
Extremal Kähler AC⊥-surfaces

W lodzimierz Jelonek

Abstract

The aim of this paper is to give an example of a Kähler extremal metric

with harmonic anti-self-dual Weyl tensor on the Hirzebruch surface F1.

Introduction.

It is known that self-dual Kähler 4-manifolds (M, g, J) are Bochner-flat. M. Mat-
sumoto and S. Tanno proved [M-T] that every Bochner flat Kähler manifold satisfies
the condition

∇Xρ(Y, Z) =
1

(2dimM + 4)
(g(X, Y )Zτ + g(X, Z)Y τ + 2g(Y, Z)Xτ (*)

−g(JX, Y )(JZ)τ − g(JX, Z)(JY )τ),

where τ is the scalar curvature of (M, g). Consequently, Ricci tensor ρ of any Kähler
Bochner-flat manifold satisfies the condition

∇Xρ(X, X) =
2

n + 2
Xτg(X, X), (**)

where τ is the scalar curvature of (M, g) and n =dimM . This property was studied
by A. Gray in [G]. A. Gray called Riemannian manifolds satisfying (∗∗) the AC⊥

manifolds. In [J-1] we showed that every Kähler surface has a harmonic anti-self-dual
part W− of the Weyl tensor W (i.e. such that δW− = 0) if and only if it is an AC⊥-
manifold. We also proved that a Kähler manifold is an AC⊥-manifold if and only

Received by the editors March 2001.

Communicated by L. Vanhecke.

1991 Mathematics Subject Classification : 53C25,53C55.

Key words and phrases : Extremal Kähler surface; Harmonic anti-self-dual Weyl tensor; Hirze-

bruch surfaces.

Bull. Belg. Math. Soc. 9 (2002), 561–571



562 W. Jelonek

if it satisfies the condition (*). In that way we generalized the result of Sekigawa
and Vanhecke [S-V] who proved that Kähler AC⊥ manifold with constant scalar
curvature has parallel Ricci tensor. In [J-1] we have proved (in the real analytic
case, for the general case see [A-C-G] ):

Theorem. Every compact Kähler surface (M, g, J) with harmonic anti-self-dual
Weyl tensor (δW− = 0) and non-zero signature σ(M) is an Einstein manifold.

In [J-1] I have also proved that the only such irreducible examples with σ(M) = 0
should be extremal metrics on ruled surfaces. The aim of the present paper is to
construct an example of an extremal Kähler metric with non-constant scalar curva-
ture and harmonic anti-self-dual Weyl tensor on the Hirzebruch surface F1 which is
a ruled surface of genus 0 and to show that this is the only such example in the class
of Hirzebruch surfaces Fk, k ∈ N. First we investigate the general construction of
cohomogeneity one metrics on Hirzebruch surfaces. Using the methods of B. Bergery
(see [B],[S],[P]) and our results from [J-1] we reduce the problem to a certain ODE of
the second order. We show that this equation has a positive solution satisfying the
appropriate boundary conditions only on the first Hirzebruch surface F1. We show
that on Fk with cohomogeneity one metric there exists a totally geodesic distribu-
tion D such that its orthogonal complement D⊥ in TM is umbilical. This enables us
to verify that the tensor C(X, Y ) = ρ(X, Y )− 2

n+2
Xτg(X, Y ), where ρ is the Ricci

tensor of the metric given by this construction, is Killing and we shall prove in this
way the existence of an extremal metric with properties that interests us. We also
investigate the opposite Hermitian structure J (described in [J-1]) of our example
(F1, g, J). We shall show that the Kähler structure J is the natural opposite almost
Hermitian structure of a Hermitian structure J . In this way we also give a new
example of compact 4-dimensional AC⊥-manifold (compare [Be] p.433). We have
divided the paper into three sections. In the first section we recall some basic prop-
erties of Hermitian manifolds, Killing tensors, distributions and foliations. In the
section two we investigate the general construction of cohomogeneity one metrics on
4-manifolds M = (a, b)× P where p : P → N is a circle bundle over a Riemannian
surface of constant sectional curvature. We show that on M there exist a Killing
tensor with two-dimensional eigendistributions and two Hermitian structures, which
commute with this tensor. The section three is devoted to the construction of the
example of compact Kähler surface with harmonic anti-self-dual Weyl tensor.

