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Abstract

We define and characterize a new class of weakly compact subsets of
spaces of integrable functions related to a new definition of polynomials in
such spaces. We study the algebraic structure of ring of the set of all these
polynomials and relate it to geometric and topological properties of subsets
of L1(µ). We use these results to study relative compactness and convexity
of subsets of Banach spaces with the Radon-Nikodym property. An extension
of the Uhl theorem about the range of a vector measure is obtained.

1 Introduction and notation.

In this paper we propose new tools for the study of the geometric and topological
properties of the range of the integral operator defined by a (countably additive)
vector measure of bounded variation. Let (Ω,Σ, µ) be a finite measure space and
let S(µ) be the normed space of all the simple functions of L1(Ω,Σ, µ). Consider
the (linear) space of polynomials R[x]. The procedure that we use consists on the
definition of a ring structure with the elements of the tensor product R[x]⊗ S(µ).
We call (Σ, µ)-polynomials the elements of this ring. If P is a (Σ, µ)-polynomial, we
define a polynomial equation P = 0 and find the set of its solutions in the space
L1(Ω,Σ, µ), i.e., the set of the functions that satisfy P(f) = 0 µ-almost everywhere
when we substitute the variable x by the function f in P. The main idea of this paper
is to relate the properties of the ring R[x]⊗ S(µ) to the geometric and topological
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properties of the image of the integral operator defined by the vector measure F . In
particular, we show that under certain conditions the image of the set of solutions
of every polynomial equation is relatively compact and convex. This result may
be considered as a generalization of the Uhl theorem about the compactness and
convexity of the closure of the range of a vector measure (see section IX in [2]).

In section 2 we construct the algebraic structure of the ring R[x]⊗ S(µ) and we
establish the basic properties of the sets of solutions of the polynomial equations
P = 0. The main result of Section 3 is the above mentioned generalization of the
Uhl theorem (theorem 13). The rest of this section is devoted to the study of the
relation between the ring product and the images of the sets of solutions of the
equations as P = 0. Finally, in section 4 we apply our technique to the study
of the range of the operators from the space L1(µ) into a Banach space with the
Radon-Nikodym property E. To do so we first define two new classes of relatively
weakly compact subsets of the spaces of integrable functions using sets of solutions
of polynomial equations (see proposition 20). We obtain in this way several results
about compact convex subsets of the range of an operator which are closely related
to the polynomial structure of subsets of L1(µ). The main conclusion of the last
section is that compactness and convexity of subsets in the range of an operator can
be characterized in terms of (Σ, µ)-polynomials (corollaries 21 and 22).

We use standard Banach space notation. We write ”a.e” instead of ”µ-almost
everywhere” (or nothing if it is clear in the context). If B is a subset of a Banach
space, we denote by co(B) the convex hull of B. R[x] is the linear space of all the
polynomials as P (x) =

∑n
i=0 λix

i, where n ∈ N and λi ∈ K (K = R or C). We refer
the reader to the chapter III of the book of W. Hungerford [4] for basic concepts
and notation about rings and polynomials.

2 Definitions and algebraic results.

Definition 1. We call to an element P(x) =
∑m
j=1 Pj(x)⊗ fj ∈ R[x]⊗ S(µ) -where

Pj 6= 0 and fj 6= 0- a (Σ, µ)-polynomial. Note that it is possible to find a broad class
of representations of a (Σ, µ)-polynomial. In fact, each fj is an equivalence class of
functions that are equal a.e.. We define the maximum degree (the minimum degree)
of a (Σ, µ)-polynomial P - max-degP and min-degP for short - as the minimum (the
maximum) for all the representations of P of the maximum (the minimum) of the
degrees of the polynomials Pj(x) in the definition of P.

Definition 2. Let P =
∑m
j=1 Pj(x)fj ∈ R[x]⊗ S(µ). We define the evaluation of P

at the function f ∈ S(µ) as the function P(f) =
∑m
j=1 Pj(f)fj . We omit the straight-

forward proof of the fact that it does not depend on the particular representation of
the tensor P. We say that the expression P = 0 is a (Σ, µ)-polynomial equation. A
function f ∈ L1(µ) is a solution of the equation P = 0 if and only if P(f) = 0.

Let E be a Banach space, and let T : S(µ) → E be a linear map. We also say
that z ∈ E is a T -solution of the (Σ, µ)-polynomial equation P = 0 if and only if
there exists a solution f of this equation such that T (f) = z.

