On the solutions of the biconfluent Heun
equations

Alain Roseau

Abstract

A biconfluent Heun differential equation,
1
o () + (1 o= B — 22 (@) + {(7 — @ = D — L (34 (+ D) }u(z) = 0

in which («, 8,7,8) € C* has two singular points, 0 and co. The singularity
is regular at 0 and irregular at co. By using k-summability (k = 2) we obtain
new integral formulas for bases of solutions near co. We express the Stokes
and central connection coefficients in terms of one of them, denoted by l11. By
using the symmetries of the biconfluent Heun equations we obtain functional
relations satisfied by l;; and we determine one of them which implies the
others.

1 Introduction
A biconfluent Heun equation, denoted by BH E(«, 3,7,6), is the equation
1
o () + (10— fr — 220/ () + {(3 — a2z — 2 (5+ (a+ DB)}ux) = 0 (1)

in which (a, 3,7, ) € C*. Tts singular points are 0 and oo. The singularity is regular
at 0 and irregular at co.
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It seems that the BHE, often studied, particularly by P. Maroni in [5], have
not been studied from the k-summability point of view. A. Duval has adopted this
point of view in [2] to study the triconfluent Heun equations and we have done the
same in [8] for the double confluent Heun equations. Thanks to this point of view
we obtain, in this paper, for the BHFE, new integral formulas for solutions in the
vicinity of oo and we give some new relations satisfied by Stokes and connection
coefficients concerning these functions.

The formal power series parts of the formal solutions at co are 2-summable in
the sense of [1]. According to the general definition, this means that their Borel
transforms can be analytically continued along any direction —d, such that d is not
a singular direction, in functions of exponential growth at most 2 at co. We show
that these analytic continuations have a moderate growth at co. Thus, the integral
formulas for the 2-sums are available in sectors of infinite radius.

We give a parametric definition of the symmetries (introduced by P. Maroni in
[5]) of the BHE(«, 3,7,9) family. Owing to these symmetries, we get representa-
tions of every Stokes and connection coefficients in terms of one of them, {;;. Then,
we obtain functional relations satisfied by [;; and we determine one of them which
implies the others and we prove that we can construct a family of possible Stokes
and connection matrices with any function which satisfies the above relation.

Notations

We shall denote by Q the Riemann surface of the Logarithm, by é% the element
of Q with modulus 1 and argument # € R. Thus é” # &7 if § # #'. For x € Q
and a € C, z* will denote the complex number e*!™*+?a12%)  The projection of
onto C* will also be denoted by z, the context will allow us to avoid confusion. Let
d € R, if g is a function defined in the subset {re®, r > 0} of C, we denote by
Jotd g(t)dt? the integral [;" g(re'®)2re*dr. We define

S(d,w,r)={r€Q, d- % <argz <d+ % and |z| > r},

S(d,w,r)={r€Q, d-% <argz <d+ % and |z| > 1},

Id,w)={({eR, d-9$<{<d+ %}

Finally, for a € C, we will denote by C—[a, a oco| the set of the complex numbers
which are not in the set {re‘® /r > |al}.

2 Transformations of BHE(«, 3,7,0):

Let A be the set of maps from C* into C. Let A be the vector space over C of the
maps y : C* x Q — C such that, for (a, 3,7v,0) € C*, y(a, 3,7,9; ) is a solution
of BHE(a, 3,7,0).

Taking proposition 1.1.1 of [5] into account, we can state the following definition
of the symmetries of BHE.
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Definition 1. Let (e,h) € {—1,1} x Z. We denote by t.; the map from A into
itself defined for y € A by

—1

_(—nh x;
ten(W)(a, B,7y, 6;2) = 2T e T @y (eq M3 (—1)hy, (—i)h5; "5 ).

We denote by T the set {t.s / (e,h) € {—1,1} x Z}.

Particularly we have: t1(y)(«,3,7,8;x) = em2+ﬁmy(a, i3, —y, —i0; €2'x) and
t—l,O(y)(aa ﬁ7 e 57 l’) = wiay(_aa ﬁ7 v 57 l’)

Definition 2. Let (¢,h) € {~1,1} xZ, | € A and y € A. We define the element ly
of A, the map t.; from A into ztself the set T' and the map ltey, from A to A by

L ly(a, B,7,6;2) = l(a, B,7,0)y(a, 8,7, 6; 1)
2. fevh(l)(a,ﬁ,'y, 0) = l(ea, i" 83, (—1)h7, (—i)hé)
3. T={tn | (e,h) € {~1,1} x Z}

4. (lten)(y) = Uten(y))

One easily verifies the two next propositions.
Proposition 3. 1. T = {t., / (e,h) € {=1,1} x {~1,0,1,2}}.
2. For (6, h), (6/, h,) € {—1, 1} X Z, Ee/,h’ o f;e,h = Ee/e,h/+h-

3. (T, 0) is a group isomorphic to Z/27 x Z/AZ.

Proposition 4. Let (e,h) € {—1,1} X Z. Then
1. ten is a linear map from A into itself.

2. If (y7 l) € A x ]\ then te,h(l y) = Ee,h(l) tE,h(y)'

3. For all (E, h), (6/, hl) € {—1, 1} X Z, t517h/ o) te,h = eihlgeglglat€/57h/+h
According to item 3 of the above proposition, 7' is not a group. However we have

terw Oty = te hgn
tyo0ton =too 2)

and, for any ¢ € T, there exists a unique (¢, 7,h) € {—1,1} x {0,1,—1,2} X Z such
that ¢t = tgj @) t1’4h.
From now on we shall denote t't instead of ¢ o ¢.
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2.1 Solutions atO0

P. Maroni details in [5] the solutions at 0 which is a regular singularity. If a € Z,
then, except for some values, there are logarithmic terms in the bases of solutions.
We do not study in this paper the analyticity of the functions in respect to the
parameters «, 3,7, 9.

