The classification of maximal arcs in small Desarguesian planes

Simeon Ball * Aart Blokhuis

Abstract

There are three types of maximal arcs in the planes of order 16, the hyperovals of degree 2 , the dual hyperovals of degree 8 and the maximal arcs of degree 4. The hyperovals and dual hyperovals of the Desarguesian projective plane $P G(2, q)$ have been classified for $q \leq 32$. This article completes the classification of maximal arcs in $P G(2,16)$. The initial calculations are valid for all maximal arcs of degree r in $P G(2, q)$. In the case $r=q / 4$ (dually $r=4$) further computations are possible. By means of a precursor we classify the hyperovals in $\operatorname{PG}(2,8)$ using these calculations and then classify, with the aid of a computer, the maximal arcs of degree 4 in $P G(2,16)$; they are all Denniston maximal arcs.

1 Introduction

A $(k, r)-$ arc in a projective plane is a non-empty set of k points, at most r on every line. If the order of the plane is q, then $k \leq 1+(q+1)(r-1)=r q-q+r$ with equality if and only if every line intersects the arc in 0 or r points. Arcs realizing the upper bound are called maximal arcs and r is called the degree of the maximal arc. Equality in the bound implies that r divides q or $r=q+1$. If $1<r<q$, then the maximal arc is called non-trivial. The known examples of non-trivial maximal arcs in Desarguesian projective planes, are the hyperovals

[^0]($r=2$), the dual hyperovals $(r=q / 2)$, the Denniston arcs [4], an infinite family constructed by J. A. Thas [13] and constructions from R. Mathon [9] and R. Mathon and N. Hamilton [7] and N. Hamilton [6]. The Denniston arcs exist for all q even and r dividing q. The family constructed in [13], which are not Denniston arcs, are maximal arcs of degree q in $P G\left(2, q^{2}\right)$ and arise from a Tits ovoid in $P G(3, q)$, where q is even and not a square. The maximal arcs constructed by Thas in [14] are Denniston in $P G(2, q)$ [8]. In [9] Mathon gives a construction of maximal arcs in $P G(2, q)$ which is a generalisation of Denniston's construction. He then finds families of maximal arcs from this construction, that were not previously known, of degree q in $P G\left(2, q^{2}\right)$ and degree $2 q$ in $P G\left(2, q^{2}\right), q \geq 8$. In [7] Hamilton and Mathon use Mathon's construction to construct previously unknown maximal arcs of degree q in $P G\left(2, q^{r}\right), q \geq 8$, and in [6] Hamilton constructs previously unknown maximal arcs of degree 8 in $P G\left(2,2^{2 e+1}\right), e \geq 2$.

For odd q non-trivial maximal arcs in $P G(2, q)$ do not exist [1]. For $q=2,4$ and 8 the hyperovals are a conic plus nucleus. The hyperovals (and hence dual hyperovals) have been classified in $P G(2,16)$ by M. Hall Jr. [5] and without the aid of a computer by T. Penttila and C. M. O'Keefe [10] and the hyperovals in $P G(2,32)$ have been classified by T. Penttila and G. Royle [11] with the aid of a computer. The full collineation stabilisers of the Denniston and Thas maximal arcs are calculated in [8].

The method which is used here is similar to that used in [2]. However, even more relevant were those calculations which appeared in [3] which was never published.

2 Maximal arcs in $A G(2, q)$ as subsets of $G F\left(q^{2}\right)$

We shall consider sets of points in the affine plane $A G(2, q)$ instead of $P G(2, q)$ and assume throughout that q is even. The points of $A G(2, q)$ can be identified with the elements of $G F\left(q^{2}\right)$ in a suitable way, so that all sets of points can be considered as subsets of this field. Three points a, b, c are collinear, precisely when $(a+b)^{q-1}=(a+c)^{q-1}$. If the direction of the line joining a and b is identified with the number $(a+b)^{q-1}$, then a one-to-one correspondence between the $q+1$ directions (or parallel classes) and the different $(q+1)$-st roots of unity in $G F\left(q^{2}\right)$ is obtained.

Let \mathcal{B} be a non-trivial $(r q-q+r, r)$-arc in $A G(2, q) \simeq G F\left(q^{2}\right)$. Define $B(X)$ to be the polynomial

$$
B(X):=\prod_{b \in \mathcal{B}}(1+b X)=\sum_{k=0}^{r q-q+r} \sigma_{k} X^{k}
$$

where σ_{k} denotes the k-th elementary symmetric function of the set \mathcal{B}. Define the polynomials F in two variables and $\hat{\sigma}_{k}$ in one variable by

$$
F(T, X):=\prod_{b \in \mathcal{B}}\left(1+(1+b X)^{q-1} T\right)=\sum_{k=0}^{r q-q+r} \hat{\sigma}_{k}(X) T^{k}
$$

where $\hat{\sigma}_{k}$ is the k-th elementary symmetric function of the set of polynomials