1 Hermitian 4-manifolds.

Let (M, g, J) be an almost Hermitian manifold. We say that (M, g, J) is a Hermi-
tian manifold if its almost Hermitian structure J is integrable. In the sequel we
shall consider 4-dimensional Hermitian manifolds (M, g, J) which we shall also call
Hermitian surfaces. Such manifolds are always oriented and we choose an orienta-
tion in such a way that the Kähler form Ω(X, Y ) = g(JX, Y ) is self-dual form (i.e.
Ω ∈ ∧+M). The vector bundle of self-dual forms admits a decomposition

∧+M = RΩ⊕ LM, (1.1)

where by LM we denote the bundle of real J-skew invariant 2-forms (i.e LM =
{Φ ∈ ∧M : Φ(JX, JY ) = −Φ(X, Y )}). The bundle LM is a complex line bundle
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over M with the complex structure J defined by (JΦ)(X, Y ) = −Φ(JX, Y ). For a
4-dimensional Hermitian manifold the covariant derivative of the Kähler form Ω is
locally expressed by

∇Ω = a⊗ Φ + J a⊗ JΦ, (1.2)

where J a(X) = −a(JX). The Lee form θ of (M, g, J) is defined by the equality
dΩ = θ ∧ Ω. We have θ = −δΩ ◦ J . A Hermitian manifold (M, g, J) is said
to have Hermitian Ricci tensor ρ if ρ(X, Y ) = ρ(JX, JY ) for all X, Y ∈ X(M).
The conformal scalar curvature κ of a Hermitian manifold (M, g, J) is defined by
κ = τ − 3

2
(|θ|2 + 2δθ).

An opposite (almost) Hermitian structure on a Hermitian 4-manifold (M, g, J)
is an (almost) Hermitian structure J whose Kähler form ( with respect to g) is
anti-self-dual.

On a Riemannian manifold a distribution D ⊂ TM is called umbilical (see [J-3])
if ∇XX|D⊥ = g(X, X)ξ for every X ∈ Γ(D), where X|D⊥ is the D⊥ component of
X with respect to the orthogonal decomposition TM = D⊕D⊥. The vector field ξ

is called the mean curvature normal of D. An involutive distribution D is tangent
to a foliation, which is called totally geodesic if its every leaf is a totally geodesic
submanifold of (M, g) i.e. ∇XX ∈ D if X is a section of a vector bundle D ⊂ TM .
In the sequel we shall not distinguish between D and a tangent foliation and we
shall also say that D is totally geodesic in such a case. A Riemannian metric on a
manifold M is called bundle like with respect to a foliation D ⊂ TM (see [M]), if a
geodesic perpendicular at one point to a leaf remains perpendicular to all the leaves
it meets, equivalently if X ∈ Γ(D⊥) then ∇XX ∈ D⊥.

On any Hermitian non-Kähler 4-manifold (M, g, J) there are two natural distri-
butions D = {X ∈ TM : ∇XJ = 0}, D⊥ defined in the open set U = {x : |∇Jx| 6=
0}. The distribution D we shall call the nullity distribution of (M, g, J). From (1.2)
it is clear that D is J-invariant and that dimD = 2 in U = {x ∈ M : ∇Jx 6= 0}.
By D⊥ we shall denote the orthogonal complement of D in U . On U we can define
the opposite almost Hermitian structure J by formulas JX = JX if X ∈ D⊥ and
JX = −JX if X ∈ D which we shall call natural opposite almost Hermitian struc-
ture. It is not difficult to check that for the famous Einstein Hermitian manifold
CP

