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Abstract

We introduce here a way of describing and generating words and languages
with linear subword complexities. The method relies on surface laminations

and their codings into languages of words by using graph descriptions (train-
tracks). The complexity of these languages is shown to be always linear and

computable in terms of these graphs. This result leads to constructions of full
semi-groups of substitutions whose limit words have a given linear complexity.

Résumé

Le but de cet article est d’étudier et d’exploiter une représentation géomé-
trique de mots et de langages ayant une complexité linéaire. Cette représen-

tation est basée sur la notion de laminations de surfaces qui sont des ensem-
bles de courbes parallèles pouvant se décrire sous forme de graphes plongés

(les “réseaux de chemins de fer”). Lorsque ces graphes sont étiquetés, ils
induisent une représentation symbolique – un codage – des courbes qu’ils

décrivent. Nous montrons que ce codage est toujours un langage de com-
plexité linéaire dont les coefficients ne dépendent que du nombre de sommets
et d’arcs du graphe. En utilisant le fait que certaines laminations sont des

points fixes d’automorphismes de surfaces qui eux-mêmes peuvent se traduire
en substitutions, il est alors possible de construire explicitement des mots et

des langages de complexité linéaire. En particulier, nous exhibons des semi-
groupes de substitutions dont les mots limites sont tous d’une complexité

linéaire donnée.
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1 Introduction

The complexity of an infinite word w is defined as the counting function N∗ → N∗
giving the number of subwords (factors) of length n occuring in w. This is a mean of
estimating how intricate is an infinite word in a more precise way than entropy (see
e.g. [29, 6]) which becomes effective only when complexity grows exponentially. The
lowest complexities are related to periodicity: for one-way (resp. two-way) infinite
words, the complexity is ultimately constant iff the word is ultimately periodic (resp.
periodic). If the word is not ultimately periodic (resp. periodic), then its complexity
at n is at least n+1. The words having that complexity have been studied for a long
time [25, 5], mainly under the name of Sturmian words. Other linear complexities
have also been investigated (see e.g. [4, 32, 9, 1, 18, 21], and the surveys [2, 13, 6]).
Complexity can be extended to languages by counting all the subwords occuring in
the words of a language.

Surface laminations are specific sets of infinite simple curves running on a surface
(see e.g. [36, 10, 23] and definitions below). These can be represented by directed
graphs embedded in the surface, often called train-tracks [36, 17, 14, 28]). When
their edges are labelled, such graphs induce a symbolic coding of the laminations
into languages of infinite words [38, 19, 20]. Our first result can then be informally
stated as follows (see Theorem 3.2 in the text):

Theorem: Let Γ = (V,E) be a graph embedded into a surface M where V is its
set of vertices and E its set of edges. Then the coding language of a lamination
represented by Γ has complexity (|E| − |V |)n + |V |, n ∈ N∗, where |.| denotes
cardinality.

From the lamination point-of-view, this improves the polynomial estimation ob-
tained by Weiss in [38]. From the formal language theory point-of-view, this gives
an easy way of computing complexity as soon as one knows that a language is the
coding of a lamination. Moreover, if every word in the language has the same set
of finite subwords, the complexity goes to individual words too. One way of ob-
taining languages of this kind makes use of generic graphs coming from so-called
systems of curves [37, 27, 19, 20] in surfaces (see Figures 1 to 3 in the text) which
have the property that corresponding laminations are fixed points as sets of ex-
plicit automorphisms which in turn are conjugated to substitutions (morphisms) on
words [19, 20]. As a result, coding languages with given linear complexity can be
produced by iterating substitutions. With respect to this we obtain the following
result (see Proposition 4.3 in the text):

Proposition: For every α, β ∈ N∗ with β ≥ α, there are full semi-groups of
substitutions giving words of complexity αn + β when iterated to infinity.

Note that constructions of linear complexity words with substitutions have already
been obtained based on different tools: for the n+ 1 Sturmian case (see e.g. [34, 11,
24]), for the 2n+ 1 case (see [3, 4, 12]), and more generally for the αn+ 1 case with
α ∈ N∗ (see [31, 9, 35, 18, 21] and also the discussion at the end of the paper).