$$
\left\{(1+b X)^{q-1} \mid b \in \mathcal{B}\right\}
$$

a polynomial of degree at most $k(q-1)$ in X. Let $1 / x \in G F\left(q^{2}\right) \backslash \mathcal{B}$ be a point not contained in the arc. Every line through $1 / x$ contains a number of points of \mathcal{B}
that is either 0 or r. In the multiset $\left\{(1 / x+b)^{q-1} \mid b \in \mathcal{B}\right\}$, every element occurs therefore with multiplicity r, so that in $F(T, x)$ every factor occurs exactly r times. For $1 / x \in \mathcal{B}$ we get that $F(T, x)=\left(1+T^{q+1}\right)^{r-1}$, since every line passing through the point $1 / x$ contains exactly $r-1$ other points of \mathcal{B}, so that the multiset $\left\{(1 / x+b)^{q-1}\right\}$ consists of every $(q+1)$-st root of unity repeated $r-1$ times, together with the element 0 . This gives

$$
F(T, x)=\prod_{b \in \mathcal{B}}\left(1+(1 / x+b)^{q-1} x^{q-1} T\right)=\left(1+x^{q^{2}-1} T^{q+1}\right)^{r-1}=\left(1+T^{q+1}\right)^{r-1} .
$$

The coefficient of T^{k} of F in both cases implies that for all $x \in G F\left(q^{2}\right), \hat{\sigma}_{k}(x)=0$, whenever k is not divisible by r and $0<k<q$. The degree of $\hat{\sigma}_{k}$ is at most $k(q-1)<q^{2}$ and hence these polynomials are identically zero. The first coefficient of F that is not necessarily identically zero is $\hat{\sigma}_{r}$ and this polynomial is divisible by $B(X)$ since every zero of B is a zero of $\hat{\sigma}_{r}$.

3 Some calculations and two sets of equations

It is difficult to calculate $\hat{\sigma}_{k}$, however it is possible to calculate

$$
B \hat{\sigma}_{k}=\sum\left(1+b_{1} X\right)^{q} \ldots\left(1+b_{k} X\right)^{q}\left(1+b_{k+1} X\right) \ldots\left(1+b_{r q-q+r} X\right),
$$

where the sum is taken over all $(k,|\mathcal{B}|-k)$ partitions of \mathcal{B}. The coefficient of X^{n} is

$$
\sum_{i=0}^{\left\lfloor\frac{n}{q}\right\rfloor}\binom{|\mathcal{B}|-n+i q-i}{k-i} \epsilon_{i, n}
$$

where for $n \geq i q$

$$
\epsilon_{i, n}=\sum\left(b_{1} \ldots b_{i}\right)^{q} b_{i+1} \ldots b_{n-i q+i}
$$

and the sum is taken over all relevant partitions of \mathcal{B} and $\epsilon_{i, n}=0$ for $n<i q$. To determine the binomial coefficient for each $\epsilon_{i, n}$ note that for each term in the summation we can choose $k-i$ elements of \mathcal{B} that do not appear in either the $\left(b_{1} \ldots b_{i}\right)^{q}$ part or the $b_{i+1} \ldots b_{n-i q+i}$ part. We can simplify the binomial coefficient by applying Lucas' theorem. The identities $\hat{\sigma}_{k} \equiv 0$ for $0<k<r$ yield the equations

$$
\sum_{i=0}^{\left\lfloor\frac{n}{q}\right\rfloor}\binom{-n-i}{k-i} \epsilon_{i, n}=0 .
$$

To solve these equations we use the following binomial identities

$$
\binom{-n-i}{k-i}=(-1)^{k-i}\binom{n+k-1}{k-i} \text { and } \sum_{i=0}^{k}\binom{n+k-1}{k-i}\binom{-n}{i}=\binom{k-1}{k}=0 .
$$

The solution for $n \geq k q$ (which can be verified by direct substitution) is

$$
\epsilon_{k, n}=\binom{-n}{k} \epsilon_{0, n}=\binom{-n}{k} \sigma_{n} .
$$

The equations for $n<k q$ imply

$$
\begin{equation*}
\sum_{i=0}^{n_{1}}\binom{-n-i}{k-i}\binom{-n}{i} \sigma_{n}=\binom{-n}{k} \sum_{i=0}^{n_{1}}\binom{k}{i} \sigma_{n}=\binom{k-1}{n_{1}}\binom{-n_{0}}{k} \sigma_{n}=0 \tag{1}
\end{equation*}
$$

where $n=n_{1} q+n_{0}$ and $0<k<r$. The identities $\hat{\sigma}_{r+k} \equiv 0$ for $0<k<r$ yield the equations

$$
\sum_{i=0}^{\left\lfloor\frac{n}{q}\right\rfloor}\binom{r-n-i}{r+k-i} \epsilon_{i, n}=0
$$

which we solve in the same way. The solution for $n \geq r q+k q$ is

$$
\epsilon_{r+k, n}=\binom{-n}{k} \epsilon_{r, n}
$$

and for $r q \leq n<r q+k q$

$$
\begin{equation*}
\binom{k-1}{n_{1}-r}\binom{-n_{0}}{k} \epsilon_{r, n}=0 \tag{2}
\end{equation*}
$$