2]CP
2

with D. Page’s metric (see [P],[B],[S],[K],[LeB]) the opposite structure J

is Hermitian and this structure extends to the global opposite Hermitian structure .
By an AC⊥- manifold (see [G]) we mean a Riemannian manifold (M, g) satisfying

the condition

CXY Z∇Xρ(Y, Z) =
2

(dimM + 2)
CXY ZXτg(Y, Z),

where ρ is the Ricci tensor of (M, g) and C means the cyclic sum. A Riemannian
manifold (M, g) is an AC⊥ manifold if and only if the Ricci endomorphism Ric

of (M, g) is of the form Ric = S + 2
n+2

τId where S is a Killing tensor, τ is the
scalar curvature and n =dimM . Let us recall that a (1,1) tensor S on a Riemannian
manifold (M, g) is called a Killing tensor if g(∇S(X, X), X) = 0 for all X ∈ TM .
It is not difficult to prove the following lemma:

Lemma. Let S ∈ End(TM) be a (1,1) tensor on a Riemannian 4-manifold
(M, g). Let us assume that S has exactly two everywhere different eigenvalues λ, µ
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of the same multiplicity 2, i.e. dim Dλ= dim Dµ = 2, where Dλ,Dµ are eigendis-
tributions of S corresponding to λ, µ respectively. Then S is a Killing tensor if and
only if both distributions Dλ and Dµ are umbilical with mean curvature normal equal
respectively

ξλ =
∇µ

2(λ− µ)
, ξµ =

∇λ

2(µ− λ)
.

2 Hermitian surfaces with Hermitian opposite natural almost

Hermitian structure and Killing tensors.

Let us recall the following result proved in [J-1]:

Proposition 1. Let S be a Killing tensor on a 4-dimensional Riemannian
manifold (M, g). Let us assume that S has two 2-dimensional oriented eigendistri-
butions Dλ,Dµ. Then there exist two opposite Hermitian structures J, J on M which
commute with S.

We shall prove

Proposition 2. Let (M, g) be a 4-dimensional Riemannian manifold. Let D be
a two dimensional totally geodesic Riemannian foliation on M such that g is bundle
like with respect to D. Then M admits (up to 4-fold covering) two opposite Hermitian
structures J, J such that J |D = −J |D, J |D⊥ = J |D⊥. The nullity distribution of
both J and J contains D.

Proof. To prove the first part of the Proposition it is enough to show that on M

there exists a Killing tensor with eigendistributions D,D⊥. Since the foliation D is
totally geodesic and bundle-like it follows that ∇XX ∈ Γ(D) (resp.) ∇XX ∈ Γ(D⊥)
if X ∈ Γ(D) (resp.) X ∈ Γ(D⊥). Consequently, a tensor S defined by

SX = λX if X ∈ D

SX = µX if X ∈ D⊥

where λ 6= µ are two different real numbers is a smooth Killing tensor. We can
assume (up to 4-fold covering) that the distributions D,D⊥ are orientable. Let us
denote by J the only almost hermitian structure which preserves D,D⊥ and agrees
with their orientations. We define J by J |D = −J |D, J |D⊥ = J |D⊥. From Prop. 1.
it follows that both J and J are hermitian. Now let {E1, E2} be a local orthonormal
frame on D. Then it is clear that

∇J(E1, E1) + J(∇E1
E1) = ∇E1

E2.

It follows that ∇J(E1, E1) ∈ D and consequently, ∇E1
J = 0. Analogously ∇E2

J =
0. �

Corollary 1. Let us assume that (M, g,D) with totally geodesic 2-dimensional
distribution D admits two hermitian structures J, J constructed as above. Let us
assume that a positive function f ∈ C∞(M) satisfies a condition df(D⊥) = 0. Then
D is also contained in the nullity of both J and J with respect to the metric fg and
D⊥ is umbilical with respect to fg.
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Proof. It is clear that J, J are Hermitian with respect to the metric g = fg.
We shall show that D is totally geodesic and D⊥ is umbilical with respect to g. It
is clear in view of the formula