Finally, by using graph moves (see Section 3.3 in the text), we also show how
to transform the complexity functions obtained by applying the above theorem, so
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that we mainly get the following result (see Proposition 4.5 in the text):

Proposition: For every α, β ∈ N∗, there are semi-groups of substitutions giving
words of complexity αn + β, n ∈ N∗, when iterated to infinity and projected to
subalphabets.

2 Definitions

Let A be a finite alphabet and w = w1w2... (resp. w = ...wiwi+1...) be a one-
way (resp. indexed two-way) infinite word over A. For n > 0, let Fw(n) =
{wiwi+1...wi+n−1, i ∈ N} (resp. Fw(n) = {wiwi+1...wi+n−1, i ∈ Z}) be the set
of subwords (also called factors) of length n occuring in w. The word complexity

function pw : N∗ → N∗ is defined by pw(n) = |Fw(n)|; it is the counting function of
the subwords occuring in w. If L is a language of one-way or two-way infinite words
over A, the language complexity function pL is the counting function of the subwords
occuring in all the words in L, i.e. pL(n) = |⋃w∈L Fw(n)|. Clearly, pw ≤ pL for every
w ∈ L. Equality holds if a language L is minimal, i.e. the set of shifts of each word
in L is dense in L for the corresponding classical Cantor metric: in this case all the
words in L have the same sets of subwords.

Let M be a closed oriented surface of genus g ≥ 0, with m ≥ 0 punctures so that
its Euler-Poincaré characteristic is negative. Such surfaces have metrics for which
the universal covering is the hyperbolic plane; from now on we shall assume M has
been given such a metric. Let Γ = (V,E) be a finite directed graph embedded in M
with set of vertices V and set of edges E. An admissible path in Γ is an indexing
map from an interval of Z towards E, such that the end of an edge is the origin
of the following one. It inherits in an obvious way an orientation. It is said to be
closed if it can be defined by a two-way infinite periodic indexing map. A curve γ
in M uniformly homotopic to an admissible path in Γ is said to be carried by Γ
and is called a leaf. Uniform homotopy (i.e. homotopy with uniformly continuous
maps) is equivalent to demand two homotopic curves have lifts to M ’s universal
covering at bounded distance from each other. Carrying graphs like Γ are often
called train-tracks1 (see e.g. [17, 14, 28]).

A geodesic lamination L of M is a closed set of complete simple geodesics (see
e.g. [10]). Up to homotopy there is another equivalent definition based on embed-
ded graphs Γ: A lamination is a set L of pairwise disjoint, pairwise non-uniformly
homotopic, simple infinite curves carried by some graph Γ, such that L is maximal
with respect to inclusion. Given Γ and the lamination, we say that the lamination
is maximal rel. to Γ. In general, a given graph Γ may carry many maximal lam-
inations, and a lamination L may be maximal rel. to many different graphs. We
denote by {LΓ} the set of all the maximal laminations carried by Γ, and by {ΓL}

1We consider here only globally oriented graphs, so that in particular all the carried leaves
inherit this orientation. Classical train-tracks need not have such an orientation. Nevertheless,
to every train-track one may associate a locally oriented graph, i.e. a graph where each edge is
oriented only near its vertices. Every such graph has a unique orientations double cover which is
a globally oriented graph. This double cover is trivial iff the graph is globally orientable. If not,
leaves lift to this cover where their codings record not only the edge visited by the carrying paths,
but also the direction in which they visit it; so this just doubles the alphabet.
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the set of all the graphs which carry L in a maximal way. A graph Γ is said to be
recurrent if for every edge of Γ there is at least one closed admissible path going
through it. It is a sufficient condition to ensure that {LΓ} 6= ∅.

