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Abstract

This paper is about numbers represented in positional notation, in integral or
complex bases. We first give an abstract scheme of an on-line algorithm for
digit set conversion in fixed base. Then we prove that in positive or negative
integral base the digit set conversion is computable by an on-line finite state
automaton. We also show similar results for complex numbers represented in
the Penney number system or in the Knuth number system.

Résumé

Ce papier porte sur les nombres en notation positionnelle selon une base
qui peut être un nombre entier ou complexe. Nous donnons d’abord un schéma
abstrait d’algorithme en-ligne réalisant la conversion en base fixe entre alpha-
bets de chiffres différents. Ensuite nous prouvons qu’en base entière, positive
ou négative, la conversion est réalisable par un automate fini en-ligne. Enfin
nous montrons des résultats similaires pour les nombres complexes représentés
dans le système de numération de Penney et le système de numération de
Knuth.

1 Introduction

Number representation has a long and fascinating history : some of its developments
can be found in the work of Knuth [12]. Usually a number is represented by using
a finite or infinite string of digits belonging to some finite digit set. In computer
arithmetic, the choice of the number system can have a profound influence on the
execution time and on the size of implementation of arithmetic algorithms. A re-
dundant number system where a number can be represented by several strings can
be used to reduce the complexity of addition. The signed digit number representa-
tion of Avizienis [1] is a classical example. By using positive and negative digits, a
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redundant system is obtained. Generalized signed digit number systems have been
studied by Parhami [17].

When performed digit serially, elementary arithmetic operations, like addition, sub-
traction and multiplication are classically computed in the Least Significant Digit
First (LSDF) mode, but division is performed in the Most Significant Digit First
(MSDF) mode. In order to be able to pipeline the operations (i.e., each operation
can be started without waiting for the end of the previous operation), all the oper-
ations should be processed in the same direction. Since the usual representation of
the real numbers is a right infinite string of digits, the MSDF mode is more suited
for operations on real numbers. For that purpose, on-line arithmetic was first intro-
duced by Ercegovac and Trivedi [6, 20], using the Avizienis number representation.
On-line arithmetic is used for special circuits, such as signal processing, and for very
long precision arithmetic. During on-line computations, the operands as well as the
results flow serially through arithmetic units, digit by digit, starting from the most
significant digit. On-line systems are characterized by their delay (i.e., the number
δ such that the first n digits of the result are deduced from the first n + δ digits of
the input values).

Digit set conversion plays an important role in computing particularly in many im-
plementations of elementary arithmetic operations. Addition and multiplication by
a fixed integer are particular cases of digit set conversion. We shall investigate only
the on-line conversion into signed digit number systems for a fixed base (i.e., for
every given number representation in base β over some contiguous digit set, find the
representation of the same number over another signed digit set in the same base).
The generalizations and applications of parallel digit set conversion have been stud-
ied by Kornerup [13].

The notion of on-line finite automata that we use in this work has been introduced
by Muller [15]. By using the algorithm of Avizienis [1] and of Chow and Robertson
[3], it is shown in [7, 8] that on-line addition in integer base |β| > 1 with a balanced
digit set D = {d ∈ Z | −b ≤ d ≤ b} where D is symmetric, can be realized by an
on-line finite automaton with 4b2 + 1 states if D is a minimally redundant digit set,
and with 4b2 states if D is not a minimally redundant digit set. Nielsen and Muller
in [16] show how to build circuits for redundant complex addition with {−1, 0, 1} as
digit set.

In this paper, we consider a digit set conversion where the alphabets of signed digits
are not supposed to be balanced. We construct an on-line finite automaton, which
has less states than the one of [8] for addition in the classical case of balanced al-
phabets.

The paper develops as follows. In Section 2, some definitions and basic notations
are recalled. In Section 3, we present an abstract scheme for an on-line conversion
algorithm in base β, where β can be an integer or a complex number. From that,
the construction of a formal on-line automaton can be derived. We then consider
particular instances of the base β. In Section 4, we focus on the positive integer
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base number system and show that conversion can be done by an on-line finite
automaton with delay k and βk states, where k depends on the digit sets considered.
The negative integer base number system is examined in Section 5. In Section 6, we
show that addition in the Penney complex number system, defined by base β = −1+i
and digit set {−1, 0, 1}, can be computed by an on-line finite automaton. Finally
in Section 7, we show that the digit set conversion in the Knuth complex number
system where the base is a number of the form i

√
r, r integer ≥ 2, can be realized

by an on-line finite automaton.

2 Some definitions

Let us recall some definitions that we use in this work. We shall start by the notion
of number system and representation of numbers. Then we will recall the definition
of an on-line finite automaton.

2.1 Number system

A number system (β,D) is composed of a base β, where β can be a real or a com-
plex number such that |β| > 1, and of a finite digit set D of real or complex numbers.

A β-representation X on D is a sequence of the form

X = (xmxm−1 · · ·x0.x−1x−2 · · · )β

with xj ∈ D for j ≤ m, for some m ∈ Z. Sometimes, the radix point will not be
written down.

The numerical value of X in base β, denoted by ||X||, is equal to

||X|| =
−∞∑
j=m

xjβ
j.

The set of all β-representations on D is denoted by P [β,D]. We denote by P n
m[β,D]

the set of finite β-representations which have the maximum degree m and the min-
imum degree n, and by Pm[β,D] the set of infinite β-representations with the max-
imum degree m,

P n
m[β,D] = {X = (xmxm−1 · · ·xn+1xn)β | xj ∈ D, m ≥ j ≥ n}

Pm[β,D] = {X = (xmxm−1 · · · )β | xj ∈ D, j ≤ m}.

In integer base β, the usual digit set is of the form {c ∈ Z | 0 ≤ c ≤ |β| − 1} called
the canonical digit set, and denoted by C. Clearly, conventional decimal number sys-
tem is the case that β is equal to 10 and the canonical digit set is {c ∈ Z | 0 ≤ c ≤ 9}.