∇XY = ∇XY + df(X)Y + df(Y )X − g(X, Y )∇f,

where ∇ is the Levi-Civita connection of g since ∇f ∈ Γ(D). �

Let (M, g0) be a compact Riemannian surface of constant curvature K ∈ R and
let p : P → M be a principal circle bundle over M with a connection form θ such
that dθ = cp∗ω where ω is the volume form of (M, g) and c ∈ R. The manifold P

with the metric gP = θ⊗ θ + p∗g0 is a 3-dimensional A-manifold. Let θ] be a vector
field dual to θ with respect to gP . Let us consider a local orthonormal frame {X∗, Y∗}
on (M, g0) and let X, Y be the horizontal lifts of X∗, Y∗ with respect to p : P → M

(i.e. θ(X) = θ(Y ) = 0 and p(X) = X∗, p(Y ) = Y∗) and let H = ∂
∂t

, Z = θ]. Now let
us consider the manifold Q = R× P with the metric

gf,h = dt⊗ dt + f(t)2θ ⊗ θ + h(t)2p∗g0. (2.1)

Let us define two almost Hermitian structures J, J on Q as follows

JH =
1

f
Z, JX = Y, JH = −

1

f
Z, JX = Y. (2.2)

Proposition 3. Let D be a distribution spanned by the fields {θ], H}. Then
D is a totally geodesic foliation and D⊥ is umbilical with respect to the metric gf,h.
Both structures J and J are Hermitian and D is contained in the nullity of J and
J .

Proof. Since [H, θ]] = 0 it is clear that D is a foliation. We also have ∇f,h
H H =

0,∇f,h

θ] θ] = −1
2

gradgf,h
f 2 ∈ Γ(D). Since θ] is a Killing field for gf,h is follows that

[X, θ]] = 0. We shall show that g(∇Hθ], X) = 0. In fact

2g(∇Hθ], X) = g([X, H], θ])− g([θ], X], H)− g([θ], H], X) = 0. (2.3)

Note that if h = 1 then the mapping pQ : Q → M given by pQ(t, x) = pP (x) is a
Riemannian submersion. It follows that in this case both distributions D and D⊥

are geodesic i.e. ∇UU ∈ Γ(D)( resp. ∈ Γ(D⊥)) if U ∈ Γ(D) (resp. if U ∈ Γ(D⊥)) or
equivalently a metric gf,1 is bundle like with respect to the foliationD. Consequently,
if λ, µ are two different real numbers, then the tensor S defined as follows:

SU = λU if U ∈ D, (2.4a)

SU = µU if U ∈ D⊥, (2.4b)

is a Killing tensor. Thus both J and J are Hermitian if h = 1. Note however that
the metric gf,h is conformally equivalent to the metric gu,1 where u = f

h
◦ φ−1 where

dφ = 1
h
dt and the conformal factor h2 satisfies the assumptions of Corollary 1. Thus

the result holds in the general case also. �
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The following result easily follows from [D-1],[A-G] and [J-1].

Proposition 4. Let (M, g) be a compact 4-manifold with even first Betti
number admitting two opposite Hermitian structures J, J which commute with the
Ricci tensor ρ of (M, g). Then M is a ruled surface or is locally a product of two
Riemannian surfaces.

Proof. Let us assume that J is non-Kähler structure i.e. ∇J 6= 0. Then
(M, g, J) is conformally Kähler, in particular admits a non-zero holomorphic vector
field ξ with zeros. If J is Kähler then, since M is compact, ξ is also a holomorphic
Killing vector field for (M, g, J). In the other case (M, g, J) admits, analogously as
above, a holomorphic vector field η with zeros. From [C-H-K] it follows that both
(M, g, J) and (M, g, J) are blow-ups of a ruled surface or CP

2 at a finite number of
points. Thus the signature σ(M) of M equals to zero and (M, J) is a ruled surface
(see [J-1]). If both J and J are Kähler then it is obvious that M is locally a product
of two Riemannian surfaces. �

3 An example of a Kähler metric with harmonic anti-self-dual

Weyl tensor on the Hirzebruch surface F1.