Assuming that the edges of a carrying graph Γ are labelled over an alphabet A,
the coding of an admissible path of Γ is the word obtained by concatenating the edges
labels according to the indexing map. We shall always assume that the labelling is
such that one distinct letter is assigned to each edge. An embedded graph Γ is said
to be free if it does not carry distinct admissible paths which are homotopic on M .
A necessary and sufficient condition to be free for a recurrent graph is that no disk
or annulus component in M \ Γ has its boundary made of two admissible paths. So
for a free graph, the coding of a carried leaf `, denoted by cod(`), is defined as the
coding of its unique homotopic carrying admissible path. By extension, the coding

of a carried lamination L is the language of the codings of all the leaves of L.

3 Linear Complexity and Laminations

3.1 Systems of Curves

A system of curves after [37, 27, 19] in a surface M is a pair of sets C and D,
each consisting of finitely many pairwise non-homotopic and disjoint oriented simple
closed curves, so that no disk component of M \ C ∪D has less than three vertices
on its boundary (i.e. C hits D efficiently), such that the orientation given by (c, d)
at any point of c ∩ d, c ∈ C and d ∈ D, agrees with that of M . A system of curves
C ∪D can be considered as a recurrent directed graph Γ embedded in M : its set of
vertices V is C ∩D and its set of oriented edges E is the set of segments of C ∪D
between consecutive intersection points. In general, one requires [37, 27, 19] that
each component of M \C∪D is a topological disk. Here, we just demand that C∪D
seen as a directed graph Γ must be connected. We also say that a system of curves
is free if its associated graph Γ is. In the following constructions, if disks occur in
M \ C ∪ D so that the initial system is not free we just puncture them. Generic
instances of free systems of curves are shown in Figures 1 to 3.
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Figure 1: A system of curves where C = {γ1} and D = {δ1, ..., δg}.

Lemma 3.1. Let Γ = (V,E) be a graph coming from a free system of curves C ∪D.
Let L ∈ {LΓ}. Then the coding language of L has complexity

pcod(L)(n) = |V |n+ |V |, n ∈ N∗,
over an alphabet of 2|V | = |E| letters.
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Figure 2: A system of curves where C = {γ1, ..., γg} and D = {δ1, ..., δg−1}.
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Figure 3: A system of curves where C = {γ1} and D = {δ1}.

Proof. For each vertex v of Γ and n > 0, let treen(v) be the set of subwords
occurring in cod(L) with length n and corresponding to carrying paths of L starting
at v . This tree has subtrees of the form treen(v; a) which denotes the set of subwords
starting by the letter a. Since Γ comes from a system of curves, there are only two
edges starting at v, say a and b, so that treen(v) = treen(v; a)∪ treen(v; b). At each
v, we put a < b where a is the first outgoing arc following the natural cyclic order
around v, called the horizontal edge, and b is the second one, called the vertical edge

(recall that M is assumed oriented). This order relation is extended by lexicographic
order, making a totally ordered set of treen(v) for all n > 0 and v ∈ Γ. Since every
edge in Γ is assumed to have a distinct label, the set of length-n subwords in cod(L)
is equal to

⊔
v∈Γ treen(v).

Let v be a vertex in Γ and vhori (resp. vvert) the origin of the horizontal edge
a (resp. of the vertical edge b) ending at v. Let n > 0 and let fa and fb be the
smallest, resp. the greatest length-n+ 1 subword beginning at vhori and vvert. Then
the length-n suffixes of fa and fb are equal. Indeed, assume it is not the case and
let v′ be the first vertex from which they differ. This means that one would have a
finite carried curve γ from v to v′ inserted in between the existing leaves of L. But
then γ could be extended in both directions to become a leaf which is not already
in L, that is a contradiction with maximality. We call this common length-n suffix
fa = fb the n-separating word of v and denote it by fn,v. By construction fn,v is
the prefix of fn+1,v, and the one-way infinite separating word f is the corresponding
limit word, i.e. the word whose prefixes are the fn,v’s.