4 The effect of a translation on the symmetric functions

Let $\mathcal{B}^{(\lambda)}:=\{b+\lambda \mid b \in \mathcal{B}\}$ and let $\sigma_{k}^{(\lambda)}$ be the k-th symmetric function of $\mathcal{B}^{(\lambda)}$. The relationship between the symmetric functions $\sigma_{k}^{(\lambda)}$ and the symmetric functions σ_{k} is

$$
\sigma_{k}^{(\lambda)}=\sum\left(b_{1}+\lambda\right)\left(b_{2}+\lambda\right) \ldots\left(b_{k}+\lambda\right)=\sum_{i=0}^{k} \sigma_{i} \lambda^{k-i}\binom{|\mathcal{B}|-i}{k-i} .
$$

The equations (1) for $n<q$ and $k=-n(\bmod r)$ imply $\sigma_{n}=0$ unless $n=0$ $(\bmod r)$. We can calculate that

$$
\sigma_{r}^{(\lambda)}=\sigma_{r}+\lambda^{r} \text { and } \sigma_{2 r}^{(\lambda)}=\sigma_{2 r}
$$

and combining these that

$$
\sigma_{2 r}^{(\lambda)}+\left(\sigma_{r}^{(\lambda)}\right)^{2}=\lambda^{2 r}+\sigma_{r}^{2}+\sigma_{2 r} .
$$

Hence for any maximal arc there is a unique translation

$$
\lambda=\left(\sigma_{r}^{2}+\sigma_{2 r}\right)^{q^{2} / 2 r}
$$

which translates the maximal arc to a maximal arc in which $\sigma_{r}^{2}+\sigma_{2 r}=0$. Moreover for every maximal arc we find with $\sigma_{2 r}=\sigma_{r}^{2}$ there will be q^{2} maximal arcs by translation.

5 The main divisibility and another set of equations

In this section we shall use the previously mentioned divisibility that $B(X)$ divides $\hat{\sigma}_{r}$ to calculate another set of equations. Let $Q(X)$ denote the quotient such that $B Q=\hat{\sigma}_{r}$ and note that $Q^{\circ} \leq r(q-1)-(r q-q+r)=q-2 r$. As in the last section we can calculate that

$$
B \hat{\sigma}_{r}=\sum_{n<r q}\binom{r-n}{r} \sigma_{n} X^{n}+\sum_{n \geq r q} \epsilon_{r, n} X^{n}=1+\sigma_{2 r} X^{2 r}+\ldots
$$

and directly from $B^{2} Q=B \hat{\sigma}_{r}$ we see that

$$
Q=1+\left(\sigma_{r}^{2}+\sigma_{2 r}\right) X^{2 r}+\ldots
$$

It is at this point that we must make the restriction on r. Note first however that for $r=q / 2$ the degree of Q is zero and hence $Q \equiv 1$. However we are interested in the case $r=q / 4$ and the degree of Q is at most $q / 2$ and hence $Q=1+\left(\sigma_{r}^{2}+\sigma_{2 r}\right) X^{2 r}$. Moreover we assume that we have translated the maximal arc so that $\sigma_{r}^{2}+\sigma_{2 r}=0$ and hence that $Q \equiv 1$. It is now a simple task to equate the coefficients from $B^{2}=B \hat{\sigma}_{r}$ and conclude that for $n<r q$

$$
\begin{equation*}
\binom{q / 4-n}{q / 4} \sigma_{n}=\sigma_{n / 2}^{2} \tag{3}
\end{equation*}
$$

and for $n \geq r q$ that $\epsilon_{r, n}=\sigma_{n / 2}^{2}$ which the equations (2) imply that for $n<r q+k q$ and $0<k<r$ that

$$
\begin{equation*}
\binom{k-1}{n_{1}-r}\binom{-n_{0}}{k} \sigma_{n / 2}^{2}=0 \tag{4}
\end{equation*}
$$

where $n=n_{1} q+n_{0}$.

6 The Newton identities

The Newton identities can be deduced by differentiating

$$
B(X)=\prod_{b \in \mathcal{B}}(1+b X)=\sum_{k=0}^{r q-q+r} \sigma_{k} X^{k}
$$

with respect to X.

$$
B^{\prime}(X)=\left(\sum_{b \in \mathcal{B}} \frac{b}{1+b X}\right) B(X)=\sum_{k=0}^{r q-q+r} k \sigma_{k} X^{k-1}
$$

and multiplying both sides by X and expanding $(1+b X)^{(-1)}$ in characteristic 2

$$
\left(\sum_{k=0}^{r q-q+r} \sigma_{k} X^{k}\right)\left(\sum_{b \in \mathcal{B}} \sum_{j=1}^{\infty} b^{j} X^{j}\right)=\sum_{k=0}^{r q-q+r} k \sigma_{k} X^{k}
$$

Let $\pi_{k}=\sum_{b \in \mathcal{B}} b^{k}$ and define the n-th Newton identity to be the coefficient of X^{n}

$$
n \sigma_{n}=\sum_{j=1}^{n} \pi_{j} \sigma_{n-j} .
$$

Something similar holds when the characteristic is not 2. All the symmetric functions are elements of $G F\left(q^{2}\right)$, hence we also have the relations

$$
\pi_{2 k}=\sum_{b \in \mathcal{B}} b^{2 k}=\left(\sum_{b \in \mathcal{B}} b^{k}\right)^{2}=\pi_{k}^{2}
$$

and

$$
\pi_{k+q^{2}-1}=\sum_{b \in \mathcal{B}} b^{k+q^{2}-1}=\sum_{b \in \mathcal{B}} b^{k}=\pi_{k}
$$

for $k>0$.