In my paper [J-1] I have proved the following:

Theorem 1. Every compact real analytic Kähler surface (M, g, J) with har-
monic anti-self-dual Weyl tensor (δW− = 0) has constant scalar curvature ( and
thus is Einstein or is locally a product of two Riemannian surfaces with constant
sectional curvatures) or is a ruled surface with extremal Kähler metric and non-
constant scalar curvature which admits an opposite Hermitian structure J such that
(M, g, J) satisfies a (G2) condition of A.Gray and is conformal to an extremal Kähler
surface.

Our present aim is to construct an example of a compact Kähler surface (M, g, J)
with harmonic anti-self-dual Weyl tensor (δW− = 0) and non-constant scalar curva-
ture on the Hirzebruch surface F1. These metrics are extremal in view of Th.1. As in
[M-S] by L(k, 1), where k ∈ N, we shall denote the Lens spaces. By Fk we denote the
k-th Hirzebruch surface i.e. the holomorphic CP

1-bundle over CP
1 associated with

the principal bundle p : P (k) = L(k, 1) → CP
1 (it is the space of cohomogeneity 1

under an action of U(2) with principal orbit L(k, 1) and two special orbits CP
1 i.e.

[CP
1|L(k, 1)|CP

1]. The diffeomorphism type of Fk depends only on the parity of k:
if k is even , then Fk is diffeomorphic to S2 × S2, for k odd, Fk is diffeomorphic to

CP
2]CP

2
. Let a, b ∈ R be any two real numbers such that a < b. Let us consider

the metric gf,h on a product (a, b)× P (k) given by the formula:

gf,h = dt2 + gt, (3.1)

where gt = f 2(t)θ2+h(t)2p∗ can
4

is the metric on P (k) parameterized by t, can denotes
the canonical metric on S2 of constant curvature 1, dθ = 2kp∗ωFS where ωFS is the
Kähler form of (CP

1, can
4

) and f, h ∈ C∞(a, b) are positive functions defined on (a, b).
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Note that the projection

p : (P (k), gt) → (S2, h(t)2 can

4
)

is a Riemannian submersion, when t is fixed. We have (see [B], [M-S], [S])

Proposition 5. The metric gf,h defined on (a, b)× P (k) extends to the smooth
metric on the Hirzebruch surface Fk; k ∈ N if the following conditions are satisfied:

(a)f(a) = f(b) = 0, f ′(a) = 1, f ′(b) = −1, f (2p)(a) = f (2p)(b) = 0 for p ∈ N,
(b)h(a) 6= 0 6= h(b), h′(a) = h′(b) = 0, h(2p+1)(a) = h(2p+1)(b) = 0 for p ∈ N.

Let U = (a, b) × P (k) ⊂ Fk. Then on U we have two hermitian structures J, J

defined by Prop.3. From the results of B. Bergery [B](compare also [J-2]) it follows
that if f = hh′

k
then ( with the careful choice of orientation) the structure J defined

on U is Kähler. Thus we have

Proposition 6. Let a function h ∈ C∞(a, b) satisfy the condition (b) of Prop.5
and let us assume that h′ > 0 on (a, b) and h(a)h′′(a) = k, h(b)h′′(b) = −k. Then
the metric

gh = dt2 +
1

k2
(hh′)2θ2 + h2p∗

can

4
(3.2)

extends to a smooth Kähler metric on the Hirzebruch surface Fk.

Proof. It follows from the formula

f (2q)(a) =
2q
∑

p=0

(2q
p )h(p)(a)h(2q+1−p)(a). (3.3)

Remark. From the above Corollary and [B] it follows that there are many
examples of metrics g on ruled surfaces Fk described in Prop.4 (i.e. which admit
two opposite hermitian structures which commute with the Ricci tensor of (Fk, g)).
One of them is of course the D.Page’s Hermitian Einstein metric on F1.

