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Abstract

It has been proved there are no semi-parallel real hypersurfaces in the complex

projective space CP n , n ≥ 3, and in any non-flat complex space form of

complex dimension 2. Also, characterizations of geodesic hyperspheres and

ruled real hypersurfaces in CP n , n ≥ 3, have been obtained by considering

some other curvature conditions. We generalize these results by studying two

new conditions for real hypersurfaces in non-flat complex space forms. As a

corollary, we extend the known characterizations to real hypersurfaces of type

A0 and A1 and ruled real hypersurfaces in non-flat complex space forms.

In particular, we prove that there are no semi-parallel real hypersurfaces in

non-flat complex space forms of complex dimension at least 2.

1 Introduction

In Y. Tashiro and S. Tachibana’s classical paper [11], we can find a proof for the
non-existence of totally umbilical real hypersurfaces in non-flat complex space forms
M

n
(c), n ≥ 2, of constant holomorphic sectional curvature 4c 6= 0. This is closely

related to the fact that there are no real hypersurfaces in M
n
(c), n ≥ 2, whose
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Weingarten endomorphism A is parallel (∇A = 0). In some way, the parallelism
of the Weingarten endomorphism can be regarded as an expression involving a first
order derivative of A. Thus, the action of the curvature operator R of the real
hypersurface as a derivation on A, R · A, is a second order derivative of A that
naturally generalizes ∇A. Regarding this, we have been able to find in the literature
the following:

1. S. Maeda studied in [5] semi-parallel real hypersurfaces in the complex pro-
jective space CP n , n ≥ 3, i.e., real hypersurfaces satisfying R · A = 0. His
important result is the non-existence of such real hypersurfaces. But his proof
does not hold for the complex hyperbolic space CHn or for n = 2.

2. R. Niebergall and P. J. Ryan also obtained in [9] that there are no semi-parallel
real hypersurfaces in non-flat complex space forms of complex dimension 2. R.
Niebergall and P. J. Ryan’s techniques are rather different from the ones used
by S. Maeda, and they do not seem to work for n ≥ 3.

J. Berndt wrote a review of paper [9] (see MR 99d:53058), saying about the
semiparallel condition, ’The correponding result [...] for n > 2 and c > 0
was obtained by S. Maeda [Math. Ann. 263 (1983), no. 4, 473-478; MR
85d:53025]. For c < 0 and n > 2 this problem is still open.’ One of the main
aims of this paper is to solve this problem.

As a natural consequence of S. Maeda’s paper, some authors studied weaker
conditions than R · A = 0. From now, for the sake of simplicity, we put
Q(X, Y )Z = (R(X, Y ) · A)Z for suitable tangent vectors X, Y, Z to the real
hypersurface. Moreover, for the definition of the (local) structure vector field
ξ , and for a description of real hypersurfaces of type A0 and A1 , see the
Preliminaries section.

3. T. Gotoh considered in [2] the expression Q(X, Y )Z = 0 for any tangent
vectors X, Y, Z to the real hypersurface that are orthogonal to ξ , in CP n ,
n ≥ 3. He obtained a characterization of the geodesic hyperspheres.

4. M. Kimura and S. Maeda studied Q(X, Y )Z +Q(Y, Z)X + Q(Z, X)Y = 0 for
any tangent vectors X, Y, Z to the real hypersurface, in CP n , n ≥ 2. For
n ≥ 3, they were able to characterize geodesic hyperspheres as the only real
hypersurfaces satisfying this condition. However, for n = 2, they showed the
surprising fact that a real hypersurface satisfies it if and only if its structure
vector field ξ is principal.

5. On the other hand, Y. Matsuyama’s point of view in [6] is a bit different. He
considered the expression

g(R(AX, Y )Z, W )− g(AR(X, Y )Z, W ) = 0, (1)

for any X, Y, Z, W orthogonal to ξ , for real hypersurfaces in CP n , n ≥ 3. In
his theorem he included real hypersurfaces of type A2 among those satisfying
(1), but we check in Proposition 1 that this is not correct.
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Throughout all these papers except [9], which is cited in our previous list in
item 2, authors only deal with real hypersurfaces in CP n . In this note, we study
real hypersurfaces in non-flat complex space forms by considering several conditions
involving the curvature operator and the Weingarten endomorphism. Thus, we
generalize the above mentioned results that we found in the literature. Firstly, in
section 3 we prove the following

Theorem 1. Let M be a connected real hypersurface in M
n
(c), n ≥ 3, c 6= 0.