7 The case $r=4$ and $q=8$

In this section we shall be classifying the (10, 2)-arcs (hyperovals) in $P G(2,8)$. This was originally proved by Segre [12].

It is hoped that the reader will become familiar with the methods and the $q=16$ case in the next section will be easier to follow.

The possibly non-zero symmetric functions after applying equations (1) are

$$
\sigma_{0}=1, \sigma_{2}, \sigma_{4}, \sigma_{6}, \sigma_{8}, \sigma_{9} \text { and } \sigma_{10}
$$

The equations (3) imply

$$
\sigma_{4}=\sigma_{2}^{2} \text { and } \sigma_{8}=\sigma_{2}^{4}
$$

The polynomial $B(X)$ has 9 or 10 distinct zeros in $G F(64)$. The symmetric function σ_{9} is non-zero otherwise $B(X)$ would be the square of another polynomial and all its zeros would occur with even multiplicity. We now compute π_{k} in terms of the σ_{j} 's where $j \leq k$ using the k-th Newton identity for each k in turn. The initial Newton identities imply that the initial non-zero π_{k} 's are the following.

$$
\begin{aligned}
\pi_{9} & =\sigma_{9} \\
\pi_{11} & =\sigma_{2} \sigma_{9} \\
\pi_{15} & =\sigma_{9}\left(\sigma_{6}+\sigma_{2}^{3}\right) \\
\pi_{19} & =\sigma_{9}\left(\sigma_{6} \sigma_{2}^{2}+\sigma_{10}\right) \\
\pi_{21} & =\sigma_{9} \sigma_{6}^{2} \\
\pi_{23} & =\sigma_{9}\left(\sigma_{6}^{2} \sigma_{2}+\sigma_{2}^{7}+\sigma_{10} \sigma_{2}^{2}\right) \\
\pi_{25} & =\sigma_{9}\left(\sigma_{6}^{2} \sigma_{2}^{2}+\sigma_{2}^{8}\right) \\
\pi_{27} & =\sigma_{9}\left(\sigma_{9}^{2}+\sigma_{6} \sigma_{2}^{6}+\sigma_{6}^{3}\right) \\
\pi_{29} & =\sigma_{9}\left(\sigma_{9}^{2} \sigma_{2}+\sigma_{2}^{10}+\sigma_{10}^{2}\right)
\end{aligned}
$$

Now we make repeated use of the fact that $\pi_{2 k}=\pi_{k}^{2}$ and $\pi_{q^{2}-1+k}=\pi_{k}$.
$\pi_{9}^{8}=\pi_{9}$ implies that $\sigma_{9} \in G F(8)$.
$\pi_{19}=\pi_{13}^{16}=0$ and $\sigma_{9} \neq 0$ imply that $\sigma_{10}=\sigma_{6} \sigma_{2}^{2}$.
$\pi_{25}=\pi_{11}^{8}$ implies that $\sigma_{2}^{2} \sigma_{6}^{2} \sigma_{9}=0$ which implies that $\sigma_{2}=0$ or $\sigma_{6}=0$ and in both cases that $\sigma_{10}=0$.

If $\sigma_{2} \neq 0$ then since $\left(2, q^{2}-1\right)=1$ we can scale the elements of \mathcal{B} by a suitable scalar in such a way that $\sigma_{2}=1$ and for each maximal arc we find there will be $\left(q^{2}-1\right) q^{2}$ distinct maximal arcs since we can multiply by a non-zero element of $G F\left(q^{2}\right)$ and translate by an element of $G F\left(q^{2}\right) . \quad \pi_{23}^{4}=\pi_{29}$ implies $\sigma_{9}^{4} \sigma_{2}^{28}=$ $\sigma_{9} \sigma_{2}^{10}+\sigma_{9}^{3} \sigma_{2}$ and since $\sigma_{2}=1$ and $\sigma_{9} \neq 0$ that $\sigma_{9}^{3}=1+\sigma_{9}^{2}$. This equation has at most 3 solutions and in this case we get a total of at most $3 q^{2}\left(q^{2}-1\right)$ maximal arcs.