The number system (β,D) is said to be redundant if there exist two different finite
β-representations X1, X2 on D such that ||X1|| = ||X2||.
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In 1961, the signed digit number system was first introduced by Avizienis [1] in
order to design an addition without propagation of the carry. This number system
has been defined for any integer base β ≥ 3 with a symmetric digit set of the form
{e ∈ Z | −d ≤ e ≤ d} with β

2
< d ≤ β − 1. When β = 2, one takes D = {−1, 0, 1}.

Parhami in [17] has introduced more general signed digit number systems where the
alphabet is not necessarily symmetric.

Definition 1. The signed digit number system (β,D) is composed of a base β, where
β is a positive integer ≥ 2 and of a digit set D = {d ∈ Z | a ≤ d ≤ b} where a and
b are integers, a ≤ 0 ≤ b.

The number of elements of the digit set |D| = b−a+1 plays a role for the redundancy
property.

Remark 1.

1. If |D| < β, some reals cannot be represented in this system.

2. If |D| = β, every integer has a unique finite representation, and every real
number can be represented.

3. If |D| > β, this system is redundant.

Definition 2.

1. If |D| = β + 1, then D is a minimally redundant digit set.

2. If |D| = 2β − 1, then D is a maximally redundant digit set.

3. If b = |a|, the digit set D is said to be symmetric.

From now on, we will denote a negative digit −e by ē for any integer e.

2.2 On-line finite automata

For general definitions on automata the reader may consult [5]. We give here only
the definitions we shall be using in this work. Note that the automata we use are
not necessarily finite. Let D be a finite alphabet. The set of words on D is denoted
by D∗, the empty word is denoted by ε. The set of infinite words is denoted by DN.

The automata that are used in this work are also known as 2-tape automata or
transducers, see [2]. Recall that a sequential automaton with input alphabet D and
output alphabet E is a directed labeled graph

A = (Q,D × E∗, i0, F )

such that Q is the denumerable set of states, i0 ∈ Q is the initial state, F is the set
of edges, labeled by couples of D × E∗, and denoted by

p
x/y−→ q
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with (x, y) ∈ D × E∗. The automaton must be input deterministic, that is to say if

p
x/y−→ q and p

x/y′−→ q′, then q = q′ and y = y′. This automaton is said to be finite if
Q and F are finite.

On-line automata are a special kind of sequential automata. More precisely, an
on-line automaton with delay δ [15] is a sequential automaton

A = (Q,D × (E ∪ ε), i0, F )

such that every path of length δ starting in the initial state i0 is of the form

i0
x1/ε−→ q1

x2/ε−→ q2 · · ·
xδ/ε−→ qδ,

with xi ∈ D for i ≤ δ, and each edge arriving in i0, q1, q2, . . . , qδ is of that type. Such

edges are called transient edges. All the others edges are of the form p
x/y−→ q with

x ∈ D, y ∈ E and are called synchronous edges.

In practice, by assuming that the δ first digits of the input are equal to 0, we will
consider on-line automata where all the edges are of the form

p
x/y−→ q

where x ∈ D and y ∈ E.

A function f from DN to EN is said to be computable by an on-line automaton A if
the set of labels of infinite paths in A starting in the initial state i0 is equal to the
graph of the function f .

In the case of finite words, a terminal function ω : Q −→ E∗ is added to the definition
of the automaton. A function f : D∗ −→ E∗ is said to be computable by an on-line
automaton A if the graph of f is the set of couples (x, y) of D∗×E∗ such that there

exists in A a finite path of the form i0
(x,u)−→ q and y = uω(q).

2.3 Digit set conversion

Let D and E be two finite digit sets and let β the base be an integer or a complex
number. A digit set conversion in base β from D to E is a function χ : DN −→ EN
such that for each X ∈ DN, ||χ(X)|| = ||X||. Our basic requirement on (β, E) is that
the digit set E is of the form {e ∈ Z | a ≤ e ≤ b}, such that a ≤ 0 and b ≥ 0, and
that (β, E) is redundant. The digit set D is of the form {d ∈ Z | A ≤ d ≤ B}, such
that A ≤ B.

For every β-representation X in P [β,D], it is not the case that there always exists
a β-representation Y in P [β, E] such that ||X|| = ||Y ||. For example, consider the
conversion from P [2, {1̄, 0, 1}] to P [2, {0, 1, 2}]. Negative integers included in the
first system cannot be represented in the second.
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In this work, we shall investigate only the case where for each X in DN, there exists
an Y in EN such that χ(X) = Y . Let n1 be the smallest integer such that n1a ≤ A
and let n2 be the smallest integer such that n2b ≥ B. Take n = max{n1, n2}. The
digit set D is included in the digit set {d ∈ Z | na ≤ d ≤ nb}. So we consider only
the problem of converting an X in P [β,D] where D = {d ∈ Z | na ≤ d ≤ nb} into
an Y in P [β, E] with E = {e ∈ Z | a ≤ e ≤ b} such that ||X|| = ||Y ||.

Addition and multiplication by a fixed integer are particular cases of such digit set
conversion: addition is the case that n = 2 and multiplication by u is the case that
n = u.

3 On-line conversion algorithm

In an on-line conversion, one must take care of the overflow problem. For instance,
for addition of two numbers in the Avizienis signed digit binary number system, the
result needs one more digit on the maximum degree. It corresponds to the conversion
from Pm[2, {2̄, 1̄, 0, 1, 2}] into Pm+1[2, {1̄, 0, 1}]. The overflow is the smallest integer
l such that

∀X ∈ Pm[β,D], ∃Y ∈ Pm+l[β, E], ||X|| = ||Y ||

The on-line delay δ of the conversion in base β from D to E is the smallest integer
such that the most significant digit of the output can be computed from the most
δ + 1 significant digits of the input.