Proposition 5. Let (o, 3,7,8) € (C—Z) x C* and

+00 An(a, 3,7,0 n

n=0

where the A, are polynomials in o, 3, v, § defined by the following relation

Apo ={Bn+ 1)+ 30+ (1 +a)} A1 — (v =2 —a=2n)(n+ 1) (n+1+a)A,
form>0and A_; =0, Ag=1.

Then (N (o, B,7,0;x),t_10N(a, 3,7, 0;2)) is a basis of solutions of BHE(«, 3,7,0).

The function N(a, 3,7,d; ) is an entire function in z.

If we denote by M the function ¢_; (N, we have

Proposition 6. Let o ¢ 7 and (e,h) € {—1,1} x Z. One has
1. tip(N) =N, t1 (M) = e "3 M,
2. t10(M)=N

3 Solutions at o of the BHE(«, 3,7, 6)

Definition 7. Let d,w,r be real numbers with w > 0, r > 0. An analytic function
f in a sector S(d,w,r) has a moderate growth at oo in S(d,w,r) if to all sector

S(d,w—¢,p) with 0 < e <w and p > r there exists A > 0, A € R such that for each
v € S(d,w—e,p), |f(z)| < Alz*.

We will use some definitions and results about 2-summability we can find in
[1]. In this section, we first give a basis of formal solutions of BHE at oo, the
irregular singularity. Owing to 2-summability we obtain a family of actual solutions
which admit these formal solutions as asymptotic expansions in proper sectors and
for which we give integral representations available in S(d, 5,0) where d is not a
singular direction.

Proposition 8. Let (a,3,7,0) € C. Then BHE(«,3,v,5) admits as basis of
formal solutions at oo, (go(cv, 5,7,90;2),91(a, B,7,9;x)) with
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1. @\0<a7 ﬁu v, 57 37) = x%(77a72)§0<057 ﬁu v, 57 I),

2. @1(0(, ﬁu v, 57 37) = x7%(7+a+2)612+ﬁm§1<o¢7 ﬁu v, 57 37)

3. Sola, B,7,0;2) = 4% a,(a, 8,7,0)x™", where the complex numbers a, are
defined by:
1 —a—2 +a—2
2(n+2)anss = {5 (6+B(y=1))=Bln+1)} a1 —(————n) (-5 ——n)a,

form>0anda_;=0,a9 =1

4' §1<Oé7ﬁa/77 57 37) = §0(a7 Zﬁa -, _267 ZQ?)

Proof : By direct computation (c.f [14]), using the fact that the Newton polygon at
oo of BHE(a, 3,7, 0) has one slope equal to 0 and one slope equal to 2, we obtain
the formal solutions.

In order to prove the moderate growth of the Borel transform l§2§i we need the
two following lemmas. The first one is a particular case of a general result recalled

n [6] (page 88).

Lemma 9. If the coefficients of a formal power series f P a,a™ satisfy the
recurrence relation Py(n)a, + Py(n)a,+1+ Po(n)a,2 = 0 where P; is the polynomial
of Clz] defined by Py(z) = ¥F_yazat and (i,p) € {0,1,2} x N then [ is a solution
of the differential equation

2 p d R
SN ai(a——) T f = (aoPi(=1) + a1 Po(—1))z ™" + agPo(—2)z 2.
i=0 =0 dx

Lemma 10. Let a € C such that Re(a) < 1. Let dyw € R x RT. Let Y0° ; a,a”
be a convergent series that can be analytically continued to a function g(z) with a
moderate growth at oo in S(d,w,0). Then the series Y o> ay FCYET{I) x" 18 convergent

and can be analytically continued to a function with a moderate growth at oo in

S(d,w,0).

Proof : The convolution (27 g)(t) = 4 [¢ (t — u)g(u)du is defined in S(d,w,0).
Let R be the radius of convergence of the series Yo% g a,x™. Then, for |t| < R,

/Ot (t —u) *g(u)du = /Ot (t— u)anio:oanu"du = niojoan /Ot (t —u) *u"du =

1n)r 1
t—a—l—lzan/ l_e aende t—a-{—lz n —a+ ) (TL+ )tn
a+1+n+1)
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7 d, .1 —a+ DHl(n+ 1) F(n+1)
a t I t a+1 " _t a n—tn
[z g)(t) dt< nz::Oa F(—a—l—l—i—n—i—l) Za Fn+1-—a)

The classical properties of convolution and the hypotheses imply that t*(x~% * g)(¢)
is analytic in S(d,w,0) and has a moderate growth at oo in S(d,w, 0). Since t*(z~*x*

9)(t) =32, a, F(éf{l) s¢" in the disc of convergence of 3572 ana”, t%(z=% % g)(t) is
the analytic continuation of 377 an gy éflrl) t" in S(d,w,0).