If $\sigma_{2}=0$ then $B(X)=1+\sigma_{6} X^{6}+\sigma_{9} X^{9}$ and each zero of B is a zero of

$$
X^{9} B^{8}+\sigma_{9}^{6} B^{2}+X^{3} B=\sigma_{9}^{6}+\sigma_{6}^{8}+\sigma_{9} \sigma_{6}^{2} X^{3}+\sigma_{6}^{3} \sigma_{9}^{5} X^{6}+X^{9} \quad\left(\bmod X^{64}+X\right)
$$

The right-hand side has degree 9 and hence the same zeros as $B(X)$ and must be a constant multiple of $B(X)$. This implies that $\sigma_{6}=0$ and $\sigma_{9}^{7}=1$. Hence in this case we have at most $7 q^{2}$ maximal arcs.

The total number of maximal arcs of degree 2 (hyperovals) in $A G(2,8)$ is therefore at most

$$
3 q^{2}\left(q^{2}-1\right)+7 q^{2}=q^{2}\left(3 q^{2}+4\right)=2^{8} .7^{2}
$$

The collineation group of the regular hyperoval in $P G(2, q)$ is of size $e q\left(q^{2}-1\right)$ where $q=2^{e}$. Hence the number of regular hyperovals in $P G(2, q)$ is

$$
\frac{|P \Gamma L(3, q)|}{e q\left(q^{2}-1\right)}=q^{2}\left(q^{3}-1\right) .
$$

There are $q(q-1) / 2$ external lines to a hyperoval and so there are

$$
\frac{q^{2}\left(q^{3}-1\right) q(q-1)}{2\left(q^{2}+q+1\right)}=q^{3}(q-1)^{2} / 2
$$

regular hyperovals in $A G(2, q)$. In $A G(2,8)$ there are $2^{8} .7^{2}$ regular hyperovals and these are indeed all the hyperovals in $A G(2,8)$.

8 The case $r=4$ and $q=16$

Throughout the rest of the article we shall only be concerned with the case $q=16$, that of a $(52,4)$-arc. We shall make further restrictions on the symmetric functions of \mathcal{B} and then check which of the polynomials $B(X)$ have 51 or 52 distinct zeros in $G F(256)$. Note that if $0 \in \mathcal{B}$ then B will have only 51 distinct zeros and that $x \neq 0$ is a zero of B if and only if $1 / x \in \mathcal{B}$. The possibly non-zero symmetric functions σ_{i} after applying the equations (1) and (4) are those where

$$
i \in\{0,4,8,12,16,19,20,24,32,34,36,38,40,42,44,48,49,50,51,52\}
$$

By definition $\sigma_{0}=1$. The equations (3) imply

$$
\sigma_{8}=\sigma_{4}^{2}, \quad \sigma_{16}=\sigma_{4}^{4}, \quad \sigma_{24}=\sigma_{12}^{2}, \quad \sigma_{38}=\sigma_{19}^{2}, \quad \sigma_{40}=\sigma_{20}^{2} \text { and } \sigma_{48}=\sigma_{12}^{4}
$$

which leaves us with the task of determining relationships between the symmetric functions σ_{i} where

$$
i \in\{4,12,19,20,34,36,42,44,49,50,51,52\}
$$

The k-th Newton identity allows us to compute the π_{k} 's in terms of σ_{j} 's where $j \leq k$ and one can compute them by hand (although it helps to use a computer package). The tables list restrictions on the coefficients of B. The right-hand column gives the relation that is used to deduce the restriction on the σ_{k} where the relevant π_{k} is calculated in terms of σ_{j} 's using the Newton identities.

Before we have to consider different cases we have from earlier calculations that

$$
\sigma_{34}^{2}=\epsilon_{4,68}=\sum\left(b_{1} \ldots b_{4}\right)^{16} b_{5} \ldots b_{8}=\epsilon_{4,68}^{16}
$$

and hence $\sigma_{34} \in G F(16)$.
We now consider four cases separately. Case I ($\sigma_{4} \neq 0$ and $\left.\sigma_{19} \neq 0\right)$, Case II $\left(\sigma_{19}=0\right.$ and $\left.\sigma_{4} \neq 0\right)$, Case III ($\sigma_{4}=0$ and $\left.\sigma_{19} \neq 0\right)$ and Case IV $\left(\sigma_{4}=\sigma_{19}=0\right)$.

8.1 Case I

Here we assume that $\sigma_{19} \neq 0$ and $\sigma_{4} \neq 0$. Since $\sigma_{4} \neq 0$ and $\left(4, q^{2}-1\right)=1$ we can scale the elements of \mathcal{B} by a suitable scalar in such a way that $\sigma_{4}=1$ and for each maximal arc we find there will be $\left(q^{2}-1\right) q^{2}$ different maximal arcs since we can multiply by a non-zero element of $G F\left(q^{2}\right)$ and translate by an element of $G F\left(q^{2}\right)$.