Now our aim is to prove the following theorem:

Theorem 2. On the Hirzebruch surface F1 = CP
2]CP

2
with a standard

complex structure J there exist an extremal Kähler metric g with harmonic anti-
self-dual Weyl tensor and this is the only such metric in the class of Hirzebruch
surfaces Fk. The surface (F1, g, J) admits an opposite Hermitian structure J such
that J is the natural opposite almost Hermitian structure for J .

Proof. Let us recall the following results of B. Bergery. Let us assume that
f = hh′

k
. Then (U, gh) is a Kähler surface (see [B]). By D we shall denote the nullity

distribution of the opposite Hermitian structure J . Then the Ricci tensor of (U, gh)
has two eigenvalues λ, µ corresponding to the eigendistributions Dλ = D,Dµ = D⊥

which are given by the following formulas:

λ = −2
h′′

h
−

f ′′

f
= −

f ′′

f
+ 2(k2f 2

h4
−

f ′h′

fh
), (3.4a)

µ = −
h′′

h
+ (k2 f 2

h4
−

f ′h′

fh
) +

4

h2
− (

h′

h
)2 − 3k2f 2

h4
. (3.4b)
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Let us denote (see (2.2)) E1 = X
h
, E2 = Y

h
, E3 = Z

f
, E4 = H. Then Γ4

11 =

−h′

h
= Γ4

22. Note that since ρ is Hermitian with respect to Hermitian structure J

and the natural opposite structure of J is Kähler it follows (see [J-2] where we take
H = −E4) that Γ4

11 = −1
2
α where α = 1

2
√

2
|∇J |. On the other hand −α = κ′

3κ
where

κ is the conformal scalar curvature of (M, g, J). Thus we have κ = C0h
−6 for a

non-zero constant C ∈ R. Let us assume that ρ − 1
3
τg is a Killing tensor. Then

κ = C1(λ− µ)−3 (see [J-1]). It follows that

λ− µ = Ch2

for some constant C ∈ R− {0}. Thus we obtain an equation

−
f ′′

f
+ 4(

h′

h
)2 −

4

h2
= Ch2. (3.5)

Let us write h′ =
√

P (h). Then equation (3.5) reads

h2P ′′(h) + 3P ′(h)h− 8P (h) + 8 + 2Ch4 = 0. (3.6)

Consequently,

P (h) = −
C

8
h4 + Ah−4 + Bh2 + 1, (3.7)

where A, B ∈ R are arbitrary. Note that the polynomial Q of the fourth order such
that Q(h2) = h4P (h) can be obtained by methods of Calabi, who proved ([C-1]) that
every extremal Kähler metric of cohomogeneity 1 is described by the polynomial of
the fourth order. Let x > 0 satisfy an equation P (x) = 0 and let us consider the
equation

d2h

dt2
=

1

2
P ′(h), h′(0) = 0, h(0) = x. (3.8)

This equation is equivalent, if t ∈ D = {t ≥ 0 : h′(t) ≥ 0}, to the equation

dh

dt
=

√

P (h), h(0) = x. (3.9)

Let us assume that there exists y > 0 such that 0 < x < y, P (y) = 0 and P (t) > 0 if
t ∈ (x, y). Then equation (3.8) admits a smooth periodic solution h defined on the
whole of R and such that im h = [x, y]. Note that P ′(h)h = −C

2
h4− 4Ah−4 + 2Bh2

and h′′ = 1
2
P ′(h). Let us assume that h satisfies the assumptions of Proposition 6.

Then the following equations are satisfied:

−
C

8
x4 + Ax−4 = −1−Bx2, (3.10a)

−
C

8
y4 + Ay−4 = −1− By2, (1)

−
C

4
x4 − 2Ax−4 = k −Bx2, (3.10b)

−
C

4
y4 − 2Ay−4 = −k − By2. (2)
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It is easy to see that equations (3.10) are equivalent to

−
C

8
=

k(y4 − x4) + B(y6 − x6)

x8 − y8
, A =

k(y4 − x4) + Bx2y2(y2 − x2)

x8 − y8
, (3.11a)

−
C

8
=

k(y4 + x4)− B(x6 − y6)

2(x8 − y8)
, A =

kx4y4(y4 + x4) + Bx6y6(x2 − y2)

2(x8 − y8)
. (3.11b)

These equations imply both that B = (k+2)x4+(k−2)y4

y6−x6 and also that B = (k+2)x4+(k−2)y4

3x2y2(y2−x2)
.