Note that if P is a (Σ, µ)-polynomial, we can always find a representation of P
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as

P =
m∑
j=1

Pj(x)⊗ χAj ,

where Aj ∈ Σ, j = 1, ..., m, χAj is the characteristic function of Aj and µ(Aj∩Ak) =
0 if j 6= k. This fact simplifies the following definition.

Definition 3. Let P,Q ∈ R[x]⊗S(µ). If P =
∑m
j=1 Pj⊗χAj and Q =

∑r
k=1 Qk⊗χBk

are representations of P and Q, we define the product P.Q as

P.Q = (
n∑
j=1

Pj ⊗ χAj ).(
r∑
k=1

Qk ⊗ χBk) =
n∑
j=1

r∑
k=1

PjQk ⊗ χAj∩Bk.

The proof of the fact that this product is well-defined is standard.

Proposition 4. (R[x]⊗ S(µ),+, .) is a commutative ring with identity. However,
it is not an integral domain.

Proof. All the properties of the second operation can be easily checked. The
identity is obviously the tensor 1 ⊗ χΩ. To see that there exist zero divisors in
R[x]⊗ S(µ) it is enough to consider for instance the elements 1 ⊗ χA and 1⊗ χB,
where A,B ∈ Σ, µ(A ∩B) = 0, µ(A) 6= 0 and µ(B) 6= 0. �

In particular, this proposition means thatR[x]⊗S(µ) is not a unique factorization
domain. However (non unique) factorizations of (Σ, µ)-polynomials will be relevant
in section 4. It is easy to see that the definition of the maximum and minimum
degrees of a (Σ, µ)-polynomial does not allow us to an Euclidean ring structure for
R[x]⊗ S(µ). We use standard ring notation. Thus we say that P divides Q if there
exists another (Σ, µ)-polynomial H such that P.H = Q.

Proposition 5. Let f ∈ S(µ). The map Tf : R[x]⊗ S(µ)→ S(µ) given by

Tf(P) := P(f), P ∈ R[x]⊗ S(µ)

is a homomorphism of rings.

The proof is standard.

Definition 6. If S is a subset of R[x]⊗ S(µ), we define the annihilator of S as

An(S) := {f ∈ L1(µ) : P(f) = 0 a.e., ∀P ∈ S}.

In particular, if P ∈ R[x]⊗S(µ) and S = {P}, we write An(P) instead of An(S).
Thus An(P) is the set of all the solutions of the (Σ, µ)-polynomial equation P(f) = 0.

If I is an ideal of R[x]⊗ S(µ) and P+ I is an element of the quotient ring R[x]⊗S(µ)
I

,
we have

An(P+ I) := {f ∈ L1(µ) : Q(f) = 0 a.e. ∀Q ∈ P + I}.

Remark 7. A direct consequence of proposition 5 is that, if P divides Q, then
An(P) ⊂ An(Q). The converse is not in general true and we will come back to it
later on. It is also easy to see that An(P) ∪An(Q) ⊂ An(P.Q).
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Proposition 8. Let P =
∑m
j=1 Pj⊗S(µ) such that {A1, ..., Am} are pairwise disjoint

and µ(Aj) 6= 0 for every j ∈ {1, ..., m}. Then
i) An(P) 6= ∅ if and only if for each j ∈ {1, ..., m}, Pj can be written as Pj =

(x− λj)Qj, where Qj ∈ R[x] and λj ∈ K, i.e. each Pj has at least a root in K.
ii) If An(P) 6= ∅, then P is not a zero divisor if and only if An(P) is bounded

(in L1(µ)).

Proof. i) is obvious. For the proof of ii), let A = dnj=1Aj. First, suppose that
there is no function f ∈ S(µ) such that fχA satisfies P(fχA) = 0. Then An(P) = ∅
and there is nothing to prove. However, if there exists such a function f it is obvious
that for each g ∈ S(µ), P(fχA + gχB) = 0, where B = Ω − A. This means that
An(P) si not bounded if µ(B) 6= 0. In this case 0 can be written as P.Q = 0, where
Q = 1⊗ χB 6= 0, and then P is a zero divisor.