$\sigma_{4}=1$	by assumption
σ_{12} satisfies $\sigma_{12}^{5}+\sigma_{12}^{3}+\sigma_{12} \in G F(16)$	$\pi_{119}^{16}=\pi_{119}$ and $\pi_{103}^{8}=\pi_{59}=0$ $\pi_{119}=\pi_{119}+\pi_{103}+\sigma_{12} \pi_{99}$
σ_{19}	
$\sigma_{20}=\sigma_{12}$	$\pi_{39}^{8}=\pi_{57}=0$
$\sigma_{34} \in G F(16)$	$\sigma_{34}^{2}=\epsilon_{4,68}$
$\sigma_{36}=\sigma_{12} \sigma_{19} \sigma_{34}^{8}+\sigma_{12} \sigma_{19}^{136}+\sigma_{19}^{2}+\sigma_{12}^{128} \sigma_{19}^{136}+\sigma_{19} \sigma_{34}^{8}$ $\quad+\sigma_{19}^{136}+\sigma_{19}^{160} \sigma_{34}^{2}+\sigma_{19}^{130}+\sigma_{12}^{2}+\sigma_{12}^{128} \sigma_{34}$	$\pi_{99}^{8}=\pi_{27}=0$
$\sigma_{42}=\sigma_{12}^{2} \sigma_{34}+\sigma_{19}^{15} \sigma_{12}^{2}+\sigma_{19}^{2}+\sigma_{19}^{15} \sigma_{12}+\sigma_{34}+\sigma_{19}^{15}$	
$\quad+\sigma_{19}^{63} \sigma_{34}^{4}+\sigma_{19}^{3}$	

The restrictions on the symmetric functions in Case I

Therefore for Case I the polynomial $B(X)$ is of the form

$$
\begin{gathered}
1+X^{4}+X^{8}+\sigma_{12} X^{12}+X^{16}+\sigma_{19} X^{19}+\sigma_{12} X^{20}+\sigma_{12}^{2} X^{24}+X^{32}+\sigma_{34} X^{34}+\sigma_{36} X^{36}+ \\
\sigma_{19}^{2} X^{38}+\sigma_{12}^{2} X^{40}+\sigma_{42} X^{42}+\sigma_{12}^{4} X^{48}+\sigma_{19}^{16} X^{49}+\sigma_{50} X^{50}+\sigma_{51} X^{51}
\end{gathered}
$$

where σ_{36}, σ_{42} and σ_{50} are all determined by $\sigma_{12}, \sigma_{19}, \sigma_{34}$ and σ_{51}. Moreover σ_{34} and $\sigma_{51} \in G F(16)$ and $\sigma_{12}^{5}+\sigma_{12}^{3}+\sigma_{12} \in G F(16)$. The mathematical package GAP was used to determine that 835 of these 5.2^{20} polynomials have 51 distinct zeros in $G F(256)$.

8.2 Case II

In this section we assume that $\sigma_{19}=0$ and $\sigma_{4} \neq 0$ and as in Case I we multiply the elements of \mathcal{B} by a non-zero scalar and set $\sigma_{4}=1$. The odd degree coefficients of B cannot be all zero else B is a square and it would not have distinct zeros. Hence we may assume that $\sigma_{51} \neq 0$.

In Case II the polynomial $B(X)$ is of the form

$$
\begin{aligned}
1+X^{4}+X^{8}+ & \sigma_{12} X^{12}+X^{16}+\sigma_{12} X^{20}+\sigma_{12}^{2} X^{24}+X^{32}+\sigma_{34} X^{34}+\left(\sigma_{12}^{2}+\sigma_{12}^{2} \sigma_{34}\right) X^{36} \\
& +\sigma_{12}^{2} X^{40}+\sigma_{34} \sigma_{12} X^{42}+\sigma_{12}^{4} X^{48}+\sigma_{34} \sigma_{12} X^{50}+\sigma_{51} X^{51}
\end{aligned}
$$

and GAP was used to determine that 14 of these 2^{9} polynomials have 51 distinct zeros in $G F(256)$.

$\sigma_{4}=1$	by assumption
σ_{12} satisfies $\sigma_{12}^{2}+\sigma_{12}+1=0$	$\pi_{79}^{4}=\pi_{61}=0$
$\sigma_{19}=0$	by assumption
$\sigma_{20}=\sigma_{12}$	$\pi_{71}^{4}=\pi_{29}=0$
$\sigma_{34} \in G F(16)$	$\sigma_{34}^{2}=\epsilon_{4,68}$
$\sigma_{36}=\sigma_{12}^{2}\left(1+\sigma_{34}\right)$	$\pi_{131}^{2}=\pi_{7}=0$
$\sigma_{42}=\sigma_{34} \sigma_{12}$	$\pi_{109}=\pi_{91}^{4}=0$
$\sigma_{44}=0$	$\pi_{139}^{2}=\pi_{23}=0$
$\sigma_{49}=0$	$\pi_{49}=\pi_{19}^{16}$
$\sigma_{50}=\sigma_{34} \sigma_{12}$	$\pi_{101}^{8}=\pi_{43}=0$
$\sigma_{51} \in G F(16)^{*}$	$\pi_{51}^{16}=\pi_{51}$
$\sigma_{52}=0$	$\pi_{103}^{8}=\pi_{59}=0$

The restrictions on the symmetric functions in Case II

8.3 Case III

Here we assume that $\sigma_{4}=0$ and $\sigma_{19} \neq 0$. Since $\sigma_{19} \neq 0$ and $\left(19, q^{2}-1\right)=1$ we can scale the elements of \mathcal{B} by a suitable scalar in such a way that $\sigma_{19}=1$.