Then M satisfies (1) if and only if M is one of the following real hypersurfaces:

a) a ruled real hypersurface;

b) an open subset of a real hypersurface of type A0 or A1 .

Secondly, we consider

Q(X, Y )Z + Q(Z, X)Y + Q(Y, Z)X = 0, (2)

for any X, Y, Z orthogonal to ξ , and

g(Q(X, Y )Z, W ) + g(Q(Y, Z)X, W ) + g(Q(Z, X)Y, W ) = 0, (3)

for any X, Y, Z, W orthogonal to ξ . Clearly, these two expressions generalize the
conditions studied by T. Gotoh, S. Maeda and M. Kimura, and R. Niebergall and
P. J. Ryan. We should point out that, at first sight, condition (3) is weaker than
condition (2). In section 4 we prove the following theorem, showing that these two
conditions are equivalent:

Theorem 2. Let M be a connected real hypersurface in M
n
(c), n ≥ 3, c 6= 0. The

following statements are pairwise equivalent:

(i) M satisfies (2);

(ii) M satisfies (3);

(iii) M is either a ruled real hypersurface or an open subset of real hypersurface
of type A0 or A1 .

The last section is devoted to show the connection between our results and previ-
ous ones. In fact, in Corollary 1, we extend T. Gotoh and M. Kimura and S. Maeda’s
results to M

n
(c), n ≥ 3, obtaining a characterization of real hypersurfaces of type

A0 and A1 . Finally, in Corollary 2, we prove the non-existence of semi-parallel real
hypersurfaces in M

n
(c), n ≥ 2, c 6= 0.

The author would like to thank Professor A. Romero and the referee for some
useful comments about this note.



354 M. Ortega

2 Preliminaries

Let M
n
(c) be a non-flat complex space form endowed with the metric g of constant

holomorphic sectional curvature 4c 6= 0 and complex dimension n ≥ 2. For the
sake of simplicity, if c > 0, we will only use c = +1, and we will call it the complex
projective space CP n , and if c < 0, we just consider c = −1, so that we will call it
the complex hyperbolic space CHn . Let M be a connected C∞ real hypersurface
in M

n
(c), c 6= 0, n ≥ 2, without boundary. Let N be a local unit normal vector

field to M . If J is the almost complex structure of M
n
(c), we define ξ = −JN .

Usually, the vector field ξ is called the structure or the Reeb vector field of M .
The distribution T o

p M = {X ∈ TpM : X ⊥ ξp}, p ∈ M , is called the holomorphic

distribution on M . The Levi-Civita connection of M
n
(c) and M will be denoted

by ∇̄ and ∇, respectively. The Gauss and Weingarten formulae are

∇̄XY = ∇XY + g(AX, Y )N,
∇̄XN = −AX,

(4)

for any X, Y ∈ TM . A local tangent vector field X is called principal if it is an
eigenvector of A everywhere, and its associated eigenfunction is called principal
curvature function. Given a point p ∈ M and a principal curvature λ, we write
Tλ(p) = {X ∈ TpM : ApX = λ(p)X}. This vector subspace is called the principal
distribution associated with λ at p. The dimension of the principal distribution is
known as the multiplicity of the principal curvature. The multiplicity of a principal
distribution depends on the point, although there is a dense open subset on which
it is locally constant.

