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A well-known result of G. Willis asserts that for a locally compact group G if the
group algebra L1(G) is separable then L1(G) is amenable if and only if I0(L

1(G)) is
the unique maximal ideal of Fa, where

I0(L
1(G)) = {f ∈ L1(G) :

∫
G

f = 0},

Fa = {Jµ : µ is a probability measure on G},

and
Jµ = {f − f ∗ µ : f ∈ L1(G)}−,

(see theorem 1.2 of [11]). It is also proved in proposition 1.3 of [11] that if L1(G) is
separable and amenable, then there is a discrete probability measure µ on G such
that I0(L

1(G)) = Jµ.
The aim of the present paper is to extend the first result to the general setting

of separable Lau algebras and the second result to an extensive class of topologi-
cal semigroups, namely foundation semigroups. It should be noted that L1(G), the
Fourier algebra A(G), the Fourier-Stiltjes algebra B(G) of a locally compact group
G, and the measure algebra Ma(S) of a topological semigroup S are elementary
examples of Lau algebras. The class of foundation semigroups is extensive, and
includes all discrete semigroups, all locally non-locally-null subsemigroups of locally
compact groups and those subsemigroups related to those considered by Rothman
[9]. For many other examples, see [10, Appendix B].
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Preliminaries
Let A be a complex Banach algebra and X be a Banach A−bimodule, and X∗

be the dual Banach A−bimodule, in which the module multiplications are given by

(af)(x) = f(xa), (fa)(x) = f(ax) (a ∈ A, f ∈ X∗, x ∈ X)

A bounded X−derivation is a bounded linear mapping D of A into X such that

D(ab) = (Da)b + a(Db) (a, b ∈ A).

The set of bounded X−derivations is denoted by Z1(A, X) : it is a linear subspace
of BL(A, X), the space of all bounded linear operators of A into X. Given x ∈ X,
let δA

x be the mapping of A into X given by

δA
x (a) = ax− xa (a ∈ A).

It is clear that δA
x belongs to Z1(A, X). We call δA

x an inner X derivation and denote
by B1(A, X) the set of all inner X−derivations. B1(A, X) is a linear subspace of
Z1(A, X), and we denote by H1(A, X) the difference space of Z1(A, X) modulo
B1(A, X), H1(A, X) is called the first cohomology group of A with coefficients in
X. A Banach algebra A is said to be amenable if H1(A, X∗) = 0 for every Banach
A−bimodule X.

Recall that a Lau algebra is any pair (A, B) consisting of a Banach algebra A
and a von Neumann algebra B for which A = B∗ (and A∗ = B) and the unit uB of
B is a multiplicative linear functional on A (c.f. [6] and [7]). Such a Lau algebra is
also denoted simply by A although, B is not necessarily unique. A Lau algebra A
is called left-amenable if, for every Banach A−module X such that

a.x = 〈a, uB〉x

whenever a ∈ A and x ∈ X, one has H1(A, X∗) = 0. We denote the set of all positive
elements of A of norm one by P1(A). Any positive functional M on A∗ of norm one is
called a mean on A∗. A mean M on A∗ is called right invariant if 〈fϕ, M〉 = 〈f, M〉
whenever f ∈ A∗ and ϕ ∈ P1(A). It is well known that a Lau algebra A is left
amenable, if and only if A∗ admits a right invariant mean (see proposition 3.5 of
[6]). For a Lau algebra A we denote by I0(A) the set {a ∈ A : uB(a) = 0}. For
every b ∈ P1(A) we denote by Jb the norm closure of {a− ab : a ∈ A}. Then Jb is a
closed left ideal in A. It is also clear that Jb ⊆ I0(A) for every b ∈ P1(A).