$\sigma_{4}=0$	by assumption
σ_{12} satisfies $\sigma_{12}^{6}=\sigma_{12}$	$\pi_{83}^{4}=\pi_{77}$ implies $\sigma_{34}^{4}=\sigma_{34} \sigma_{12}^{2}$ and $\sigma_{34} \in G F(16)$
$\sigma_{19}=1$	by assumption
$\sigma_{20}=0$	$\pi_{39}^{8}=\pi_{57}=0$
$\sigma_{34} \in G F(16)$	$\sigma_{34}^{2}=\epsilon_{4,68}$
$\sigma_{36}=\sigma_{34}^{8}+\sigma_{34} \sigma_{12}^{3}+\sigma_{12}^{4}+\sigma_{34}$	$\pi_{91}=\pi_{107}^{8}$
$\sigma_{42}=\sigma_{12} \sigma_{34}^{2}$	$\pi_{99}^{8}=\pi_{27}=0$
$\sigma_{44}=0$	$\pi_{101}^{8}=\pi_{43}=0$
$\sigma_{49}=1$	$\pi_{49}=\pi_{19}^{16}$
$\sigma_{50}=\sigma_{12}$	$\pi_{69}^{4}=\pi_{21}=0$
$\sigma_{51}=\sigma_{34}^{9}+\sigma_{34} \sigma_{12}^{128}+\sigma_{12}^{4}+\sigma_{34}$	$\pi_{121}=\pi_{47}^{8}=0$
$\sigma_{52}=0$	$\pi_{71}^{4}=\pi_{29}=0$

The restrictions on the symmetric functions in Case III

There are 3.2^{5} polynomials $B(X)$ of the form

$$
\begin{gathered}
1+\sigma_{12} x^{12}+x^{19}+\sigma_{12}^{2} X^{24}+\sigma_{34} X^{34}+\left(\sigma_{34}^{8}+\sigma_{12}^{3} \sigma_{34}+\sigma_{12}^{4}+\sigma_{34}\right) X^{36}+X^{38}+\sigma_{34}^{2} \sigma_{12} X^{42}+ \\
\sigma_{12}^{4} X^{48}+X^{49}+\sigma_{12} X^{50}+\left(\sigma_{34}^{9}+\sigma_{34} \sigma_{12}^{3}+\sigma_{12}^{4}+\sigma_{34}\right) X^{51}
\end{gathered}
$$

and GAP was used to determine that 5 of them have 51 distinct zeros in $G F(256)$.

8.4 Case IV

Here we assume that $\sigma_{4}=0$ and $\sigma_{19}=0$. The equation $\pi_{103}^{8}=\pi_{59}=0$ implies that $\sigma_{34} \sigma_{12}=0$ and we have to consider the case $\sigma_{34} \neq 0$ (and hence $\sigma_{12}=0$) (Case IV-A) and the case $\sigma_{34}=0$ (Case IV-B) separately. Note also that in this case we do not do any scaling and so each solution will give us q^{2} maximal arcs by translation and no more.

$\sigma_{4}=0$	by assumption
$\sigma_{12}=0$	by assumption
$\sigma_{19}=0$	by assumption
$\sigma_{20}=0$	$\pi_{71}^{4}=\pi_{29}=0$
$\sigma_{34} \in G F(16)^{*}$	$\sigma_{34}^{2}=\epsilon_{4,68}$ and non-zero by assumption
$\sigma_{36}=0$	$\pi_{87}^{4}=\pi_{93}$
$\sigma_{42}=0$	$\pi_{93}^{4}=\pi_{117}$
$\sigma_{44}=0$	$\pi_{139}^{2}=\pi_{23}=0$
$\sigma_{49}=0$	$\pi_{49}=\pi_{19}^{16}$
$\sigma_{50}=0$	$\pi_{101}^{8}=\pi_{43}=0$
$\sigma_{51} \in G F(q)$	$\pi_{51}^{16}=\pi_{51}$
$\sigma_{52}=0$	$\pi_{103}^{8}=\pi_{59}=0$
T	

The restrictions on the symmetric functions in Case IV-A
There are 2^{8} polynomials of the form

$$
1+\sigma_{34} X^{34}+\sigma_{51} X^{51}
$$

and GAP calculates that there are 30 which have 51 distinct zeros in $G F(256)$.
In Case IV-B, if $\sigma_{42}=0$ we have to use the relation $\pi_{159}^{2}=\pi_{63}$ in conjunction with the other references in the table to prove that all the symmetric functions are zero with the exception of σ_{51} and one can see this corresponds to the solution given by the table in this case. In general we have the following restrictions.