Given a vector field X tangent to M on a neighbourhood of a point p ∈ M , we
put JX = φX + η(X)N , where φX and η(X)N are the tangential and the normal
component of JX respectively. Thus, φ is a skew-symmetric tensor of type (1,1)
and η is a 1-form on M . Furthermore, ξ is a locally defined vector field tangent to
M . The set (φ, ξ, η, g) is called an almost contact metric structure on M , whose
elementary properties are

η(X) = g(X, ξ), φ2 = −I + η ⊗ ξ, φξ = 0, η(ξ) = 1, ∇Xξ = φAX
g(φX, Y ) + g(X, φY ) = 0, g(φX, φY ) = g(X, Y )− η(X)η(Y ),

(5)

for any X, Y ∈ TM , where I denotes the identity transformation on TM . The
Gauss equation of M is

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY
−2g(φX, Y )φZ}+ g(AY, Z)AX − g(AX, Z)AY,

(6)

for any X, Y, Z ∈ TM . The Codazzi equation of M is

(∇XA)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}, (7)

for any X, Y ∈ TM . Cecil and Ryan in [1] and Montiel in [7] classified the real
hypersurfaces in complex space forms with at most two distinct principal curvatures
at each point. Their results are summarized in the following
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Theorem A. Let M be a connected real hypersurface in M
n
(c), n ≥ 3, c = ±1,

with at most two distinct principal curvatures at each point. Then M is an open
subset of one of the following:

1. in CP n ,

A1) a tube of radius 0 < r < π/2 over a totally geodesic hyperplane CP n−1 ;

2. in CHn ,

A0) a horosphere;

A1) a tube of radius r > 0 over a totally geodesic CHk , where k = 0, n− 1;

B) a tube of radius log((1 +
√

3)/
√

2) over a totally geodesic RHn .

Usually, tubes over a totally geodesic M
k
(c), with k ∈ {1, . . . , n− 2}, are called

real hypersurfaces of type A2 . A description of the horosphere A0 can be found in [8].
Real hypersurfaces of type A0 , A1 and A2 are simply known as real hypersurfaces
of type A. Finally, we recall that a real hypersurface in M

n
(c) is said to be ruled if

the distribution T oM is integrable and its leaves are open subsets of totally geodesic

hyperplanes M
n−1

(c).

3 Proof of Theorem 1

The following lemma is part of the proof of Theorem 1, but it is interesting by itself.
The fact that the Codazzi equation implies the non-existence of totally umbilical
real hypersurfaces in M

n
(c) also inspires it.

Lemma 1. Let M be a connected real hypersurface in M
n
(c), n ≥ 3, c 6= 0.

Suppose there exists a smooth function λ : M → R such that g(AX, Y ) = λg(X, Y )
for any X, Y ∈ T oM . Then λ is constant, and M is one of the following:

a) if λ = 0: a ruled real hypersurface;

b) if λ 6= 0: an open subset of a real hypersurface of type A0 or A1 .

Proof. : Let G be a connected open subset of M on which ξ is globally defined.
Set G0 = {q ∈ G : λ(q) = 0} and G1 = G\G0 . Clearly, G1 is open. Let Γ be
the set of interior points of G0 , and suppose that Γ is non-empty. Given X, Y ∈
T oM , tangent to Γ, by (4) and (5), g(∇̄XY, N) = g(AX, Y ) = 0 and g(∇̄XY, ξ) =
g(∇XY, ξ) = −g(Y,∇Xξ) = −g(Y, φAX) = 0. This means that ∇̄XY ∈ T oM for
any X, Y ∈ T oM . In other words, T oM is integrable and its leaves are totally
geodesic in M

n
(c), that is, Γ is a ruled real hypersurface. Conversely, the very

same computations show that a ruled real hypersurface satisfies g(AX, Y ) = 0 for
any X, Y ∈ T oM . From now on, we make our computations on G1 . On it, we set
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Aξ = µξ + U where µ = g(Aξ, ξ) and U is the component of Aξ in T oM . From
our assumption, we obtain

Aξ = µξ + U, AU = λU + η(AU)ξ, AX = λX for any X ⊥ {ξ, U} on G1 (8)

As n ≥ 3, we can choose a unit vector field X ∈ T oM tangent to G1 orthogonal to
{ξ, U, φU}. By (5), (7) and (8),

0 = g((∇XA)U − (∇UA)X, φX) = g(∇X(λU + η(AU)ξ), φX)

−g(A∇XU, φX)− g(∇U(λX), φX) + g(A∇UX, φX)

= λg(∇XU, φX) + η(AU)g(φAX, φX)− λg(∇XU, φX)