Proposition 11. Let (a, 3,7,6) € C* and j € {0,1} Then

1. The formal power series 5;(c, 3,7, d; x) is 2-summable at co in every direction
d# 2k +1+j)5 with k € Z.

2. The Borel transform of order 2, l§2§j(t) 1s convergent and can be analytically
continued in
C — ([, i o[ U [—# 1, =7t o0) to a function gj(«, 3,7, 8;t) which has
a moderate growth at oo in every direction different from (2k + 1+ j)7,

3. Ifd# (2k+1+7)5 the 2-sum of 5;(c, 3,7, 6; x) in direction d is given for all

x in sector S(d, 3,0) by

oo(—d)

sjala, B,7,0;2) = 962/ gi(a, B, 7, 0;t)e " dt? (3)
0

Proof : According to the general properties of formal solutions of differential equa-
tions (c.f [12]), So(a, B,7;x) is 2-summable in every direction that differs from
(2k + 1)%, the directions of maximal decrease of e?thr  (lassic results about k-
summability (c.f [1]) prove that the exponential growth near oo of the Borel trans-
form is at most 2. Let us prove that the growth is moderate. When n is odd,
the factor I'(1 + %) does not allow us to use lemma 9. In order to get around this
difficulty we write

Qp, n n A2n+1 on
—1 = t2 +t t . 4

From the recurrence relation given by item 3 of proposition 8 we deduce recurrence
relations satisfied by the coefficients as,, as,1 and then recurrence relations satisfied
by 22~ and F2»Hs. Finally, by using lemma 9, we obtain differential equations

(n+1) (n+1) "
satisfied by Zn—O F(‘”il)t" and Y07, I‘?@:ﬁ t". We give them in the appendix. These

equations have been calculated by programming with mathematica 3.0.

1. If B # 0, the form of these equations is Y7, pi(7)2@ + Bz*(1 +2)220) (z) = 0
where, for all 4, p;(z) is a polynomial in = the degree of which is less or equal
to i. The singularities are 0, -1, co. The singularity at oo is regular.
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2. If 3 =10 and § # 0, we obtain the form >, p;i(z)z® + 2%(1 + x)22@ () = 0
with the same characteristics as above.

The above remarks show that, if (3,d) # (0,0), the sums of > 7° ) =*2<t" and

n=0 I(n+1)
t" can be analytically continued in C—]—1, —oo[ with a moderate

00 a2n+1
n=0 I(n+1)

growth at co. According to lemma 10, >°

a2n4-1
n=0 T(14+n+3)

be analytically continued in C — ]—1, —oo| with a moderate growth at oo.
Using (4) we conclude the proof of item 2 of the proposition for j = 0. Since
the growth is moderate, the Laplace transform (3) is defined in the sector

S(d, %,0). For 3, we can use item 4 of proposition 8.

t" is convergent and can

3. If =0 = 0 we know (c.f [5] page 195) that the solutions y of BH E(«, 0,7,0)
are the functions y(x) = z(z?) where z(t) is a solution of the Kummer’s equa-
tion K (a,c) : t2"(t) + (¢ — t)2'(t) — az(t) = 0 in which a = =2 ¢ = 2 4+ 1.
Then, By3o(c,0,7,0;t) = oFi(a,a+ 1 — ¢, 1;—%) and By (a,0,7,0:t) =
oFi(c — a,1 — a,1;t*) where oFi(a,b, 1;2) denotes the hypergeometric series

0 W This series is a solution of the hypergeometric equation E(a, b, 1):
x(1—x)2"(x)—(x(a+b+1)—1)2'(z)—abz(x) = 0. The singularities of E(a, b, 1),
0,1, 00 are regular. Hence, the convergent series »F(a, b, 1; z) has an analytic
continuation, denoted by »fi(a, b, 1; z), in C — |1, +oo[ with moderate growth
at oo. We conclude that

for d # (2k +1)% and x € S(d, %,0),

) 40

oo(—d)
so.a(a,0,7,0) = x2/ ofi(a,a+1—¢,1; —tz)e_t%thz,
0

for d # km and x € S(d, %,0),

)40

oo(—d)
s1a(a,0,7,0) = IZ/ ofilc—a,1—a,l; tz)e_t2$2dt2
0

Let (o, 3,7,0,k) € C* x Z and j = ﬁ Classic results (c.f [1]) show that
there exists one analytic function in , denoted by sg(c, 3,7, d;x), such that, for
any d € I(k%,m) and any x € S(d, 5,0),

DR

Sk(a7 /87 e 5a 'I) - Sj,d(a7 /87 e 5a 'I)
We denote by sg(a, 3,7, ;) this analytic continuation. One can easily prove
the next proposition.

Proposition 12. Let (o, 3,7,0,k) € C* x Z and j = 7( V" For each ¢ € }O 3”[

there exists a real number r > 0 such that sg(«, 3,7, 9;x) is 2-Gevrey asymptotic to
5i(a, B,7,6;x) in sector S(kF, 37” —&,7).

Definition 13. Let (o, 3,7,0,k) € C* x Z. We define, for x € 2,

yo(a, 8,7, 03 2) = 2307 D (@, 5,7, 6; ) (5)
yorir(a, 8,7, 0;x) = 27304 D (0, B, 7, 8 1) e (6)
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Then we have

Proposition 14. Let k € Z. Let j = 17(;1)16.

o (h(er, 8,7, ), Y1 (0, B, 7, 35 )) is a basis of solutions of BHE(a, 3,7, 0).
o Letde I(kG,m). Forallx e S(d,3,0),

oo(—d)

yr(a, 8,7, 8 x) = wa (Do) / g5(a, B, 7, 8; 1)e 0% dt2ed @ +52)

0

In order to study the action of the symmetries on the above bases we need two
lemmas.