Let β be an integer, |β| > 1. In order that (β, E) be redundant, we take a ≤ 0 and
b ≥ 0 such that |E| > |β|. Our aim is the construction of an on-line automaton A
depending on two parameters k and Q where k is a fixed non-negative integer, the
delay of A, and Q is the set of states ofA, and realizing the conversion χ : DN −→ EN
for a fixed base β. In general, A might be infinite, and the output might not be on
the legal alphabet E. Our results (Theorem 1, Theorem 2) consist in proving that
there is a choice of k and Q such that the on-line automaton A is finite and the
output is written on E.

Let k be a non-negative integer. Let Q = {q ∈ Z | g ≤ q ≤ h} with g ≤ h, be a
complete residue system modulo |βk|. Let m be in Z.

We introduce some notations. Given a real number x,
bxc denotes the greatest integer which is less than or equal to x.
dxe denotes the least integer which is greater than or equal to x.
bbxcc denotes the greatest integer which is less than x.
ddxee denotes the least integer which is greater than x.

We need to define an extension of the notion of Euclidean division. Let z and p be
two integers. Define τ (z, p) as :

τ (z, p) = z − p× bz
p
c.
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Then we have that |τ (z, p)| ≤ |p| − 1. When z and p are positive, τ (z, p) is equal to
z mod p.

The abstract scheme of the on-line algorithm for digit set conversion is the following
one.

Algorithm AR
input : X = (xmxm−1 · · · )β, xj ∈ D = {d ∈ Z | na ≤ d ≤ nb}
output : Y = (ym+kym+k−1 · · · )β , yj ∈ E = {e ∈ Z | a ≤ e ≤ b}
begin

qm+k := 0;
j := m;
while j ≤ m do

qj+k−1 := τ (xj + qj+kβ, βk);
if qj+k−1 < g then qj+k−1 := qj+k−1 + |βk| endif;
if qj+k−1 > h then qj+k−1 := qj+k−1 − |βk| endif;
yj+k := (xj + qj+kβ − qj+k−1)/β

k;
j := j − 1;

enddo;
end;

Lemma 1. For every j ≤ m,

1. qj+k is in Q,

2. if the digits yj+k are bounded, then ||X|| = ||Y ||, and

3. yj+k is in E if the two following conditions are satisfied

min{xj + qj+kβ} ≥ min{eβk + qj+k−1 | e ∈ E}, (1)

and

max{xj + qj+kβ} ≤ max{eβk + qj+k−1 | e ∈ E}. (2)

In that case Algorithm AR is said to be correct.

Proof.

1. Clearly,

∀j ≤ m, xj + qj+kβ = yj+kβ
k + qj+k−1 (3)

Let us show that for each j ≤ m, qj+k is in Q. First, qm+k ∈ Q. Let r =
τ (xj + qj+kβ, βk), then r is an integer, −|βk| + 1 ≤ r ≤ |βk| − 1. If r < g, then
qj+k−1 = r + |βk|. We have qj+k−1 < g + |βk| = h + 1 because h− g + 1 = |βk|. We
also have qj+k−1 ≥ −|βk|+ 1 + |βk| = 1 > g, thus qj+k−1 ∈ Q.
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Similarly, if r > h, then qj+k−1 = r − |βk|. Then qj+k−1 > h − |βk| = g − 1, and
qj+k−1 ≤ |βk| − 1− |βk| = −1, thus qj+k−1 ∈ Q.

Therefore for every j ≤ m, qj+k is always in Q.

2. Now we show that ||X|| = ||Y ||, provided that the output digits yj are in a finite
set. From (3), we get that for all j ≥ 0,

xmβm + · · ·+ xm−jβ
m−j = ym+kβ

m+k + · · · + ym+k−jβ
m+k−j + qm+k−j−1β

m−j .

Since |β| > 1 and for each j ≤ m, |qj+k| and |yj+k| are bounded, then ||X|| = ||Y ||.

3. This algorithm is correct if for every j ≤ m, yj+k is in E = {e ∈ Z | a ≤ e ≤ b}.
Suppose that Conditions (1) and (2) are satisfied. Since the principal conversion
equation is xj + qj+kβ = yj+kβ

k + qj+k−1 and qj+k−1 = τ (xj + qj+kβ, βk), then

yj+k = bxj + qj+kβ

βk
c.

In the case where βk is positive, if Conditions (1) and (2) hold true, then

aβk + g ≤ xj + qj+kβ ≤ bβk + h.

Since for any j ≤ m, qj+k is in Q and −1 < g−h
βk

< 0 and 0 < h−g
βk

< 1, we have that
a ≤ yj+k ≤ b.

In the case where βk is negative, if Conditions (1) and (2) hold true, then

bβk + g ≤ xj + qj+kβ ≤ aβk + h.

Since for any j ≤ m, qj+k is in Q and 0 < g−h
βk

< 1 and −1 < h−g
βk

< 0, we have that
a ≤ yj+k ≤ b. �

On-line finite automaton for the conversion.
We construct an on-line automaton A = (Q,D×E, 0, F ) where 0 is the initial state
and every edge is of the from

qj+k
xj/yj+k−→ qj+k−1

according to the computation done in Algorithm AR. Since the set Q is finite, the
automaton is finite. Since, given xj and qj+k, the digit yj+k and the state qj+k−1 are
uniquely determined, the automaton is input deterministic, and this is an on-line
finite automaton.

4 Positive integer base number systems

In this section, we consider the case that β is an integer ≥ 2. Let Q = {q ∈ Z | g ≤
q ≤ h} be a contiguous set of integers, g ≤ h.
We give two possible definitions of Q.
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Case 1. Take g = d aβk
b−ae and h = bb bβk

b−acc. The set Q is called the lower remainder
set.

Case 2. Take g = dd aβk
b−aee and h = b bβk

b−ac. The set Q is called the upper remainder
set.

Lemma 2. In both cases, Q is a complete residue system modulo βk.