Now, if µ(B) = 0 we can define the function f0 =
∑m
j=1 νj ⊗ χAj , where the νj

are defined as the roots of Pj which satisfy |νj| = max{|λj | : λj is a root of Pj}. On
the one hand, it is easy to see that f0 is a bound of the set An(P) (with respect to
the L1 norm and the L∞ norm). On the other hand, P.Q = 0 implies Q = 0. Thus,
if µ(B) = 0, P is not a zero divisor and An(P) is bounded. �

Definition 9. Let n ∈ N and f1, ..., fn ∈ S(µ). We say that f ∈ S(µ) is a (Σ, µ)-
combination of f1, ..., fn if there exist A1, ..., An ∈ Σ pairwise disjoint a.e. sets such
that

dni=1Ai = Ω a.e. and f =
n∑
i=1

fiχAi a.e..

We also define the set of all the (Σ, µ)-combinations of these functions as

C(Σ,µ)(f1, ..., fn) := {f ∈ S(µ) : f is a (Σ, µ)-combination of f1, ..., fn}.

Proposition 10. Let P =
∑m
j=1 Pj ⊗ S(µ) ∈ R[x] ⊗ S(µ) such that {A1, ..., A,}

are pairwise disjoint, µ(Aj) 6= 0 and dmj=1Aj = Ω a.e. . Suppose that for each
j ∈ {1, ..., m} Pj can be written as Pj = (x−λ1j)

α1j(x−λ2j)
α2j ...(x−λnjj)αnjjQj(x),

where Qj can not be factored in K, λkj 6= λrj iff k 6= r, αkj ≥ 1 and nj ≥ 1.
Then there exist f1, ..., fn ∈ An(P) such that C(Σ,µ)(f1, ..., fn) = An(P), where n =
max{nj : j = 1, ..., m}.

Proof. First, it is obvious that the annihilator of P coincides with the annihilator
of the (Σ, µ)-polynomialQ that satisfies the same factorization with αkj = 1 for every
k, j. Then we suppose αkj = 1 ∀k, j. Let us define the functions

fi =
m∑
j=1

λijχAj , i = 1, ..., n,

where λij = λnjj for each j if i ≥ nj. Then

P(fi) =
m∑
i=1

Pj(fi)χAj =
m∑
j=1

(fi − λ1j)(fi − λ2j)...(fi − λnjj)Qj(fi)χAj = 0,

and fi ∈ An(P) for every i.
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Now, suppose that f ∈ C(Σ,µ). There exist pairwise disjoint subsets Bi ∈ Σ that
satisfy all the conditions of the definition 9, and f =

∑n
i=1 fiχBi. Then

P(f) =
m∑
j=1

Pj(f)χAj =
m∑
j=1

Pj(
n∑
i=1

fiχBi)χAj =
m∑
j=1

n∑
i=1

Pj(fi)χBi∩Aj = 0.

Conversely, suppose that f ∈ An(P). Then Pj(fχAj ) = 0 for each j. Thus,

fχAj =
nj∑
i=1

λijχBij ,

where Bij are a.e. pairwise disjoint subsets for Aj, and dnji=1Bij = Aj a.e.. Let us
define Bi = dmj=1Bij for i = 1, ..., n, where Bij = ∅ if i > nj. Therefore,

f =
m∑
j=1

nj∑
i=1

λijχBij =
m∑
j=1

nj∑
i=1

fiχBij =
n∑
i=1

m∑
j=1

fiχBij =
n∑
i=1

fiχBi,

and we have also the inclusion An(P) ⊂ C(Σ,µ)(f1, ..., fn). �

In section 3 we will use the factorable reduced (Σ, µ)-polynomial Q associated
to P defined as in the begining of the former proof, but also satisfying that each Qj

has degree 0. It is obvious that even in this case An(P) = An(Q).

Proposition 11. Let P,Q ∈ R[x]⊗S(µ). Consider the principal ideal IP generated

by P and the quotient ideal R[x]⊗S(µ)
IP

. Then

An(Q+ IP) = An(Q) ∩ An(P).

Proof. Let f ∈ An(Q+ IP). Since 0 ∈ IP, we get Q(f) = (Q+0)(f) = 0. Then if
we take 1⊗ χΩ ∈ R[x]⊗ S(µ) we have (Q+ 1⊗ χΩ.P)(f) = Q(f) + P(f) = 0. Thus

P(f) = 0. Now suppose that f ∈ An(Q) ∩ An(P) and consider Q+HP ∈ R[x]⊗S(µ)
IP

.
Then

(Q+HP)(f) = Q(f) +H(f)P(f) = 0.