Lemma 15. Let (o, 3,7,0) € C* and j € {0,1}. We have
1. gj(OZ, Zﬁa -, _267 ZQ?) = §1*j<a7 ﬁu v 57 37)

2. 5j(—a, B,7,0;2) = §j(, 8,7, 0; 2)

Proof : Let (a, 3,7v,0) € C* We define

@\O(aa 2/67 = _257 é+l%x) = ei%(_’y_a_Q)x%(_,y_a_2)§0(a7 Zﬁ7 - _25’ ll’)
Since Po(a, 3,7, 0; ) is a solution of BHE(a, 3,7,0)), we verify that
65”2*5”3@0((1,2'@ —, —i6; 12 x) is also a solution of that equation. Since 7; is the
unique formal solution of BHE(«, 3,7,9) of the form x%("y’a’2)ex2+ﬁx§(:c) with
5(x) € C[[z!]] and having 1 as constant coefficient, we have the first formula of the
lemma for j = 0. In the same way we obtain the other formulae.
Lemma 16. Let (o, 3,7,0,k) € C* x Z. We have

1. Sk(OZ, 2/87 -, _257 él%x) = Sk—l(awga’ya 5a 'I)v

2. Sk(_OC?ﬁafya(S;x) = Sk(a,ﬁ,7,5;$>

Proof : Let k € Z and j = lf(gl)k. According to proposition 12, the function
sp(o, 18, —y, —i6;z) is 2-Gevrey asymptotic to §;(o, i3, —y, —id;x) in sector
S(k%, 37” — &,r). Then si(a, i3, —v, —id;é'2x) is 2-Gevrey asymptotic to
Sj(a,if, —v, —ib;iz) for x being in sector S((k — 1)%,%F — £,r).  Since
Si(a,if, =y, —i0;iz) = §1_j(, B,7,0;2), sk(a,if, —y, —id;€'2x) is the 2-sum of
51-j(a, B,7,0;x) in sector S((k —1)7, 37“ —¢g,r). The unicity of the 2-sum implies
the first result of the proposition. We can prove the second one in the same way.
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Proposition 17. For each k € 7Z,

tia(ye) = _ie((_l)kﬂ%a)%iyk—l (7)
t_1.0(Yk) = Uk

Proof : The following formula
tl,lka(a7 /87 v, 5’ 'I) = 6J32+ﬁx(_i)6(—’y—a)%ix%(—’y—a—Q) SZk(a7 Zﬁ7 _’77 _257 él%x)

and lemme 16 imply the first result for the even indices. Similarly, we can prove the
other results.

Proposition 18. For all (e, h, k) € {—1,1} X Z X Z,

te,hyk — (_i)heh((fl)h%,yfea)%iykih (8)
Proof : Relation (7) is the formula (8) for ¢ = 1, h = 1. By applying ¢ 1 to (7)
and using item 2 of the proposition 4 we obtain relation (8) for e = 1,h = —1. By
induction we can prove the relation for ¢ = 1, h € Z. Finally we apply t_; o to the
above relation and we obtain (8).

Connection to the solutions defined by P. Maroni

We are now going to compare the functions B*, B~, ... defined by P. Maroni on
subsets of C with our functions y; defined on €.

Let us assume that, for z € C such that Re(x) > 0, 2% = e??l#l+7a182 wwhere
argr € } 2,’5[ and let Z be the element of {2 with argz € }—g,%{ and whose
projection onto C* is z.

Accordmg to proposition 12, the function yo(Z) is asymptotic at infinity to 7g in
sectors S(0, % — e, r). Thus, the definition of BY(«, 3,7, ;) in [5], page 210 and
unicity given by proposition 3.4.1 in [5] imply

yo(Z) = BT (), Re(z) >0, arg? €

2] o

Owing to proposition 18 and the definitions of B~, E* and E~, we can easily
obtain the following identities

y1(T) = —ie_(7+“)%iE+(x), Im(z) >0, argz €0, 7|
yao(F) = —eHIEB(2), Re(x) <0, argd € |-, -] (10)
y_1(7) = ze(w" TE(z), Im(z) <0, argZ € |-m,0]

On the other hand, taking the sectors in which y_;(z) and y;(x) are asymptotic
to 71(z) at oo into account, it seems that those functions are not equal to H™(x).
We need a more detailed study to make clear the connection between y;(x) and

H(x).
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4 Stokes and connection coefficients

As two bases of solutions of BH E(«, 3,7,0) are connected by an invertible constant
matrix we can give the following definitions of Stokes and connection matrices.

Definition 19. Let (o, 3,7,0,k) € C* x Z. Let My(a, 8,7,9) such that, for all
x €,

(Yar(a, 8,7, 0;2), yar—1(cv, 8,7, 6; 1)) =
(Yar (v, B,7,6; %), yars1 (e, B, 7, ;1) ) Mak(a, 8,7, 0)
(Yo, 8,7, 0;2), yars1(a, B,7,6; 1)) =
(Yarv2(a, 8,7, 05 2), Yarr1(, 6,7, 65 7)) Maia (o, 8,7, 0)

These matrices are called Stokes matrices.