Proof. It is true that a set of βk contiguous integers is a complete residue system
modulo βk. We show that Q is a finite set with βk elements. To prove this, it is
enough to show that h− g + 1 = βk. The proof will be separated in two cases.

Case 1. The lower remainder set.

By the definition of g and h, we have −g ≤ −aβk
b−a and h < bβk

b−a . Then h − g < βk.

It implies that h − g + 1 ≤ βk. We also have g − 1 < aβk

b−a and h + 1 ≥ bβk

b−a . Then

h−g+2 > βk. This means that h−g+1 ≥ βk. We can conclude that h−g+1 = βk.

Case 2. The upper remainder set.

By the same way as for the lower remainder set, g = dd aβk
b−aee implies −g < −aβk

b−a and

h = b bβk
b−ac implies h ≤ bβk

b−a . Then we have h− g < βk. It means h− g +1 ≤ βk. We

also have 1− g ≥ −aβk
b−a and h + 1 > bβk

b−a . Then h− g + 2 > βk or h − g + 1 ≥ βk. �

Remark 2. The lower and the upper remainder sets may be the same if aβk or bβk

is not a multiple of b− a.

We first need some technical results.

Lemma 3. The following equality holds

max{
dd aβk

b−aee
a

,
b bβk
b−ac
b
} = max{

d aβk
b−ae
a

,
bb bβk

b−acc
b
},

where a, b 6= 0.

Proof. Since bβk

b−a −
aβk

b−a = βk where βk is an integer, we have that bβk

b−a is an integer

if and only if aβk

b−a is an integer. If bβk

b−a and aβk

b−a are not integers, we obtain the result.
On the other hand, we have

dd aβ
k

b−a ee
a

= aβk

a(b−a)
+ 1

a
= βk

b−a + 1
a

< βk

b−a ,

b bβ
k

b−a c
b

= βk

b−a ,

d aβ
k

b−a e
a

= βk

b−a ,

bb bβ
k

b−acc
b

= bβk

b(b−a)
− 1

b
= βk

b−a −
1
b

< βk

b−a .

Then we get max{ dd
aβk

b−a ee
a

,
b bβ

k

b−ac
b
} = max{ d

aβk

b−ae
a

,
bb bβ

k

b−acc
b
} = βk

b−a . �
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Lemma 4. If n ≤ βk, D = {d ∈ Z | na ≤ d ≤ nb}, and E = {e ∈ Z | a ≤ e ≤ b},
then for any β-representation X in Pm[β,D] there exists a β-representation Y in
Pm+k[β, E] such that ||Y || = ||X||.

Proof. It is enough to show that (4) and (5) are true,

naβm + naβm−1 + · · · ≥ aβm+k + aβm+k−1 + · · · , (4)

and

nbβm + nbβm−1 + · · · ≤ bβm+k + bβm+k−1 + · · · . (5)

Since n ≤ βk, we have naβm+1

β−1
≥ aβm+k+1

β−1
, thus (4) is true, and nbβm+1

β−1
≤ bβm+k+1

β−1
,

thus (5) is true. �

Now we prove that with these definitions, Algorithm AR is correct. This can be
expressed as follows.

Theorem 1. Let β be a positive integer > 1, let a be a negative integer and b be a
positive integer, b − a + 1 > β, D = {d ∈ Z | na ≤ d ≤ nb} and E = {e ∈ Z | a ≤
e ≤ b}. There exists a non-negative integer k such that an on-line conversion from
Pm[β,D] into Pm+k [β, E] is computable by an on-line finite state automaton with βk

states, and k is the smallest integer satisfying the following condition

n ≤ βk + (1− β)ρ,

where ρ = max{ dd
aβk

b−aee
a

,
b bβ

k

b−ac
b
} = max{ d

aβk

b−a e
a

,
bb bβ

k

b−a cc
b
}.

Proof. We use the definition of Q given above. We take g = d aβk
b−ae, h = bb bβk

b−acc
in Case 1, and g = dd aβk

b−aee, h = b bβk
b−ac in Case 2. Then ρ = max{ g

a
, h
b
}. Applying

Algorithm AR, for xj in D, we find yj+k such that

yj+k =
xj + qj+kβ − qj+k−1

βk

where qj+k−1 and qj+k are in Q. Since β is a positive integer, Conditions (1) and (2)
of Lemma 1 become

(C1). na + gβ ≥ aβk + g
(C2). nb + hβ ≤ bβk + h

Let us show that (C1) and (C2) hold true.

C1. na + gβ ≥ aβk + g
By definition, ρ ≥ g

a
and β > 1, then ρ(1 − β) ≤ (1−β)g

a
. Choosing k the smallest

integer such that n ≤ βk + (1− β)ρ, we obtain that na + gβ ≥ aβk + g.

C2. nb + hβ ≤ bβk + h
By definition, ρ ≥ h

b
and β > 1, then ρ(1 − β) ≤ (1−β)h

b
. Taking k the smallest

integer such that n ≤ βk + (1− β)ρ, we have nb + hβ ≤ bβk + h.
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Then for all j ≤ m, yj+k ∈ E. By Lemma 1, Algorithm AR is correct.

In the case where the input sequences are finite, a terminal function ω : Q −→ E∗
must be defined. We have to show that all the elements in Q can be written in
P 0
k−1[β, E], that is to say

∀q ∈ Q, q =
∑0
i=k−1 eiβ

i where ei ∈ E.

Let u = βk−1+βk−2+· · ·+β+1. We only need to prove that ∀q ∈ Q, au ≤ q ≤ bu.
We have,

d aβk
b−ae ≤ dd

aβk

b−aee < bb bβk
b−acc ≤ b

bβk

b−ac.
It is enough to show that d aβk

b−ae ≥ au and b bβk
b−ac ≤ bu.

1. d aβk
b−ae ≥ au

Because u > 0, a < 0 and b− a + 1 > β, then u(β−1−b+a)+a
b−a < 0.