�

Proposition 12. Let P ∈ R[x]⊗S(µ) and let f ∈ An(P). If P is not a zero divisor,
then there exists a (Σ, µ)-polynomial Pf with max-deg=1 such that Pf divides P and
An(Pf ) = {f}.

Proof. Let P ∈ R[x] ⊗ S(µ) and let
∑m
j=1 Pj ⊗ χAj be a representation of P

such that {A1, ..., Am} are pairwise disjoint, µ(Aj) 6= 0 for each j and dmj=1Aj = Ω
a.e.. Consider the factorization of P given in proposition 10. Since f ∈ An(P),
an application of proposition 10 allows us to write f as f =

∑n
i=1 fiχBi, where

dni=1Bi = Ω. The fi (i = 1, ..., n) can be written as fi =
∑m
j=1 λijχAj , following the

notation of proposition 10. Then we get f =
∑n
i=1(

∑m
j=1 λijχAj)χBi. Now let us

define the (Σ, µ)-polynomial Pf as

Pf =
n∑
i=1

m∑
j=1

(x− λij)χAj∩Bi.

It is easy to see that An(Pf) = {f}. Moreover, if we define a (Σ, µ)-polynomial
H as H =

∑n
i=1

∑m
j=1HijχAj∩Bi - where Hij(x−λij) = Pj for each j = 1, ..., m in the

decomposition given in 10 - a straightforward calculation shows that PfH = P. �
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3 Convexity and (Σ, µ)-polynomials.

If E is a Banach space, let F : Σ→ E be a countably additive vector measure defined
on a σ field Σ, and let µ a (countably additive) measure such that F << µ (µ is
a control measure for F ). In this case the integration map TF : L∞(µ) → E given
by TF (f) :=

∫
fdF is a well-defined weak* to weak continuous linear operator (see

Corollary I.2.7 in [2]). Let us consider the restriction of this map to S(µ). The aim
of this section is to study how the structure of the annihilators of (Σ, µ)-polynomials
concerns to the range of this map. The main result of this section is the following
theorem, which can be considered as a generalization of the Uhl theorem. In the
rest of this section we will assume that µ is a (nonatomic) finite measure.

Theorem 13. Let E be a Banach space with the Radon-Nikodym property. Let P be
a (Σ, µ)-polynomial such that it is not a zero divisor. Let F : Σ→ E be a countably
additive vector measure which is of bounded variation and nonatomic and F << µ.
Let TF : S(µ) → E be the integration map TF (f) :=

∫
fdF . Then the norm closure

of TF (An(P)) is convex and norm compact.

Proof. First, suppose that max-degP ≤ 2. If either An(P) = ∅ or An(P) = {f0}
there is nothing to prove (these are the cases if max-degP ≤ 1). Suppose that max-
degP = 2. Then it is easy to see that an application of proposition 10 allows us to
write An(P) as

An(P) = {f1χA + f2χB : A,B ∈ Σ, A ∪B = Ω a.e., and A ∩ B = ∅ a.e.},

where f1 and f2 are solutions of P. Put f3 = f2− f1 ∈ S(µ). We can also write each
f ∈ An(P) as

f = f1χ(Ω−B) + f2χB = f1 + (f2 − f1)χB = f1 + f3χB,

and then

An(P) = {f1 + f3χB : B ∈ Σ}.

Now, if we denote x1 to the element
∫
f1dF we can write each x ∈ TF (An(P)) as

x = TF (f) =
∫
f1dF +

∫
f3χBdF = X1 +

∫
f3χBdF

where B ∈ Σ. An appeal to the argument given in the proof of theorem 10 in the
section IX.1 of [2] shows that the norm closure of the set

{
∫
f3χBdF : B ∈ Σ}

is compact and convex, and then the same is true for the set TF (An(P)).
Now suppose that max-degP > 2. If An(P) = ∅ there is nothing to prove.

Suppose that An(P) 6= ∅. Since P is not a zero divisor an application of proposition
I.8 gives that An(P) is bounded. Is is easy to see that the map TF : L∞(µ) → E is
a compact operator (see for example the proof of theorem 10 in section IX.1 in [2])
and then TF (An(P)) is relatively compact in E. To prove that the norm closure of
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this set is convex, let x1 and x2 be in the closure of TF (An(P)). Let 0 ≤ α ≤ 1 and
ε > 0, and choose f1, f2 ∈ An(P) such that

‖xi − TF (fi)‖ <
ε

2
for i = 1, 2.