−λg(∇UX, φX) + λg(∇UX, φX) = η(AU)λ,

and as λ 6= 0 on G1 , then, 0 = η(AU) = g(AU, ξ) = g(U, U), that is, U = 0
and therefore ξ is principal. Now, by (8), we see AX = λX for any X ∈ T oM .
Therefore, G1 is locally congruent to one of the examples in Theorem A. All of
them have constant principal curvatures, so λ must be locally constant on G1 . But
the tube of radius log((1 +

√
3)/

√
2) over a totally geodesic RHn does not satisfy

AX = λX for any X ∈ T oM (see [7]). Therefore, G1 is locally congruent to
a real hypersurface of type A0 or A1 , and the function λ is locally constant on
G1 . But G is connected, and the function λ is continuous on G, constant on G0

and locally constant on G1 , so that λ is constant. This means we can repeat the
reasoning in the whole M to obtain that M is either a ruled real hypersurface or a
real hypersurface of type A0 or A1 . �

Proposition 1. Real hypersurfaces of type A2 do not satisfy (1).

Proof. : Any real hypersurface M of type A2 has three distinct principal curvatures.
If c = +1, then µ = 2 cot(2r), λ1 = cot(r), λ2 = − tan(r), where r ∈ (0, π/2). If
c = −1, then µ = 2 coth(2r), λ1 = coth(r), λ2 = tanh(r), where r > 0. Moreover,
at each point p ∈ M , T o

p M = Tλ1
(p) ⊕ Tλ2

(p), and φTλ1
(p) = Tλ1

(p), φTλ2
(p) =

Tλ2
(p) ([1],[7],[8]). Now we choose unit vectors X ∈ Tλ1

, W ∈ Tλ2
, and we consider

Y = φW , Z = φX . Bearing (6) in mind, we insert them in (1), obtaining 0 =
λ1g(R(X, φW )φX, W )− λ2g(R(X, φW )φX, W ) = (λ1 − λ2)g(R(X, φW )φX, W ) =
(λ1 − λ2)c, so that λ1 − λ2 = 0, which is a contradiction. This concludes the proof.

�

Proof of Theorem 1. : By (6), equation (1) is equivalent to

0 = c{g(X, Z)g(AY, W )− g(AX, Z)g(Y, W ) + g(φY, Z)g((φA− Aφ)X, W )
−g(φAX, Z)g(φY, W )− 2g(φAX, Y )g(φZ, W ) + g(φX, Z)g(AφY, W )

+2g(φX, Y )g(AφZ, W )}+ g(AX, Z)g(A2Y, W )− g(A2X, Z)g(AY, W ),
(9)

for any X, Y, Z, W ∈ T oM . Now, choose a point p ∈ M and a connected open
neighbourhood G of p in M such that the local vector field ξ is defined on G.
Choose an orthonormal basis {e1, . . . , e2n−2} of T oM on G. Let us define the
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smooth function a : G → R by a =
∑

2n−2

k=1
g(Aek, ek). We insert X = ek and

Z = φek in (9), and by summation over k we obtain

0 = g(φAY, W ) + (2n− 3)g(AφY, W )− ag(φY, W ), (10)

for any Y, W ∈ T oM tangent to G. If we exchange Y and W in this equation we
obtain 0 = g(φAW, Y ) + (2n − 3)g(AφW, Y ) − ag(φW, Y ). We add this equation
to (10), and we get 0 = (4 − 2n)g(φAY, W ) + (2n − 4)g(AφY, W ), and as n ≥ 3,
g(φAY, W ) = g(AφY, W ) for any Y, W ∈ T oM . If we insert this expression in (10),
then 0 = (2n−2)g(AφY, W )−ag(φY, W ). Therefore, there exists a smooth function
λ : G → R such that g(AY, W ) = λg(Y, W ) for any Y, W ∈ T oM tangent to G. By
Lemma 1, G is either a ruled real hypersurface or a real hypersurface of type A0 or
A1 . A simple reasoning of connectedness shows that M is a ruled real hypersurface
or a real hypersurface of type A0 or A1 . Suppose that M is a real hypersurface
of type A0 or A1 . Then there exists a constant λ such that AX = λX for any
X ∈ T oM . From this, condition (1) holds. If M is a ruled real hypersurface, by
Lemma 1, then g(AX, Y ) = 0 for any X, Y ∈ T oM . That means that M satisfies
equation (9). This concludes the proof. �

4 Proof of Theorem 2

Proof of Theorem 2. : We pointed out in the Introduction that (2) implies (3), so
that we have statement (i) implies statement (ii). Now we prove that statement (ii)
implies statement (iii). Let M be a connected real hypersurface in M

n
(c), n ≥ 3,

satisfying (3). We should remember (R(X, Y ) · A)Z = R(X, Y )AZ − AR(X, Y )Z ,
so that by first Bianchi identity and (6), equation (3) is equivalent to

0 = g((φA + Aφ)X, Y )g(φZ, W ) + g((φA + Aφ)Y, Z)g(φX, W )
+g((φA + Aφ)Z, X)g(φY, W )− 2g(φZ, X)g(φAY, W )

−2g(φX, Y )g(φAZ, W )− 2g(φY, Z)g(φAX, W ),
(11)

for any X, Y, Z, W ∈ T oM . Given a point p ∈ M , we choose an orthonormal
basis {e1, . . . , e2n−2} of T oM defined on an open neighbourhood G of p. Define
the function a : G → R by a = (1/2)

∑
2n−2

k=1
{g(Aek, ek) + g(Aφek, φek)}. If we take

Y = ek and Z = φek in (11), summing up over k we obtain 0 = −2g(AφX, W )−
(4n− 6)g(φAX, W ) + 2ag(φX, W ) and therefore we get

0 = g(AφX, W ) + (2m− 3)g(φAX, W )− ag(φX, W ),

for any X, W ∈ T oM on G. This equation is equal to equation (10), so we can
repeat the proof of Theorem 1 to obtain that M is locally congruent to either a
ruled real hypersurface or a real hypersurface of type A0 or A1 .

Now we should check that statement (iii) implies statement (i). Firstly, if M
is real hypersurface of type A0 or A1 , there exists a real constant a such that
AX = aX for any X ∈ T oM . Then, it is easy to check that equation (2) is
satisfied. Secondly, let M be a ruled real hypersurface. By the above reasoning,
statement (i) is equivalent to the following equation



358 M. Ortega

0 = g((φA + Aφ)X, Y )g(φZ, W ) + g((φA + Aφ)Y, Z)g(φX, W )
+g((φA + Aφ)Z, X)g(φY, W )− 2g(φZ, X)g(φAY, W )

−2g(φX, Y )g(φAZ, W )− 2g(φY, Z)g(φAX, W ),
(12)

for any X, Y, Z ∈ T oM and any W ∈ TM . By Lemma 1, g(AX, Y ) = 0 for any
X, Y ∈ T oM . Therefore, if X, Y, Z, W ∈ T oM , equation (12) is satisfied. If we
choose X, Y, Z ∈ T oM and W = ξ , by (5) and Lemma 1, equation (12) is satisfied.
This finishes the proof. �

Remark 1. All real hypersurfaces in M
2

(c) satisfy (2) and (3). Indeed, let M

be a real hypersurface in M
2

(c). Take a unit vector field X ∈ T oM . Any other
Y, Z ∈ T oM can be written Y = aX + bφX and Z = αX + βφX , where a, b, α, β
are suitable functions defined on a certain open subset of M . Then, by elementary
properties of R ,

Q(X, Y )Z + Q(Y, Z)X + Q(Z, X)Y = R(X, Y )AZ + R(Y, Z)AX + R(Z, X)AY
= bαR(X, φX)AX + bβR(X, φX)AφX + aβR(X, φX)AX
+bαR(φX, X)AX + aβR(φX, X)AX + bβR(φX, X)AφX = 0.

This means that the hypothesis n ≥ 3 cannot be removed from Theorem 2.

5 Further results

Corollary 1. Let M be a connected real hypersurface in M
n
(c), n ≥ 3, c 6= 0.