$\sigma_{4}=0$	by assumption
$\sigma_{12}=\sigma_{42}^{129} \sigma_{51}^{4}$	$\pi_{117}=\pi_{93}^{4}$
$\sigma_{19}=0$	by assumption
$\sigma_{20}=0$	$\pi_{71}^{4}=\pi_{29}=0$
$\sigma_{34}=0$	by assumption
$\sigma_{36}=\sigma_{42}^{64} \sigma_{51}^{3}+\sigma_{51}^{2} \sigma_{42}^{132}$	$\pi_{87}^{4}=\pi_{93}$
σ_{42}	
$\sigma_{44}=0$	$\pi_{139}^{2}=\pi_{23}=0$
$\sigma_{49}=0$	$\pi_{49}=\pi_{19}^{16}$
$\sigma_{50}=0$	$\pi_{101}^{8}=\pi_{43}=0$
σ_{51} where $\sigma_{51}^{5}=1$	$\pi_{51}^{16}=\pi_{51}$ and $\pi_{153}^{2}=\pi_{51}$
$\sigma_{52}=0$	$\pi_{103}^{8}=\pi_{59}=0$

The restrictions on the symmetric functions in Case IV-B
The polynomial $B(X)$ is of the form

$$
1+\sigma_{42}^{129} \sigma_{51}^{4} X^{12}+\sigma_{42}^{3} \sigma_{51}^{3} X^{24}+\left(\sigma_{42}^{64} \sigma_{51}^{3}+\sigma_{42}^{132} \sigma_{51}^{2}\right) X^{36}+\sigma_{42} X^{42}+\sigma_{42}^{6} \sigma_{51} X^{48}+\sigma_{51} X^{51}
$$

and note that all the non-zero terms are of degree that is a multiple of 3 . We have done no scaling so every maximal arc will give exactly q^{2} maximal arcs by translation and GAP computes that 600 of these 5.2^{8} polynomials have 51 distinct zeros over $G F(256)$.

8.5 The classification of $(52,4)$-arcs in $P G(2,16)$

The polynomials in Case I give at most $835 q^{2}\left(q^{2}-1\right)$, in Case II at most $14 q^{2}\left(q^{2}-1\right)$, in Case III at most $5 q^{2}\left(q^{2}-1\right)$ and in Case IV at most $(30+600) q^{2}$, maximal arcs of degree 4 in $A G(2,16)$. Hence there are at most

$$
q^{2}\left(854\left(q^{2}-1\right)+630\right)=2^{13} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13
$$

$(52,4)$-arcs in $A G(2,16)$.
There are two types of maximal arcs in $P G(2,16)$ both of which are Denniston and they have collineation stabilisers of size 68 and 408. The total number of Denniston (52, 4)-arcs in $P G(2,16)$ is therefore

$$
|P \Gamma L(3,16)|\left(\frac{1}{68}+\frac{1}{408}\right)=2^{11} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 .
$$

There are 52 external lines to a $(52,4)$-arc in $P G(2,16)$ and so the number of Denniston (52, 4)-arcs in $A G(2,16)$ is $2^{11} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 52 / 273=2^{13} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$.

References

[1] S. Ball and A. Blokhuis, An easier proof of the maximal arcs conjecture, Proc. Amer. Math. Soc., 126, (1998), 3377-3380.
[2] S. Ball, A. Blokhuis and F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist, Combinatorica, 17, (1997), 31-47.
[3] A. Blokhuis and F. Mazzocca, There is no $(105,5)$-arc in $P G(2,25)$, unpublished notes.
[4] R. H. F. Denniston, Some maximal arcs in finite projective planes, J. Combin. Theory, 6, (1969), 317-319.
[5] M. Hall Jr., Ovals in the Desarguesian plane of order 16, Ann. Mat. Pura. Appl., 102, (1975), 159-176.
[6] N. Hamilton, Degree 8 maximal arcs in $P G\left(2,2^{r}\right), r$ odd, preprint.
[7] N. Hamilton and R. Mathon, More maximal arcs in Desarguesian planes and their geometrical structure, preprint.
[8] N. Hamilton and T. Penttila, Groups of maximal arcs, J. Combin. Theory Ser. A, 94, (2001), 63-86.
[9] R. Mathon, New maximal arcs in Desarguesian planes, J. Combin. Theory Ser. A, to appear.
[10] C. M. O'Keefe and T. Penttila, Hyperovals in $P G(2,16)$, Europ. J. Combinatorics, 12, (1991), 51-59.
[11] T. Penttila and G. Royle, Classification of hyperovals in $P G(2,32)$, J. Geom., 50, (1994), 151-158.
[12] B. Segre, Ovali e curve nei piani di Galois di caratteristica due, Atti. Accad. Naz. Lincei Rend., 32, (1962), 785-790.
[13] J. A. Thas, Construction of maximal arcs and partial geometries, Geom. Dedicata, 3, (1974), 61-64.
[14] J. A. Thas, Construction of maximal arcs and dual ovals in translation planes, Europ. J. Combinatorics, 1, (1980), 189-192.
S. Ball

Queen Mary,
University of London,
London, E1 4NS,
United Kingdom
A. Blokhuis

Technische Universiteit Eindhoven,
Postbox 513,
5600 MB Eindhoven,
The Netherlands

[^0]: *The author acknowledges the support of the EPSRC (U.K.) Advanced research fellowship AF/990480.

 Received by the editors April 2001.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : 51E20.
 Key words and phrases : Maximal Arcs.