Throughout, S denotes a locally compact, Hausdroff topological semigroup. Re-
call (see, for example [1], [2], [4], [5]), that Ma(S) or L̃(S) denote the space of all
measures µ ∈ M(S) (the Banach algebra of all bounded regular complex measures)
on S for which the mappings
x 7−→ δx∗ |µ | and x 7−→|µ | ∗δx (where δx denotes the point mass at x for x ∈ S)
from S into M(S) are weakly continuous. Note that the measure algebra Ma(S)
defines a two-sided closed L−ideal of M(S) (see, [1]). A semigroup S is called a
foundation semigroup if

⋃
{supp(µ) : µ ∈ Ma(S)} is dense in S. Note that in the

case S is a foundation semigroup with identity, for every µ ∈ Ma(S) both mappings
x 7−→ δx∗ |µ | and x 7−→ δx∗ |µ | from S into Ma(S) are norm continuous (c.f. [2]).
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Amenability of separable Lau algebras
The aim of the present section is to prove a general theorem on the amenability

of separable Lau algebras where in the particular case that A is the group algebra
L1(G) of a separable locally compact group (or a σ−compact group) G, it gives a
generalization of both theorem 1.10 of [8] and theorem 1.2 of [11].

Application of this result to foundation semigroups provided us with a general-
ization of theorem 1.14 of [8] and proposition 1.3 of [11].

We commence with the following lemma whose proof is omitted, since it can be
proved in the same direction of lemma 1.1 of [11].

Lemma 1. Let A be a Lau algebra and F be a norm closed, convex subsemigroup
of P1(A). Let X be a separable closed subspace of A such that

(i) Jb ⊆ X for every b ∈ F ;
and

(ii) for every ε > 0 and x ∈ X there is b ∈ F such that d(x, Jb) = inf{‖x− y‖ :
y ∈ Jb} < ε.

Then there is b0 ∈ F such that X = Jb0.

The following theorem which generalizes theorem 1.2 of [11] is needed for the
proof of the main result.

Theorem 2. Let (A, B) be a separable Lau algebra. Then the following are valid:
(i) if J = {Jb : b ∈ P1(A)}; then every ideal in J is contained in a maximal

one;
and
(ii) if A has a bounded left approximate identity and J has a unique maximal

ideal, then A is left amenable;
(iii) if A is left amenable, then J has a unique maximal ideal.
In both cases (ii) and (iii) the unique maximal ideal of J is I0(A).

Proof. The proof of (i) is similar to that of part (a) of theorem 1.2 of [11].

(ii). Suppose that A has a bounded left approximate identity and J has a unique
maximal ideal, Jb say, and let x be in I0(A). By Cohen’s factorization theorem
(theorem 32.26 of [3]) we can write x = ay′ for some a ∈ A and y′ ∈ I0(A). If we
decompose y′ = (y′1 − y′2) + i(y′3 − y′4) with y′i positive for 1 ≤ i ≤ 4, then

0 = uB(y′) = uB(y′1)− uB(y′2) + i(uB(y′3)− uB(y′4)),

where uB denotes the multiplicative identity functional on A. Hence uB(y′1) =
uB(y′2) and uB(y′3) = uB(y′4). Since uB(y′i) = ‖y′i‖(1 ≤ i ≤ 4), it follows that
‖y′1‖ = ‖y′2‖ and ‖y′3‖ = ‖y′4‖. Putting ci = ‖y′i‖ and yi = y′i/ci(1 ≤ i ≤ 4) we
obtain

x = c1(a− ay1) + (−c1)(a− ay2) + (ic2)(a− ay3) + (−ic2)(a− ay4).

Let Jb denote the unique maximal ideal in J . Now each (a− ayi) ∈ Jyi
(1 ≤ i ≤ 4).