Let us define Pf1 and Pf2 as in proposition 12. Consider the reduced (Σ, µ)-
polynomial Q associated to Pf1 .Pf2 obtained as in the begining of the proof of the
proposition 10. The annihilator of Q satisfies An(Pf1 .Pf2) = An(Q). It is easy
to see that Q divides P. Moreover, its degree is ≤ 2, and then we know that
TF (An(Pf1.Pf2)) is compact and convex. On one hand,

‖αx1 + (1− α)x2 − (αTF (f1) + (1− α)TF (f2))‖ ≤

≤ α‖x1 − TF (f1)‖+ (1− α)‖x2 − TF (f2)‖ < ε.

On the other hand, an appeal to remark 7 shows that

TF(An(Pf1 .Pf2)) ⊂ TF (An(P)).

Thus for each ε > 0 there is an element xε := αTF (f1)(1−α)TF (f2) ∈ TF (An(P))
such that ‖(αx1 + (1− α)x2)− xε‖ < ε. This completes the proof. �

Theorem 13 and remark 7 give us information about the structure of the set of
TF -solutions of the (Σ, µ)-polynomial equation P = 0 related to the set of divisors of
P. If Q divides P then the closure of the set of TF -solutions of Q = 0 is a convex and
compact subset of the closure of the set of TF -solutions of P = 0. This fact is obvious
for the set of Tf -solutions of the (Σ, µ)-polynomial equation (x − 1)x ⊗ χΩ = 0,
which is exactly the range of the vector measure F . In the following we obtain
several results about the structure of the sets of TF -solutions using the quotient ring
R[x]⊗S(µ)

IP
and proposition 12. Throughout this section let P be a (non zero divisor)

(Σ, µ)-polynomial, let E be a Banach space with the Radon-Nikodym property and
let F : Σ → E be a countably additive vector measure satisfying F << µ which is
of bounded variation and nonatomic.

Definition 14. We define the class GP,F of compact subsets of G := TF (An(P)) ⊂ E
as

GP,F = {TF(An(Q+ IP)) : Q ∈ R[x]⊗ S(µ)}.
We denote these sets by GP,F (Q) := TF (An(Q+ IP)). We also define the binary

operation ∗ : GP,F ×GP,F → GP,F as

GP,F (Q) ∗GP,F (H) = GP,F (Q.H).

Proposition 11 and the definition of the product in the quotient give that ∗ is
well-defined. Note that all the elements of GP,F are convex sets too, since we can
always find a (Σ, µ)-polynomial that is not a zero divisor belonging to each class
Q+ IP.

Proposition 15. The map J : R[x]⊗S(µ)
IP

→ GP,F biven by

J(Q+ IP) := GP,F (Q)
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is an epimorphism between the (multiplicative) structure (R[x]⊗S(µ)
IP

, .) and the

abelian monoid (GP,F , ∗). Moreover, (GP,F , ∗) satisfies:
a) ∀A ∈ GP,F , A ∗∅ = A, A ∗ A = A and A ∗G = G.
b) ∀A,B ∈ GP,F , co(A ∪ B) ⊂ A ∗B.

Proof. It is easy to see that the elementsGP,F (Q) and the operation ∗ are actually
defined using the fact that the map J is an epimorphism. Moreover, the image of
the identity 1⊗ χΩ + IP is ∅, since an application of proposition 11 gives

An(1⊗ χΩ + IP) = ∅ ∩ An(P) = ∅

and then A ∗ ∅ = A for every A ∈ GP,F . Since for each Q, Q.P ∈ IP, we also have
A ∗ G = G for every A ∈ GP,F . Since An(P) = An(P2) the equality A ∗ A = A is
obvious. b) is just a consequence of the theorem 13 and the remark 7. �

The following results are -from the algebraic point of view- just straightforward
consequences of the structure of the zero divisors of the quotient ring R[x]⊗S(µ)

IP
.

Corollary 16. If P and Q are factorable reduced (Σ, µ)-polynomials such that Q
divides P, min-degQ=n and max-degP=m, then there exists a (Σ, µ)-polynomial H
such that max-degH ≤ (m− n) and Q.H = P, and then GP,F (Q) ∗GP,F (H) = G.