And then a(u(β−1−b+a)+a
b−a ) ≥ 0.

By the definition of u, we also have βk = u(β − 1) + 1.

It means that au(β−1)
b−a + a

b−a − au ≥ 0, which implies d aβk
b−ae ≥ au.

2. b bβk
b−ac ≤ bu

By the same way, u > 1, b > 0 and β − 1− b + a ≤ −1.

We obtain u(β−1−b+a)+1
b−a < 0.

Then we have b(u(β−1−b+a)+1
b−a ) ≤ 0, which implies bu(β−1)

b−a + b
b−a − bu ≤ 0.

It implies that b bβk
b−ac ≤ bu.

We conclude that for every q in Q, q =
∑0
i=k−1 eiβ

i with ei ∈ E and we set ω(q) =
ek−1ek−2 · · · e0. �

Remark 3. Note that the integer k given in Theorem 1 is sufficient to take care of
the overflow problem, since n ≤ βk and by Lemma 4.

Remark 4. In the case where a = −b, the on-line automaton we construct is not
symmetric, contrarily to the one deduced from the algorithm of Avizienis or of Chow
and Robertson [8, 15].

Corollary 1. In the case of a = 0 and b ≥ β, an on-line conversion from Pm[β,D]
into Pm+k[β, E] is computable by an on-line finite state automaton with βk states,
and k is the smallest integer satisfying the condition

n ≤ (b + 1)βk − βk+1 + β − 1

b

Proof. As in the proof of Theorem 1, replacing g by 0. It means that we can use
only the lower remainder set as the set of states Q = {q ∈ Z | 0 ≤ q ≤ βk − 1}. �
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Corollary 2. In the case where a ≤ −β and b = 0, an on-line conversion from
Pm[β,D] into Pm+k [β, E] is computable by an on-line finite state automaton with βk

states, and k is the smallest integer satisfying the following condition :

n ≤ (a− 1)βk + βk+1 − β + 1

a

Proof. As the proof of Theorem 1, replacing h by 0. Only the upper remainder set
can be used for set of states Q = {q ∈ Z | −βk + 1 ≤ q ≤ 0}. �

Remark 5. In the case of a = 0, zero is not included in the upper remainder set,
and in the case of b = 0, zero is not included in the lower remainder set.

We also have the following result.

Lemma 5. The non-negative integer k in Algorithm AR is the smallest integer such
that the on-line automaton constructed in Theorem 1 is finite.

Proof. Let k′ be a non-negative integer such that k′ < k. Then we have

n > βk
′
+ (1− β)max{g

a
,
h

b
}

This gives n > βk
′
+ (1−β)g

a
and n > βk

′
+ (1−β)h

b
. And we can see that

1. na + gβ < aβk
′
+ g and

2. nb + hβ > bβk
′
+ h.

This implies that the set of states Q could increase in size in that case. �

We now consider the case n = 2 (addition).

Example 1. Addition in the binary signed digit number system. The base is β = 2
with E = {1̄, 0, 1}, D = {2̄, 1̄, 0, 1, 2} and n = 2. Then k = 2.

We use the lower remainder set as the set of states Q = {−2,−1, 0, 1}.
For addition of (1̄1̄11011.)2 and (1̄1̄1111̄0.)2, the result in P [2,D] is w = (2̄2̄22101.)2.
There is a path

0
2̄/0−→ 2̄

2̄/1̄−→ 2̄
2/0−→ 2̄

2/0−→ 2̄
1/1̄−→ 1

0/1−→ 2̄
1/1̄−→ 1

in the automaton represented on Figure 1. The terminal function ω : Q −→ E∗
is defined as ω(2̄) = 1̄0, ω(1̄) = 01̄, ω(0) = 00 and ω(1) = 01, so the result of the
conversion of w is v = (01̄001̄11̄01.)2. Note that the length of the output is equal to
the length of the input +2. Compare with the result given by the algorithm of Chow
and Robertson which is (01̄1̄110101.)2. The automaton given in [8] has 5 states.

Proposition 1. The on-line finite state automaton defined in Theorem 1 is minimal
in the number of states amongst on-line finite automata realizing the conversion with
the same delay k.

Proof. By Lemma 5, k is the smallest integer such that the automaton A of
Theorem 1 is finite. Suppose that there is another on-line finite automaton B with
delay k realizing the conversion, and such that its set of states S has less than βk
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)
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1
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3
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}

1/1

�

1̄/1̄

Figure 1: 4-state automaton converting from P [2, {2̄, 1̄, 0, 1, 2}] to P [2, {1̄, 0, 1}] by
using the lower remainder set

states. Let X = (xmxm−1 · · · )β be the input, and Y = (ym+kym+k−1 · · · )β be the
output of a computation in B. Since B has delay k, this means that for each j ≤ m,
there is a unique path

0 = qm+k
xm/ym+k−→ qm+k−1

xm−1/ym+k−1−→ qm+k−2
xm−2/ym+k−2−→ · · ·

· · · xj+1/yj+k+1−→ qj+k
xj/yj+k−→ qj+k−1

xj−1/yj+k−1−→ · · ·
where all qj, for j ≤ m + k, are in S. Since

∑
j≤m xjβ

j =
∑
j≤m yj+kβ

j+k, we have
for any i ≤ m

xmβm−i + · · · + xi = ym+kβ
m+k−i + · · ·+ yi+kβ

k + qi+k−1.

Let ui = xmβm−i+ · · ·+xi. Then ui ∼ qi+k−1 mod βk. Since m and i are arbitrary,
and ui is an integer represented in base β with digits in D, ui can be in every class
modulo βk. Then S should contain a complete residue system modulo βk and thus
|S| should be greater or equal to βk. �

5 Negative integer base number systems

The base is now a negative integer β < −1. It is known that every real number can
be represented in negative base β with digits in {c ∈ Z | 0 ≤ c ≤ |β| − 1} without a
sign [12, 14], and that the representation of integers is unique.