Definition 20. Let (o, 3,7,8) € (C — Z) x C3, we call connection matriz of
BHE(a, 3,7,0) the matriz L(«, 3,7,0) defined by the following relation, available
for all x € Q,

(N(Oé, 57 Y, (57 Z‘), M(Oé, 57 Y5 57 QJ)) = (ZJO(O% ﬁu Y, 57 I), Z/fl<047 ﬁu Y, 57 I)),C(Oé, 67 Y 6)
(11)
The connection coefficients are the complexe numbers l;;(c, 3,7,0) defined by

E(O[, ﬁ7 v 5) = (lij(aa ﬁv e 5))i7j€{1»2}

Proposition 21. Let (a,3,7,6,k) € C* x Z.

Mo (00, 5.7, 8) — < (1) czk(oz,lﬁy%ﬂs) ) Mopi1(a, 8,7,0) = < c%ﬂ(alﬁ . (1) )

(12)
Complex numbers ci(a, 3,7,0) are called Stokes coefficients.

Proof : Let (o, 3,7,0,k) € C* x Z. Let a, copy1 € C such that, for all x € Q,
Yok (v, B,7,0; ) = ayopso(cr, 5,7, 0; ) + corr1yorr1(a, 5,7, 9; ). Then we have sq, =
aSok+2 + 62k+1x*752k+16m2+ﬁm. According to proposition 12, there exists a sector
S((2k+1)%, %,7) where sq(x), sop+2() (respectively sopii(x)) have, as aymptotic
expansion, 53° (respectively §1). If z — oo in this sector, we obtain a = 1.

In the same way we obtain Mayy,.
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4.1 Functional relations satisfied by Stokes and connection coefficients

By applying transformations ¢.j, to yx—1 = cxyx + Yr+1 We obtain

Proposition 22. For all (e, h, k) € {—1,1} X Z X Z,

Chp = 6(—1)k+hh7§i£€7hck (13>
cp = e(’l)k_lvk%iﬂﬁkco (14)
C — 7?_1’0(3]C (15)

So, every Stokes coefficient can be expressed in terms of ¢y. Relation (13) is
equivalent to the two relations (14) and (15).

Let us denote by W (y;(x), y2(x)) the wronskian of two solutions y;(z), y2(x) of
BHE(a, 3,7,9).

Proposition 23. For (a,(3,7,0,k,e) € C* x Z x {—1,1}, we have
W(y2k<057 ﬁu v, 57 I), y2k+€<a7 67 7> 57 .’L’)) = 2x7(a+1)65$+12 (16>

W(N(a, 8,7, 0; ), M(a, 8,7, 0; 2) = —ax— @D fote? (17)

Proof : The wronskian of two solutions of BHFE(«, 3,7,d) is a solution of the
differential equation 2W'(x) + (1 + a — Bz — 22*)W (x) = 0. Thus it is of the form
K x_(a+1)eﬁx+$2, in which K is a complex number independent of x. By definition
of Yok, Yok—1, W Yok, Yar_1) = a2~ @D+ £(7) with

f(x) = 2895051 — 5672(8%)/821271 + (—’71‘72 + ﬁﬁfl)szksqu + 217718219(82;371)/

According to proposition 12 there exists a sector S(2k%, 7, 7) in which f(z) admits
25081 — 1 2(50)'81+ (—yx 2+ B2 71)5p51 + 27150 (51)’ as asymptotic expansion. Hence

the limit of f(x) when x — oo in the sector is 2.

Let t € T. One denotes by M (t,0)(«, 3,7, d) (respectively by M(t, 00)(«, 3,7, 9))
the matrix expressing t in the basis (N(«, 3,7,0;x), M(«, 3,7,0;x)) (respectively
in the basis (yo(c, 5,7, d;x),y_1(a, 5,7,9;x)). So M(t,0) and M(t,00) are maps
from (C —Z) x C? into the set of matrices whose coefficients are complex numbers.
Proposition 18 and the definition of the Stokes matrices give

—co 1 ietr it
M@l,—hoo) = ( 1 0 ) ( 0 je(-rta)gi (18>

0 1 —ie(T1m)E 0
M(tl,l,oo>:(1 )(0 _iem_a)gi) (19)
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M(t_10,0) = ( (1) (1) ) (20)

Matrices M (t, 00) can be expressed in terms of Stokes coefficients, for every ¢t € T,
so equality (22) of the next proposition provides relations that connect Stokes and
connection coefficients.

Proposition 24. Let t,t' € T.

M('t,0) = M(t',0) t'M(t,0)

M(#'t,00) = M(t', 50) ¥ M(t, 0) (21)

LM (t,0) = M(t,c0)t(L) (22)

Proof : By applying t' to the relations (tyo,ty_1) = (yo,y_1)M(t,00) and
(tN,tM) = (N, M)M(t,0) and using item 2 of the proposition 4 we obtain the
first two relations of the proposition. In the same way with ¢ and the connection
relation (N, M) = (yo,y—1)L we obtain (22).

The next proposition gives the fundamental relation of section 4.2.

Proposition 25. For (a,(3,7,0,k) € (C —Z) x C* x Z we have

det(L(a, 3,7,0) = —% (23)

Proof : From the connection relation we have

N M _ [ Yo Y1),
N M Yo Yo
The determinants are equal. Then relations (16) and (17) provide the result.

The following proposition gives a representation of each Stokes and connection
coefficient in terms of ;.