Corollary 17. Let P be a factorable reduced (Σ, µ)-polynomial such that max-
degP=n. If f ∈ An(P) then there exist (Σ, µ)-polynomials Pi, i = 1, ..., n, such
that

1) An(P1) = {f}.
2) max-degPi=1, i = 1, ..., n.
3) G = GP,F (P1) ∗ ... ∗GP,F (Pn).

Proof. It is enough to consider the polynomial Pf given in proposition 12 and to
apply n times the former corollary. �

4 Applications. The polynomial structure of the range of an op-

erator on L1.

In this section we get some topological properties of the subsets of L1(µ) of the type
An(P). It is easy to see -and it has been said in section 2 - that for each P, An(P) is a
subset of S(µ), although it has been defined as a subset of L1(µ). Our aim is to apply
the results of sections 2 and 3 in order to study how the ”polynomial structure” of
L1(µ) concerns to the range of an operator T : L1(µ) → E, where E is a Banach
space with the Radon-Nikodym property. Since the function F : Σ → E given by
F (A) := T (χA) is a countably additive µ-continuous vector measure of bounded
variation, (see theorem 5 in the chapter III.1 of [2]) all the results of section 3 about
vector measures can be applied to T (An(P)).

Definition 18. Let K ⊂ L1(µ). We say that K is approximable by polynomials if
for each ε > 0 there exists P ∈ R[x]⊗ S(µ) that is not a zero divisor such that

∀f ∈ K there exists f0 ∈ An(P) : ‖f − f0‖ < ε. (1)
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We also say that K is strictly approximable by polynomials if ∀ε > 0 there is a
(Σ, µ)-polynomial P that is not a zero divisor satisfying (1) and

∀f0 ∈ An(P) there exists f ∈ K : ‖f − f0‖ < ε. (2)

Lemma 19. Let f ∈ S(µ). Then there exists a (Σ, µ)-polynomial Pf such that
An(Pf ) = {f}.

Proof. If f =
∑m
i=1 λiχAi, (where {Ai}ni=1 defines a partition of Ω) it is enough

to define Pf as Pf :=
∑m
i=1(x− λi)⊗ χAi. �

Proposition 20. a) If K ⊂ L1(µ) is compact, then it is approximable by polynomi-
als.

b) If K ⊂ L1(µ) is approximable by polynomials, then it is relatively weakly
compact.

Proof. a) Let ε > 0. Take the open covering of K given by the sets of open balls
{B ε

2
(f) : f ∈ K}. Then there is a finite set f1, ..., fn ∈ K such that K ⊂ dni=1B ε

2
(fi).

Since the set S(µ) is dense in L1(µ), there are n step functions f1,0, ..., fn,0 such that
‖fi − fi,0‖ < ε

2
for every i. We known that for each i = 1, ..., n there exists a

polynomial Pi such that fi,0 ∈ An(Pi) (lemma 19). Moreover, if P = Πn
i=1Pi then

fi,0 ∈ An(P) for each index i. Now, for every f ∈ K there is an index i ∈ {1, ..., n}
such that f ∈ B ε

2
(fi), and then the inequalities

‖f − fi,0‖ ≤ ‖f − fi‖+ ‖fi − fi,0‖ < ε

give the result.

b) We know by Dunford Theorem (see theorem III2.15 of [2] or theorem 8.9 of [3])
that it is enough to prove that K is bounded and uniformly integrable. Let ε > 0 and
let P satisfying the conditions of the definition 18. As a consequence of proposition
8.ii), we get that there is a constant c > 0 such that for every f0 ∈ An(P), ‖f0‖ ≤ c,
and then ‖f‖ < c+ ε for every f ∈ K. Thus K is bounded.

Now we prove that K is uniformly integrable. Let ε > 0. Consider a (non zero
divisor) (Σ, µ)-polynomial P that satisfies the conditions of the definition 18 for ε

2
.

It is easy to see that An(P) is also bounded in L∞(µ). Then there exists a constant
c > 0 such that

∀f0 ∈ An(P), |f0| ≤ cχΩ a.e..

Consider a sequence of measurable subsets {En} such that µ(En)→ 0. Then, if
f ∈ K and µ(En) <

ε
2c

, the following inequalities give the result.

∫
En
|f |dµ ≤

∫
En
|f0|dµ+

∫
En
|f − f0|dµ ≤ cµ(En) +

∫
En
|f − f0|dµ <

<
ε

2
+
∫

Ω
|f − f0|dµ < ε.