Since by (i) each Jyi
is contained in a maximal ideal in J , it follows that x belongs to

Jb. Thus I0(A) ⊆ Jb. It is clear that Jb ⊆ I0(A). So Jb = I0(A). Let y ∈ I0(A), then
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y ∈ Jb. Thus limn→∞ ‖y( 1

n

∑n
k=1 bk)‖ = 0. Since for every n ∈ N, 1

n

∑n
k=1 bk ∈ P1(A),

from proposition 3.6 of [7] it follows that A is left amenable.
(iii). Suppose now that A is left amenable. Given x ∈ I0(A) and ε > 0, by (iii) of

proposition 3.6 of [7] there exists b ∈ P1(A) such that ‖xb‖ < ε. Thus d(x, Jb) < ε.
Hence the conditions of lemma 1 are satisfied if we take F = J and X = I0(A). So
there is a b0 ∈ P1(A) with I0(A) = Jb0 . Thus I0(A) is the unique maximal ideal in
J .

Before turning to the next result we first need to prove one more lemma.

Lemma 3. Let S be a foundation semigroup with identity. Then for every ε > 0, µ
and ν ∈ Ma(S), there exists c1, c2, . . . , cN in C and x1, x2, . . . , xN in S such that∑N

n=1 cn = µ(S) and

‖ν ∗ µ−
N∑

n=1

ν ∗ cnδxn
‖ < ε.

Proof. Given ε > 0, choose a compact subset K of S such that |µ | (S \K) < ε′.
Where ε′ = ε

2‖ν‖+‖µ‖
. Since the mapping x 7−→ ν ∗ δx is norm continuous and K

is compact, there are finitely many points xn ∈ K, say 1 ≤ n ≤ N , and open
neighbourhoods Un of xn covering K such that ‖ν ∗ δx − ν ∗ δxn

‖ < ε′ for x ∈ Un.
Define now a partition of S as follows. Let A1 = K ∩U1, An = (K \

⋃
1≤j<n Aj)∩Un

for 1 < n ≤ N if N > 1. Put A0 = S \K and x0 = e (the identity of S). The sets
An (0 ≤ n ≤ N) are Borel sets, mutually disjoint, and their union is S. Putting
cn = µ(An), then for every F ∈ Ma(S)∗ by lemma 2.5 of [4] we have

| F (ν ∗ µ)− F (
N∑

n=0

ν ∗ cnδxn
) | =| F (ν ∗ µ)−

N∑
n=0

cnF (ν ∗ δxn
) |

=|
N∑

n=0

∫
An

[F (ν ∗ δx)− F (ν ∗ δxn
)dµ(x)] |

≤
∫

A0

| F (ν ∗ δx − ν ∗ δxn
) | d |µ | (x)

+
N∑

n=1

∫
An

| F (ν ∗ δx − ν ∗ δxn
) | d |µ | (x)

≤ ‖F‖2‖ν‖ |µ | (S \K)+
N∑

n=1

‖F‖
∫

An

‖ν ∗ δx − ν ∗ δxn
‖d |µ | (x)

≤ 2‖F‖‖ν‖ε′ +
N∑

n=1

‖F‖ε′ |µ | (An)

< ‖F‖(2‖ν‖+ ‖µ‖)ε′.

Since the above inequalities hold for every F ∈ Ma(S)∗, we conclude that

‖ν ∗ µ−
N∑

n=0

ν ∗ cnδxn
‖ ≤ ε.

The following theorem which generalizes proposition 1.3 and corollary 1.14 of [8]
is the main result of the paper.
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Theorem 4. Let S be a foundation semigroup with identity. If Ma(S) is separable
and left amenable, then there exists a discrete probability measure µ on S such that
I0(Ma(S)) = Jµ.

Proof. Let ν ∈ I0(Ma(S)) and ε > 0. Then by corollary 4.7 of [6] there exists a
probability measure µ′ in P1(Ma(S)) such that ‖ν ∗ µ′‖ < ε/2. By theorem 3 there
exists a discrete probability measure µ on S such that ‖ν ∗ µ− ν ∗µ′‖ < ε/2. Thus,
‖ν ∗ µ‖ < ε. So the hypothesis of lemma 1 are satisfied whenever X is replaced by
I0(Ma(S)) and F by P (Md(S)) (the set of all discrete probability measures on S).
Therefore there is a discrete probability measure µ on S such that I0(Ma(S)) = Jµ.
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