By using a signed digit set {e ∈ Z | d̄ ≤ e ≤ d} where |β
2
| ≤ d ≤ |β| − 1, we obtain

a redundant number system and it is known [7] that addition is computable by an
on-line finite automaton. We show that the on-line conversion can also be done
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similarly to the positive base, only the condition on k and the definition of Q have
to be changed.

The definition of g and h are dependent on the parity of k, because it is no longer
true that b aβk

b−ac < 0 and d bβk
b−ae > 0 when k is odd. Then we will modify the definition

of g and h, depending on the value of k.

Case 1. The lower remainder set
g = −b aβk

b−ac and h = −dd bβk
b−aee when k is odd,

and
g = −b bβk

b−ac and h = −dd aβk
b−aee when k is even.

Case 2. The upper remainder set
g = −bb aβk

b−acc and h = −d bβk
b−ae when k is odd,

and
g = −bb bβk

b−acc and h = −d aβk
b−ae when k is even.

Lemma 6. The finite set Q is a complete residue system modulo |βk|.

Proof. It is similar to the proof of Lemma 2. �

Theorem 2. Let β be a negative integer, β < −1, let a be a negative integer and b
be a positive integer such that b− a + 1 > |β|, and let D = {d ∈ Z | na ≤ d ≤ nb},
E = {e ∈ Z | a ≤ e ≤ b}. There exists a non-negative integer k such that an on-line
conversion from Pm[β,D] to Pm+k[β, E] can be done by an on-line finite automaton
with |βk| states, where k is the smallest integer satisfying the following condition

n ≤ min{ b
a
βk + g−hβ

a
, a
b
βk + h−gβ

b
} when k is odd,

or
n ≤ βk + min{ g−hβ

a
, h−gβ

b
} when k is even.

Proof. To prove that Algorithm AR is correct in negative base, it is enough to show
that conditions (1) and (2) are satisfied.

Assume that k satisfies the condition above. We first consider the case where k is
odd. We have to show that na + hβ ≥ bβk + g and nb + gβ ≤ aβk + h. Because
n ≤ min{ b

a
βk + g−hβ

a
, a
b
βk + h−gβ

b
}, then

n ≤ b
a
βk + g−hβ

a
=⇒ na + hβ ≥ bβk + g,

and
n ≤ a

b
βk + h−gβ

b
=⇒ nb + gβ ≤ aβk + h.

When k is even, we show that na + hβ ≥ aβk + g and nb + gβ ≤ bβk + h. Because
n ≤ βk + min{ g−hβ

a
, h−gβ

b
}, then

n ≤ βk + g−hβ
a

=⇒ na + hβ ≥ aβk + g
and

n ≤ βk + h−gβ
b

=⇒ nb + gβ ≤ bβk + h.

From Lemma 1, the algorithm is correct. �
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6 The Penney complex number system

To represent complex numbers, we may chose a complex radix with a finite real
digit set. The Penney number system consists of a base β = −1 + i and digit set
C = {0, 1} ([18]). It is known that every complex number has a representation in
this system. For instance, 7 − 2i can be written in this system as (101001.)−1+i.
Gaussian integers have a unique representation, of the form (xmxm−1 · · ·x0.)−1+i.
Complex numbers in general may have a right infinite expansion. If we replace the
digit set C = {0, 1} by the digit set E = {1̄, 0, 1}, this system becomes redundant.
With digits in E, 7− 2i can be also written as (11̄01̄01̄.)−1+i.

In [4] and [16], it is pointed out that addition in parallel in this system with digit
set {1̄, 0, 1} is indeed possible but it is not clearly pratical. In [7], it is shown that
addition in base −1 + i with digit-set {d ∈ Z | 3̄ ≤ d ≤ 3} or {d ∈ Z | 2̄ ≤ d ≤ 2}
can be realized by an on-line finite automaton. We show that addition on {1̄, 0, 1}
can be done by an on-line finite automaton.

Let n be an integer. Since (−1 + i)4 = −4, for any X = (x4nx4n−1 · · · )−1+i,

||X|| =
∑
j≤4n xj(−1 + i)j

=
∑
j≤n x4j(−4)j + (−1 + i)3∑

j≤n x4j−1(−4)j−1

+(−1 + i)2∑
j≤n x4j−2(−4)j−1 + (−1 + i)

∑
j≤n x4j−3(−4)j−1.

Let
X1 = (x4nx4n−4 · · · )−4,
X2 = (x4n−1x4n−5 · · · )−4,
X3 = (x4n−2x4n−6 · · · )−4,
X4 = (x4n−3x4n−7 · · · )−4,

represented in base −4 with digits in C, we have

||X|| = ||X1||+ (−1 + i)3||X2||+ (−1 + i)2||X3||+ (−1 + i)||X4||.

Thus the representation X can be obtained by intertwining the representations
X1, X2, X3 and X4. Of course, if the representation is on E, the same remark holds
true.

By grouping digits by blocks of length 4 in base −1 + i, it corresponds to the sys-
tem with base −4. In the following result, we prove that addition can be done by
grouping digits by blocks of length 4.

Theorem 3. The on-line addition in base β = −1 + i with digits in E = {1̄, 0, 1}
can be performed by one on-line finite automaton with delay 12 with 4096 states, or
by the composition of two on-line finite automata with delay δ = 12 with 64 states.

Proof. We consider addition as a conversion from P [−1 + i,D] where D =
{2̄, 1̄, 0, 1, 2} to P [−1+i, E]. By grouping the digits of D by blocks of length 4, we ob-
tain a number system in base γ = −4 with digits inK = {∑3

j=0 dj(−1+i)j | dj ∈ D},
Remark that K is a subset of K′ where K′ = {u + vi | u ∈ U and v ∈ V}, with
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U = {u ∈ Z | 8̄ ≤ u ≤ 8} and V = {v ∈ Z | 1̄0 ≤ v ≤ 10}.