Proposition 26.

l12 = 7?—1,0l11

l21 = iebﬂra)%i 1’{17,1[11

l22 = ie(“/_a)%i g—l,fllll

—Tae(—a-’ﬁ)%ico = 5_170l11 1?1,2l11 — e—om I 7?—1,2l11

L e e
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Proof :
Relation (22) for t = t_; o and propositions 18 et 6 give

01 ~
DR

Lo =1t 10l
~ 24
loy = t_10l22 (24)

hence

We have
10
M(tl,—lao) - ( 0 ea%i )

then, taking (18) into account, relation (22) for ¢t =¢; _; can be written

1 0 —co 1 ierta)ii -

that is equivalent to the system

= —ie0T T ¢yt gl +ieTFOT )l

lig = —ie=®Ti¢, t1-1l12 Hie(1m) 5 t1 1l

lyy = e+ e t1—1ln (26)
lyy = iel~)F t1-1la

From (23) we deduce that det(f; _1£) = —2
Then the system of the first two equations of the above system is equivalent to
the following system

(-

Now, taking the two last equations of system (26) into account, we see that
the second equation of the above system is nothing else but relation (23). Hence,
according to (23), system (26) is equivalent to

= —ie(ﬂ%‘)%i lia 151,71121 —l—ie(_y_“)'%i I 751,71122
= —ietIT |, t1—1l11 e t1—1l12

|
5]
@)
=

(27)

N[Q

—2cg = —ieCTFNT [y by loy 4+ €Ty {y e
oy = ie(wra)%li §1,71l11 (28)
lyg = e VT 1l

Using relations (24) concludes the proof.

4.2 A fundamental relation for [}

Relation (23) can be written

[0 T ~ T o~ ~
5= ie T ], o1l — ie(rre e t_10l11 t1,—1ln (29)
The following proposition shows that this relation is sufficient to construct a family

of possible Stokes and connection matrices.
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Let us denote by Myys(A) the set of (2 x 2) matrices with coefficients in A.
Relation to prten = eihlgegle/ate/e,hurh leads us to introduce the set G = {lt, (I,t) €
AxT}.

Proposition 27. Let A be a function from (C — Z) x C? into C. Let vy be the
function from (C —7Z) x C3 into C defined by

—

7’}/0 = e(aiw)%i IA{,LQ)\ 5172)\ - 6(70{77)%i A 57172)\ (30)
Let £ be the matriz defined by
(A 5_170)\
£ = ( ,L'e(nyra)%iEl’_l)\ ie(wfa)%ii‘_l’_l)\ ) (31)
If the relation
—% = ie(ﬁ{ia)%i A 1’{,17,1)\ - iebﬂra)%i Efl,O)‘ 1?17,1)\ (32)

is satisfied then there ezists a unique family of matrices of Mayxa(A), denoted by
(M(t, 00, A))ieq, which satisfies the following relations

—v 1 ie0TITt
M(t17,1,00,)\) = ( 1 0 ) ( 0 je(-rta)gi

M(t_10,00,A) =T (33)
M(tyg,00,A\) =1
2. Forany (I,t) € Ax T,
M(it, 00, \) = IM(t, 00, \) (34)
3. Foranyt,t' €T
M(t't,00,\) = M(t', 00, \) #'M(t, 00, \) (35)
Moreover for allt € T' we have
LM (t,0) = M(t,\,00)t L (36)

Proof :

1. Unicity of the family (M (t, 00, \))tcq :

Assume the existence of a family (M (¢, 00, A));eq described by the proposition. We
have

I =M(t19,00,\) = M(ty1-1,00,\) = M(t11,00, N1 1 M(t; 1,00,
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hence
M(tl,la o0, )\) = (tl,lM@l,fla o0, )\))71 = tl,lM@l,fla o0, )\)71 (37)
that is equivalent, according to (33), to
0 1 N ek
M(tl,lvoov)‘) = ( 1 .4 ) < 0 —jelr—) i ) (38)

in which v, = e 73! 51,17.
We remark that, for j € {0, —1},

v = t_1.07 (39)

Let t € T.
If t =t with b € N, then by induction we have

M (1, 00, A) = M(ty,1, 00, )\)51,1]\{[(151@71, 00, A) = ...
= M(tl,la oo, )\)tl,lM(tl,la oo, )\)...tlfilM(tl’l, o0, )\)

If t = ¢, _, with b € N,
M(tl,—ha o, /\) = M(tl,—la oo, )\)El,—lM(tl,—la o0, /\)...E}iillM(tl’_l, oo, )\) (41)

(40)

Ift =t_y; with h € Z, we have M (t_y 4,00, \) = M(t_1 0,00, \)t_1 oM (t1 4,00, \)
then
M(t,Lh, o0, )\) = tfl,OM(tl,ha o0, )\) (42)

Finally, if (I,t) € A x T, we have M(Ilt, 00, \) = IM(t, 00, \)
From the above we deduce the unicity of the family (M (t, 00, \))teq-

2. Existence of (M (t,00,\))ieq -

We define M(t, 00, \) as following,
M(ty_1,00,A), M(t19,00,A), M(t_10,00,A) by (33),
M(ty1,00, ) by (38),
M(t1 5,00, A) by (40) et (41),
M(t-
(lt 00 )\) IM(t, 00, \)

We have to prove that this family satisfies relations (35). In the sequel, we shall
often write M(t. ) instead of M(t.p, 00, ). Let us first prove that for each h € Z

tN_L()M(tLh) =€ 2041‘7\4(15 h) (43)

By using definitions (33) and (38) of M(t11) and M (¢, 1) and relation (39) we
obtain (43) for h = 1 and h = —1. By induction we conclude.
From relation (43) and definition of M (¢_, ;) we obtain

M(t_1p) =e RSN (1 ) (44)

We are now going to prove relation (35) when (t,¢) becomes in turn equal to
(trnrs tn)s (E—iprs tin)s (Guws toin), (Brpry Eorn)-
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e Let us prove relation i

M (typtin) = M)t w M () (45)

From their definitions, M (¢, ;) and M(t, ;) verify (37). As a result we have

M (ty1)ta M (ty 1) = M(t1,-1)t, 1 M (t11) = 1 (46)

By induction we can prove relation (45) for the two cases hh' > 0 and hh' < 0.

e Let us prove relation M(t_y pity ) = M(t,Lh,)ﬂLh/M(tLh).
Definition (42) gives M(t_ypt1p) = M(t_1pn) =t 1.0M(t1psn).