Consequently, equations (3.10) with unknown A, B, x, y have a solution if B = 0 and
(k+2)x4+(k−2)y4 = 0. It is possible only if k = 1, C > 0 (it means that such metric

can only be constructed on the first Hirzebruch surface) and x = ( 2
C

)
1

4 , y = ( 6
C

)
1

4 .
Then P (h) = −C

8
h4 − 3

2C
h−4 + 1. Note that P (x) = P (y) = 0, P (t) > 0 if

t ∈ (x, y) and x, y are the only positive roots of P . It follows that equation (3.8)
has a positive periodic solution h with imh = [x, y]. Let b be the smallest positive
number such that h(b) = y. Let us take a = 0. Then it is easy to check that
h(a)h′′(a) = k and h(b)h′′(b) = −k since P ′(x)x = 2k and P ′(y)y = −2k. Note also
that h′(a) = h′(b) = 0 and consequently, h(2p+1)(a) = h(2p+1)(b) = 0, p ∈ N. Thus
the metric gh extends to a smooth metric on the whole of the Hirzebruch surface
F1. Now one can check that λ = 2Ch2 and µ = Ch2. It is easy to check using
Lemma and Prop.1-5 that the tensor ρ − τ

3
g is a Killing tensor with eigenvalues

0,−Ch2 corresponding to D,D⊥ respectively. It follows from [J-1] that (F1, gh) is
an extremal Kähler metric with harmonic anti-self-dual Weyl tensor. Note that the
metrics corresponding to different values of C are homothetic and the natural oppo-
site almost Hermitian structure for J coincides with J on an open and dense subset
where it is defined (see Prop.2 and Prop.3). Calabi proved that extremal metrics on
Hirzebruch surfaces are of cohomogeneity 1 (see [C-2]) i.e. are of the shape gh for
some h described in Proposition 6. We proved in [J-1] that a Kähler surface with
co-closed anti-self-dual Weyl tensor is extremal. Thus the metric constructed above
is ( up to a homothety) the only Kähler metric with co-closed anti-self-dual Weyl
tensor in the class of Hirzebruch surfaces Fk; k ≥ 1. �

Remark. In that way we have constructed an example of a compact AC⊥ 4-
manifold which additionally admit a Kähler structure. Since our example does not
have harmonic Weyl tensor (since τ is not constant clearly δW + 6= 0) it follows that
it is a proper AC⊥ manifolds i.e. its Ricci tensor is not a Codazzi tensor (compare
[Be]). After constructing the example the author has learned that it was also found
by Apostolov, Calderbank and Gaudouchon [A-C-G], who also proved that this is
the only Kähler metric with co-closed anti-self-dual Weyl tensor and non-constant
scalar curvature on ruled surfaces. Note that other examples of AC⊥-manifolds are
given in [M-S] (they have Ricci tensor with two eigenvalues of multiplicities 1 and
3, our examples have Ricci tensor with two eigenvalues of the same multiplicity
2). The (non-compact ) examples of Kähler surfaces with harmonic anti-self-dual
Weyl tensor (in fact self-dual) and non-constant scalar curvature were given by A.
Derdziński in [D-2]. Matsumoto and Tanno (see [T],[M-T]) proved that a Kähler
manifold with δW = 0 has parallel Ricci tensor (this result is local). The methods
similar to those used by us in the paper can be used in construction of families
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of examples of bi-Hermitian non-Kähler AC⊥-metrics on all Hirzebruch surfaces
Fk : k ≥ 0. We shall do it in the subsequent paper.
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