The following statements are pairwise equivalent:

1. M satisfies Q(X, Y )Z = 0 for any X, Y, Z ∈ T oM ;

2. M satisfies Q(X, Y )Z + Q(Y, Z)X + Q(Z, X)Y = 0 for any X, Y, Z ∈ TM ;

3. M is an open subset of a real hypersurface of type A0 or A1 .

Proof. : We begin by checking that statement 1 and statement 3 are equivalent.
If a real hypersurface M satisfies statement 1, it satisfies statement (i) of Theorem
2, so that it is either a ruled real hypersurface or of type A0 or A1 . If M is of
type A0 or A1 , similar computations as Theorem 2 show they satisfy statement 1.
Now, suppose that M is a ruled real hypersurface. For details in the rest of the
proof, see paper [4]. We know that any ruled real hypersurface is orientable and its
Weingarten endomorphism is of the form

Aξ = µξ + U AU = |U |2ξ, AX = 0 for any X ⊥ {ξ, U}, (13)

where µ is a smooth function on M , and U ∈ T oM is not a unit vector in general.
The set of points where the vector U vanishes cannot have interior points, that is
to say, ξ cannot be principal on any open subset of the real hypersurface. By (5),
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(6) and (13), we compute −(R(U, φU) ·A)φU = −R(U, φU)AφU +AR(U, φU)φU =
AR(U, φU)φU = 4cAU 6= 0. This shows that no ruled real hypersurface satisfies
statement 1.

Now we check that statement 2 is equivalent to statement 3. If M is a real
hypersurface satisfying statement 2, by Theorem 2, M is either a ruled real hyper-
surface or a real hypersurface of type A0 or A1 . If M is of type A0 or A1 , we
only have to realize that any of these real hypersurfaces satisfies that there exist
two real constants λ, µ such that AX = λX + µη(X)ξ for any X ∈ TM . By first
Bianchi’s identity and (6), a long but straightforward computation shows our asser-
tion. Next, suppose that M is a ruled real hypersurface. As n ≥ 3, we can choose
a unit vector X ∈ T oM orthogonal to {U, φU}. By (13), first Bianchi identity,(5)
and (6), Q(X, φX)ξ + Q(ξ, X)φX + Q(φX, ξ)X = R(X, φX)Aξ + R(ξ, X)AφX +
R(φX, ξ)AX = µR(X, φX)ξ + R(X, φX)U = R(X, φX)U = −2cφU 6= 0. There-
fore, no ruled real hypersurfaces satisfies statement 2. This concludes the proof.

�

Remark 2. One may wonder if hypothesis n ≥ 3 is necessary in Corollary 1. If
n = 2, we can repeat the proof of Theorem 3 in [3] to obtain that a real hypersurface

in M
2

(c) satisfies statement 2 if and only if ξ is principal. The author does not
know what happens for statement 1.

Corollary 2. There are no real hypersurfaces in M
n
(c), n ≥ 2, c 6= 0, such that

R · A = 0.

Proof. : We have already pointed out that the case n = 2 has been studied by
R. Niebergall and P. J. Ryan in [9]. So, we study the case n ≥ 3. Suppose that
there exists a real hypersurface in M

n
(c) satisfying (R(X, Y ) · A)Z = 0 for any

X, Y, Z ∈ TM . Then it satisfies statement 1 in Corollary 1. Therefore, it is locally
congruent to a real hypersurface of type A0 or A1 . In that case, there exist two
distinct real constants λ, µ such that AX = λX for any X ∈ T oM and Aξ = µξ .
From this and (6), given X ∈ T oM , 0 = (R(X, ξ) ·A)ξ = R(X, ξ)Aξ−AR(X, ξ)ξ =
(µI −A)R(X, ξ)ξ = (c + µλ)(µ− λ)X , so the only possibility is 0 = c + µλ. But if
c = +1, then µ = 2 cot(2r) and λ = cot(r) for a certain 0 < r < π/2, so that this
equation does not hold. If c = −1, then either µ = 2 coth(2r) and λ = coth(r), or
µ = 2 coth(2r) and λ = tanh(r) for a certain r > 0, or µ = 2 and λ = 1. Again,
this last equation is not satisfied. This concludes the proof. �
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