We also have
Mty p )ty M(trn) =t oMty p)t-1 ot M(tis) =

to{ Mt )i Mtip)} =t 1 0M(t_1pin)

e Let us prove relation M (¢ pt_yp) = M(typ )t M(t_14).

Using (34) and (44) we obtain
M(tl,h’t—l,h) = M(@ih §azt_17h/+h) = e’h §aZM(t—1,h’+h) =

N FaioWAMTai Ny = TN )
Using (44) and (45) we have:
Mty )b M (t_1 ) = Mty )t e 29 M (t ) =
"M (b Ve M (t1 1) = €2 M (ty g i)
e Let us prove the relation M (t_ypt_15) = M-y p)l_1pwM(t_14).

From (34) we have: M(t_ypt_14) = M(" 2% ip) = ¥ 3M (typrin).

Using (44) and (45) we obtain:
M(t—l,h’)t—l,h’M(t—l,h) - M(t—l,h’)tl,h’t—l,Ot—l,OM(tl,h) -

€h/%aiM(t1,h’)fl,h’M@l,h) = eh/%aiM@lvh”rh)'

3. The family (M (t, 00, \)):ec Satisfies relations (36) :

We need the following lemma.

Lemma 28. Let (M(t,00,\))icc be the family defined above. Lett, t' € T. If
1. £M(t,0) = M(t, 00, \)tL,
2. £M(t',0) = M(t', 0o, V' £,

then we have

LM(t't,0) = M(t't, 00, 'L
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Proof : By using the assumptions of the lemma, the first relation of (21) and relations
(35) we obtain:

L£M(t't,0) = £LM(#,0) ' M(t,0) = M(t',00,\) t'£ #'M(t,0) =
M(t,00,\) t{LM(t,0)} = M(t, 00, \) T{M(t,00, \)iL} =
M(t',00,\) t'M(t,00,\) 'L = (t t,00,\) TtL.

0 1

e For t =t_; relation (36) can be written £ ( 10

) =1t_10£. We easily verify
that it is true.

e Fort =t; _; we prove relation (36) by putting (7o, £) instead of (co, £) in the proof
of proposition 26 and by using assumption (23) which means that det(£) =

a

.
e For t = t;4, we apply t11 to £M(t11,0) = M(t;,_1)£ and use (37) to obtain
(36).

Relations (36) are true for ¢1 4, t; 1 and ¢_;. By using (2) and lemma 28 we
prove that, for all t € T', (36) is true.

4.3 Some relations deduced from the fundamental relation

Equality (22), with a particular t € T', provides some new relations satisfied by the
Stokes and connection coefficients. We first obtain relation (47) which is, taking
(14) into account, a functional relation for c.

Proposition 29. Let (o, 3,7,6) € (C—7Z) x C3. The Stokes coefficients c;, satisfy

CoC1 + CoCs + Cacs + cocrcacs + €™ epcy = 2€™ (cos T — cos ) (47)

Proof : By using propositions 18 and 6 and the Stokes matrices we obtain

10
Mt 40 = (g oo (43)
(=r+a)mi )
M(t1,-4,00) = Mo ' M M5 My ( . o) ) (49)

Then, by (22) for t = t; _4, we have
el=rta)mi

1 0 _ _ _ _
L < 0 e2omi ) = Mo 1/\/11 1~/\/12 1~/\/13 ' < 0 e(y+a)mi ) L (5())

The matrices M (t; _4,0) and M (t; _4, 00) have the same trace. It implies the given
relation.

With the next proposition we try to obtain the connection coefficients in terms
Of Co.
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Proposition 30. Let (a,3,7,0) € (C—7Z) x C*. We have

eI (e + ¢y + coercy)

lin t1 0l = . 51
11 t-1,0l11 2(—1 + e 2am) (51)
Proof :
According to proposition 26 we can write
(I 571,1511
- ( e@tNTiy _yly eCITIE iy (52)

By using (47), we prove that relation (50) is equivalent to the following system

(creg + 1 — @™ +i(cy + g + coerca)e VIR 11y =0

(c1cp + 1 — ™) olhy +i(co + co + cocren)e T 111, =0

(e1+4 ¢34 creacs)e™ ™y — ie(aﬂ)%i(—em(_aﬂ) +1+ 0102)51,71111 =0

(1 +cs+ 010203)6_27“{71,0111 - ie(_aﬂ)%i(—em(aﬂ) +1+ C1C2)£71,71511 =0
(53)

o If ¢y + ¢ + cocica # 0 then from the equations 1 and 2 of the system (53) we get

(crcp + 1 — el
i(co + ¢ + coercp)el@tN T

751,—1511 =

and o
- (crea+1— e(_"_”’”)LLJu

t_1 1l = —
Lo i(co 4 ca + cocrcp)el TN

By using these identities in the fundamental relation (29) we obtain (51).

o If cg + co + cocico = 0 then from the first equality of the system we have the two
following cases
If [1; = 0 then we have (51).