By the same way for E, grouping digits by 4 in E is equivalent to the system in base
γ = −4 with digits in G = {∑3

j=0 dj(−1 + i)j | dj ∈ E}. Let G ′ = {u′ + v′i | u′ ∈ U ′
and v′ ∈ V ′} where U ′ = V ′ = {1̄, 0, 1, 2, 3}.

Because G ′ ⊂ G, then our problem is a conversion from P [−4,K′] to P [−4,G ′].

We split this conversion into 2 parts, the real and the imaginary part. For the real
part, the conversion from P [−4,U ] into P [−4,U ′] can be realized by an on-line finite
automaton with 64 states (k = 3) by Theorem 2. The conversion from P [−4,V ] into
P [−4,V ′] can also be done by an on-line finite automaton with 64 states (k = 3).
Combining the two automata together, we obtain an on-line finite automaton with
4096 states for this conversion. Since the conversion runs in base −4 with k = 3,
the delay is 12 in base −1 + i. �

7 The Knuth complex number system

Now we consider the Knuth complex number system. Every complex number has
a representation in base β = i

√
r, where r is an integer, r ≥ 2, with digits in the

canonical digit set C = {c ∈ Z | 0 ≤ c ≤ r − 1} [9, 10, 11]. For example, in base i2,
−5 + 17i can be written with digits in {0, 1, 2, 3} as (102213.2)i2 .

If r is the square of an integer, r = s2, then every Gaussian integer has a unique
finite representation in P−1[is, C], that is, every Gaussian integer has a representa-
tion of the form

(xmxm−1 · · ·x0.x−1)is, with xj ∈ C.

Let n be an integer. Since β2 = −r, for any β-representation X = (x2nx2n−1 · · · )i√r,

||X|| = ||X1||+ (i
√

r)||X2||

where X1 = (x2nx2n−2 · · · )−r and X2 = (x2n−1x2n−3 · · · )−r . Thus the i
√

r-represen-
tation X can be obtained by intertwining the (−r)-representations X1 and X2.

If we take for digit set E = {e ∈ Z | a ≤ e ≤ b} where a is a negative integer, b is a
positive integer and |E| > r, we obtain a redundant number system.

For instance, in base i2, −5+17i can also be written with digits in E = {2̄, 1̄, 0, 1, 2}
as (102101̄.2)i2.

Addition in parallel in base i
√

2 and digit set {1̄, 0, 1} has been described in [16].
Addition in base β = i

√
r, where r is a positive integer ≥ 2, and with digit set

E = {e ∈ Z | b̄ ≤ e ≤ b}, where b = d r
2
e, has been considered in [7]. In the case

where r is even and b = r
2
, addition is computable by an on-line finite automaton

with delay δ = 4. In the case where r is odd and b = d r
2
e, addition is computable
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by an on-line finite automaton with delay δ = 2.

Let E = {e ∈ Z | a ≤ e ≤ b} where a and b are integers, a ≤ 0, b ≥ 0 and |E| > r.
Let D = {d ∈ Z | na ≤ d ≤ nb}, where n is a positive integer. We show that the
on-line conversion from P [i

√
r,D] into P [i

√
r, E] can be done by an on-line finite

automaton.

Algorithm AR should to be changed for digit set conversion in the Knuth complex
number. The new algorithm is the following one.

Algorithm AC
input : X = (xmxm−1 · · · )β, xj ∈ D = {d ∈ Z | na ≤ d ≤ nb}
output : Y = (ym+kym+k−1 · · · )β , yj ∈ E = {e ∈ Z | a ≤ e ≤ b}
begin

qm+k := 0;
j := m;
while j ≤ m do

Re(qj+k−1) :=Re(τ (xj + qj+kβ, βk));
Im(qj+k−1) :=Im(xj + qj+kβ);
if Re(qj+k−1) < g then Re(qj+k−1) :=Re(qj+k−1) + |βk| endif;
if Re(qj+k−1) > h then Re(qj+k−1) :=Re(qj+k−1)− |βk| endif;
yj+k := (xj + qj+kβ − qj+k−1)/β

k;
j := j − 1;

enddo;
end;

The definition of g and h is similar to the negative base and depends on the value
of k

2
where k is always even.

Case 1. k
2

is odd
1. The lower remainder set

g = −b a
b−aβ

kc − dd b
b−aβ

keei
√

r

h = −dd b
b−aβ

kee − b a
b−aβ

kci
√

r
2. The upper remainder set

g = −bb a
b−aβ

kcc − d b
b−aβ

kei
√

r

h = −d b
b−aβ

ke − bb a
b−aβ

kcci
√

r

Case 2. k
2

is even
1. The lower remainder set

g = −b b
b−aβ

kc − dd a
b−aβ

keei
√

r

h = −dd a
b−aβ

kee − b b
b−aβ

kci
√

r
2. The upper remainder set

g = −bb b
b−aβ

kcc − d a
b−aβ

kei
√

r

h = −d a
b−aβ

ke − bb b
b−aβ

kcci
√

r

The set of states Q is defined by



354 A. Surarerks

Q = {u + vβ | u, v ∈ Z and Re(g) ≤ u ≤Re(h) and Im(h) ≤ v
√

r ≤Im(g)}.

Lemma 7. The finite set Q defined above has rk elements.