�
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Corollary 21. Let K ⊂ L1(µ) be approximable by polynomials and T : L1(µ) →
E be an operator. Then T (K) is relatively compact. Moreover, if K is strictly
approximable by polynomials, T (K) is convex too.

Proof. The first statement is a consequence of the properties of representable
operators from L1(µ) (see [2]) and proposition 20. For the second one, take ε > 0
and a (Σ, µ)-polynomial P satisfying the conditions of the definition for ε

3‖T ‖. If

0 ≤ α ≤ 1 and f1, f2 ∈ K, then there are functions f10, f20 ∈ An(P) such that
‖fi − fi0‖ < ε

3‖T ‖, i = 1, 2. Since T (An(P)) is convex (see theorem 13) there is a

function f0 ∈ An(P) such that

‖αT (f10) + (1− α)T (f20)− T (f0)‖ <
ε

3
,

and a function fα ∈ K such that ‖fα − f0‖ < ε
3‖T ‖. Thus

‖αT (f1) + (1− α)T (f2)− T (fα)‖ ≤

≤ ‖αT (f1)−αT (f10)‖+‖(1−α)T (f2)− (1−α)T (f20)−T (f0)‖+‖T (f0)−T (fα)‖+

+‖αT (f10) + (1− α)T (f20)− T (f0)‖ ≤

≤ α‖T‖‖f1 − f10‖+ (1− α)‖T‖‖f2 − f20‖+ ‖T‖‖f0 − fα‖+
ε

3
< ε.

�

It is well-known that if A is a relatively weakly compact set, then co(A) is weakly
compact (see e.g. corollary 8 in section II.C of [7]). In particular, if A is a relatively
weakly compact subset of L1(µ), T (co(A)) is a relatively compact convex set (see
e.g. the (Dunford-Pettis) lemma 11 in chapter 19 of [2]). Our results give more
information about these sets. Corollary 21 means that the norm closure of T (co(A))
-where K is a strictly approximable by polynomials set- is the compact convex set
T (K).

Corollary 22. Let B ⊂ T (L1(µ)) be a relatively compact set and let ε > 0. Then
there is a (Σ, µ)-polynomial Pε such that ∀x ∈ co(B) there exists a function f0 ∈
An(Pε) satisfying ‖T (f0)− x‖ < ε.

Proof. Since co(B) is compact we can find a finite subcover B ε
2
(x1), ..., B ε

2
(xn),

x1, ..., xn ∈ co(B). Let fi ∈ L1(µ) such that for each i = 1, ..., n, T (fi) = xi. We
can take n functions f10, ..., fn0 ∈ S(µ) such that ‖fi − fi0‖ < ε

2
. Then it is enough

to define P as the product P = Pf10 ...Pfn0, where Pfi0 are the (Σ, µ)-polynomials
associated to fi0 given in lemma 19. �

All the structure results given in section 2 and 3 can be applied to T (An(P))
and directly extended to the class of the approximable by polynomials sets. After
corollary 22 we know that we have a polynomial structure ”close to” each convex
compact subset of a Banach space with the Radon-Nikodym property. Next corollary
relates this structure to the set of extreme points of T (K), as an application of the
Krein-Milman theorem (see e.g. theorem 3.21 of [6] or theorem 3.3 in chapter VII
of [2]).
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Corollary 23. Let ε > 0. Then the (Σ, µ)-polynomial Pε obtained in corollary 22
can be written as a product Pε = P1.P2...Pnε, nε ∈ N, where each Pi, i = 1, ..., nε
satisfies

1) An(Pi) = {fi}.
2) T (fi) is an extreme point of co(B).

The technique and the results of this paper would be extended in several ways.
In particular, we have the following open problems. On the one hand, the -rather
strong- restrictions that we have imposed to the vector measures may be weakened
using for instance the theory obtained by C. Muscalu in [5]. In this paper he
generalizes several classical results about compactness and convexity of the range of
a vector measure (Liapounoff theorem, Uhl theorem) in the case when the control
measure µ is σ-finite. On the other hand, we may consider Radon-Nikodym sets
in general Banach spaces instead of spaces with the Radon-Nikodym property (see
[1]).

Another open problem which is closely related to the technique that we have
shown is the following. Is it possible to find a (locally convex) topology for the
tensor product R[x] ⊗ S(µ) such that the class of the annihilators of its elements
coincides with the class of the relatively weakly compact sets?.
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