If cico+1—e @™ = 0 then cico+1—e"2 7™ = 2isin(am)e™™ # 0 (a & Z).
Then equation 2 of system (53) implies #_1l;; = 0 and (51).

Proposition 31. Let (o, 3,7,0) € (C —Z) x C3. We have

Cy = —Coeiﬂ—(_o‘_'Y)
cicy = —1 4 em(=a=)

lll(avﬁvf%(s) =0 {

Proof :
By (51) and (29), l11(a, 5,7,9) = 0 is equivalent to

Co + C2 + cpciCo = 0
511(—04757’77 5) 7é 0
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which is, by the second equation of system (53), equivalent to

Co+ Co + 00¢102 =0
c1co + 1 — eiml=a=7) —

which is equivalent to

Cy = —coei”(*a*“f)
cicy = —1 4 (=)

Comparison with the coefficient K, of P. Maroni

P. Maroni defines, in [5] (pages 214, 227) K, («, 8,7,9), Kao(a, 3,7, 96), Mi (o, 3,7, 6),
My (o, 3,7,8) by N = K\ B* + KoH* and B = M N + Mj M.

We use proposition 23 to easily prove M} = —2{_; gly; and M2 = 2[5. Thus,
we can complete lemma 4.4.1 of [5], page 227, by the following identities

o~
Ky = 575—1,0]\/[}r =ln

5 Conclusion

The integral representations of the k-sums at co of a formal power series are, usually,
only defined in the vicinity of oo. For the solutions of the BHE, the integral
representations obtained are defined in sectors of infinite radius. We have also
shown the same phenomenon for the double confluent Heun equations (c.f [8]) and
for the triconfluent Heun equations.

Except for the BHE(«,0,7,0), which are the Kummer equations, we cannot
express the Stokes and connection coefficients of the BHE in terms of any known
functions. As these coefficients are analytic functions in the parameters it would be
useful to know if [1; is the only analytic function in the parameters which satisfies
the fundamental relation (32).

6 Appendix

6.1 Differential equation satisfied by >>>° %t"

Coefficient of z(x) :

5@+ a— )4+ at)(-2+a+)(-TH+ By +)
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Coefficient of 2/(z) :
1 2 3 2 3 2 3.2 3
g(10965— 46023 —1053° — 72087y + 1002 By + 713y 4+ 15087* — 156°4* — 1087+
3343 —2800 +10a26 471325+ 10476 — 30375 — 10725+ 35%%6 — 15362 + 36752 4-0°) +
1
3 (62243 — 240023 + a* 8 — 40883y + 7602 By 4 1024872 — 602 By* — 11687> + 567" —
5600 4 20025 + 31270 — 4a’y6 — 60720 4 49°8)z

Coefficient of 2"(x) :

1
—24(=3B+ By +9) + 5(28845 — 28023 — 1473% — 9008y + 202 By + 423%y+

8437* — 33%y* — 267 — 3086 + 2026 + 42376 + 5675 — 63°76 — 2720 — 3367 )x+
(25903 — 25023 — 94087 + 3By + 11787 — 587 — 1546 + a6 + 4275 — 3725) 2

Coefficient of 2 () :

—12(—296 4 367 + 38)x + 2(9986 — 2023 — 273 — 1623y + 35°y + 667> —
540 4 3320 + 4y0) 1 — 4(—4963 + o B + 983y — 547 + 185 — 276)z?

Coefficient of () :

—8(—2983 + By + )2 — 8(=596 + 55y + 8)z® — 8(—883 + 3% + 63y + 20)z*

Coefficient of 20 (z) :
32 23(1 4+ z)°

6.2 Differential equation satisfied by >>° , %t”

Coefficient of z(z) :

— o5 =)0+ a = 7)(=6 +at ) (~4-+ a+)(=95 + B+ 0)

Coefficient of 2/(z) :

%(45045 — 940?38 — 3153% — 201637 + 14a”By + 1433%y + 29457* — 213°+*—
1408743 + 33~ — 7288 + 14025 + 1433%6 + 20078 — 423248 — 14~%6 + 332426 — 2135+
3670 +6%) + é(19504ﬁ — 416026 + a* 5 — 97363~ + 10002y + 18403~% — 60 3~*—

1568y + 58y* — 14560 + 28020 + 6006 — 4a’yd — 84~%6 + 4730
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Coefficient of 2"(x) :

1
—40(—5ﬁ+67+5)+§ (60123 —360°3—2433> —1476 3y +20a° B+ 543>y +1083~* —
33%y% — 23+ — 5006 + 2020 + 54376 + 7276 — 63°76 — 2725 — 386%)x+
(49783 — 3103 — 14683y + 3 By + 1478+ — 587 — 2500 + a0 + 54~ — 3+%6)?

Coefficient of 2 () :
— 4(—1398 + 118y + 116)x + 2(14783 — 2023 — 333° — 19837 + 33%y + 657> —
660 + 3320 + 4v0)x? — 4(—=T7128 + o3 + 1183~ — 54y* + 226 — 2v6)z®
Coefficient of 2 (z) :
—8(—=358 + By + 0)x? — 8(—1043 + 3% + 63y + 26)2® — 8(—698 + 557 + §)z*

Coefficient of 20 (z) :
3262°(1 + z)*
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