_n \cdot y_n\| : \|x^*\| \le 1\} = \|x_n\| \|y_n\| = 1$ for each $n \in \mathbb{N}$, Rosenthal's ℓ_{∞} theorem guarantees that ℓ_{∞} is embedded into $L_{w^*}(X^*, Y)$.

4 Some consequences

Corollary 4.1. If $\mathcal{P}_1(\mu, X)$ contains a copy of c_0 , then either X contains a copy of c_0 or $L_{w^*}(X^*, L_1(\mu))$ contains a copy of ℓ_{∞} .

Proof. According to a result of Huff [4], $\mathcal{P}_1(\mu, X)$ is embedded into $L_{w^*}(X^*, L_1(\mu))$. Since $L_1(\mu)$ contains no copy of c_0 , the statement of the corollary is an obvious consequence of Theorem 1.4.

Corollary 4.2. (Theorem 1.2) Assuming $L_{w^*}(X^*, Y)$ contains a complemented copy of c_0 , then either X contains a copy of c_0 or Y contains a copy of c_0 .

Proof. Looking at the proof of Theorem 1.4, assuming by contradiction that neither X or Y contains a copy of c_0 and denoting by P a bounded projection operator from $L_{w^*}(X^*,Y)$ onto $J(c_0)$, then $J^{-1} \circ P \circ \varphi$ is a bounded quotient map from ℓ_{∞} onto c_0 , a contradiction.

Corollary 4.3. Assume that W(X,Y) contains a copy of c_0 . If c_0 is not embedded into X^* or Y, then W(X,Y) contains a copy of ℓ_{∞} .

Proof. This is due to Theorem 1.4 and to the fact that W(X,Y) is isomorphic to $L_{w^*}(X^{**},Y)$.

Corollary 4.4. Assume that $L_{w^*}(X^*, Y)$ contains a copy of c_0 . If $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$, then either X contains a copy of c_0 or Y contains a copy of c_0 .

Proof. Assume $L_{w^*}(X^*, Y)$ contains a copy of c_0 . If neither X or Y contains a copy of c_0 , according to Theorem 1.4, $L_{w^*}(X^*, Y)$ must contain a copy of ℓ_{∞} . Since $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$, applying Theorem 1.1, either X or Y contains a copy of ℓ_{∞} , a contradiction.

Corollary 4.5. Assume that both X and Y contain a copy of c_0 . If neither X nor Y contain a copy of ℓ_{∞} , then $K_{w^*}(X^*,Y)$ is not complemented in $L_{w^*}(X^*,Y)$.

Proof. According to Theorem 1.5, $L_{w^*}(X^*,Y)$ must contain a copy of ℓ_{∞} . But since neither X nor Y contain a copy of ℓ_{∞} , Theorem 1.1 implies that $K_{w^*}(X^*,Y) \neq L_{w^*}(X^*,Y)$. Since c_0 is embedded into $K_{w^*}(X^*,Y)$, Theorem 1.3 guarantees that $K_{w^*}(X^*,Y)$ is uncomplemented in $L_{w^*}(X^*,Y)$.

264 J.C. Ferrando

References

[1] L. Drewnowski, Copies of ℓ_{∞} in an operator space. Math. Proc. Camb. Phil. Soc. 108 (1990), 523-526.

- [2] G. EMMANUELE, On complemented copies of c_0 in spaces of operators II. Comment. Math. Univ. Carolinae 35 (1994), 259-261.
- [3] G. EMMANUELE, About the position of $K_{w^*}(E^*, F)$ inside $L_{w^*}(E^*, F)$. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 123-133.
- [4] R. Huff, Remarks on Pettis integrability. *Proc. Amer. Math. Soc.* **96** (1986), 402-404.

Centro de Investigación Operativa, Universidad Miguel Hernández. E-03202 Elche (Alicante). Spain. email: jc.ferrando@umh.es