Proof. Let U = {u ∈ Z |Re(g) ≤ u ≤Re(h)} and let V = {v ∈ Z |Im(h) ≤
v
√

r ≤Im(g)}. By Lemma 6, U and V are both a complete residue systems modulo

r
k
2 . By the definition, Q contains rk elements. �

Theorem 4. Let β be a complex number of the form i
√

r, where r is a positive
integer. Let a be a negative integer, b be a positive integer, b− a + 1 > r, D = {d ∈
Z | na ≤ d ≤ nb} and E = {e ∈ Z | a ≤ d ≤ b}. There exist a non-negative integer
k such that an on-line conversion from Pm[β, D] into Pm+k [β, E] is computable by
an on-line automaton with rk states, where k is the smallest even integer satisfying
the following condition

n ≤ min{ b
a
βk + Re(g)−Re(h)β2

a
, a
b
βk + Re(h)−Re(g)β2

b
} when k

2
is odd,

or
n ≤ βk + min{Re(g)−Re(h)β2

a
, Re(h)−Re(g)β2

b
} when k

2
is even.

Proof. First let us show that for any j ≤ m, qj+k is in Q. It is clear that qm+k = 0
is in Q. We have to show that if qu is in Q, then qu−1 is also in Q. According to the
computation in Algorithm AC,

Re(qu−1) = Re(τ (xu−k + quβ, βk)) and
Im(qu−1) = Im(xu−k + quβ).

We have that −|βk|+1 ≤ Re(qu−1) ≤ |βk|−1. Similarly as in the proof of Lemma 1,
Re(g) ≤ Re(qu−1) ≤ Re(h). Since xu is in D, Im(qu−1) = Im(quβ). By the definition
of Q and if qu is in Q, Im(h) ≤ Im(quβ) ≤ Im(g). Thus qu−1 is in Q.

Now, we show that for every j ≤ m, yj+k is in E if the two following conditions hold:

min{Re(xj + qj+kβ)} ≥ min{Re(eβk + qj+k−1) | e ∈ E}, (6)

max{Re(xj + qj+kβ)} ≤ max{Re(eβk + qj+k−1) | e ∈ E}. (7)

Since the conversion equation is xj + qj+kβ = yj+kβ
k + qj+k−1 and

Re(qj+k−1) = Re(τ (xj + qj+kβ, βk)) and

Im(qj+k−1) = Im(xj + qj+kβ).

We have that Re(yj+k) = Re(bxj+qj+kβ
βk

c) and Im(yj+k) = 0.

In the case where k
2

is odd, Conditions (6) and (7) become

min{Re(xj + qj+kβ)} ≥ bβk + Re(g),
max{Re(xj + qj+kβ)} ≤ aβk + Re(h).

By definition of Q, −1 < Re(h)−Re(g)
βk

< 0 and 0 < Re(g)−Re(h)
βk

< 1, and since for any

j ≤ m, qj+k is in Q, we obtain that a ≤ Re(yj+k) ≤ b.
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In the case where k
2

is even, Conditions (6) and (7) become

min{Re(xj + qj+kβ)} ≥ aβk + Re(g),
max{Re(xj + qj+kβ)} ≤ bβk + Re(h).

By definition of Q, 0 < Re(h)−Re(g)
βk

< 1 and −1 < Re(g)−Re(h)
βk

< 0, and since for any

j ≤ m, qj+k is in Q, we obtain that a ≤ Re(yj+k) ≤ b.

Since |β| > 1 and for each j ≤ m, if |qj+k| and |yj+k| are bounded, and

xmβm + · · ·+ xm−jβ
m−j = ym+kβ

m+k + · · ·+ ym+k−jβ
m+k−j + qm+k−j−1β

m−j,

we get ||X|| = ||Y ||.

We now show that if the conditions of the theorem are satisfied, then Conditions
(6) and (7) hold true. It means that we have to show that

Case 1. When k
2

is odd, Conditions (6) and (7) become
na+Re(gβ) ≥ bβk+Re(g) and nb+Re(hβ) ≤ aβk+Re(h).

Case 2. When k
2

is even, Conditions (6) and (7) become
na+Re(gβ) ≥ aβk+Re(g) and nb+Re(hβ) ≤ bβk+Re(h).

In Case 1, by the condition on k, we have

n ≤ b
a
βk + Re(g)−Re(h)β2

a

na ≥ bβk + Re(g)− Re(h)β2

= bβk + Re(g)− Re(gβ)
na + Re(gβ) ≥ bβk + Re(g)

and
n ≤ a

b
βk + Re(h)−Re(g)β2

b

nb ≤ aβk + Re(h)− Re(g)β2

= aβk + Re(h)−Re(hβ)
nb + Re(hβ) ≤ aβk + Re(h)

In Case 2, by the condition on k, we have

n ≤ βk + Re(g)−Re(h)β2

a

na ≥ aβk + Re(g)− Re(h)β2

= aβk + Re(g) −Re(gβ)
na + Re(gβ) ≥ aβk + Re(g)

and
n ≤ βk + Re(h)−Re(g)β2

b

nb ≤ bβk + Re(h)− Re(g)β2

= bβk + Re(h)− Re(hβ)
nb + Re(hβ) ≤ bβk + Re(h)

In both cases, Conditions (6) and (7) are true. Thus Algorithm AC is correct. �
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8 Conclusion

In this paper we have presented an on-line finite automaton with delay k for digit
set conversion in base β. In the case where β is an integer, the number of states of
the automaton is shown on the array below. Note that |βk| is always smaller than
or equal to (b− a)k.

previous results our algorithm
on-line addition

with (b− a)k + 1 |βk|
a minimally redundant digit set

on-line addition
with (b− a)k |βk|

a maximally redundant digit set

In this work, we have considered digit set conversion from D to E where D = {d ∈
Z | na ≤ d ≤ nb} for n ≥ 1, and E = {e ∈ Z | a ≤ e ≤ b}, a ≤ 0, b ≥ 0. More general
digit set conversions can be studied. In [19], we give some results for conversion in
positive integer base, with a general digit set D = {d ∈ Z | A ≤ d ≤ B}, where A
and B are integers, A ≤ B, and a redundant digit set E = {e ∈ Z | a ≤ e ≤ b},
where a and b are integers, a ≤ 0 ≤ b. Digit set conversion in base 2 from {1̄, 0, 1}
into {0, 1, 2} falls into this case.
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