Now, still considering the same vertex v, all the subwords of treen(v) greater than
fn,v can be extended backwards with the letter a to give subwords in treen+1(vhori; a).
All the subwords of treen(v) smaller than fn,v can be extended backwards with b
to give subwords in treen+1(vvert; b). By maximality of L, the subword fn,v can
be extended with both a and b to give subwords in both of treen+1(vhori; a) and
treen+1(vvert; b). In other words, fn,v is a special factor (see e.g. [9]). It is the only
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one starting at v, since no crossings between curves in L are allowed: no other
subword can occur in cod(L). Thus the number of length-(n + 1) subwords whose
corresponding carrying paths have v as second vertex is equal to one plus the number
of length-n subwords starting from v.

Since Γ is recurrent and L maximal rel. to Γ, every edge is used to carry L.
So, using the facts that each edge of Γ is labelled by a distinct letter and that
Γ comes from a system of curves, we first have that pcod(L)(1) = |E| = 2|V |, i.e.
the number of different letters used in cod(L). Next, by the above discussion, |V |
new subwords appear each time the length of the subwords is increased by one.
Therefore, pcod(L)(n) = 2|V |+ (n− 1)|V |, for n ∈ N∗, hence the result. ♦
For example, the graphs coming from systems of curves shown in Figure 1 and 3
lead to laminations with coding languages of complexity mn+ m, for every m > 0
depending respectively on the genus of the surface, and on the number of turns of
δ1 around the meridian of the torus.

3.2 The General Case

An embedded graph Γ inM is said to be coherent if all the incoming edges incident to
a vertex are adjacent (so all the incident outgoing edges are as well). In other words,
let In(v) (respect. Out(v)) be the set of the incoming (respect. outgoing) edges at
a vertex v, and let SU (v) (respect. TU(v)) be the convex hull in M containing v
and In(v) ∩ U (respect. Out(v) ∩ U), for U a small neighbourhood of v. Then a
graph Γ is coherently embedded in M iff for every v ∈ V there is a U so that either
SU(v) meets Out(v) only at v, or TU(v) meets Int(v) only at v. Graphs coming from
systems of curves C ∪D and classical train-tracks (which are trivalent) are coherent
graphs. Since train-tracks suffice to carry all the laminations of a given surface (see
e.g. [14]), coherence is not a restrictive assumption from the laminations viewpoint.

Theorem 3.2. Let Γ = (V,E) be a free recurrent graph coherently embedded in M .
Let L ∈ {LΓ}. Then the coding language of L has complexity

pcod(L)(n) = (|E| − |V |)n+ |V |, n ∈ N∗

over an alphabet of |E| letters.
Proof. For each v ∈ Γ, we can consider treen(v), n > 0, like in the proof

of Lemma 3.1. Similarly, for every pair of outgoing edges of v, say a and b, we
put a < b iff a occurs before b following the natural cyclic order around v (recall
that M is oriented). This is well-defined since Γ is coherent, and recurrent so that
for every v ∈ V , In(v) 6= ∅ and Out(v) 6= ∅. This order can also be extended to
treen(v) by the lexicographic order. Now, for each adjacent pair of incoming edges
of v, there is a separating word. This gives |In(v)| − 1 of them (not necessarily
distinct, i.e. they are counted with multiplicity). Each induces an increase by one
of the number of length-(n + 1) subwords, with respect to the number of length-n
subwords (for a given length-n subword w starting at some vertex v, the number of
distinct extensions is equal to the number plus one of the n-separating words of v
which are equal to w). Thus, since again pcod(L)(1) = |E|, we have that:

pcod(L)(n) = |E|+ (n− 1)
∑

v∈V
(|In(v)| − 1).
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And since
∑
v∈V |In(v)| = |E|, then pcod(L)(n) = |E|+ (n− 1)(|E| − |V |), hence the

result. ♦
The above result shows that the complexities of the leaves of a lamination rel. to a
carrying graph is quite less that the upper polynomial bound given by Weiss in [38]

who proved that pw(n) ≤ cnr where r =
(

12g−6
2

)
+ 2, and g is the minimum genus

of the surface M which embeds Γ such that components of M \ Γ are made only of
disks.

3.3 Graph Moves

We have seen that complexity only depends on the graph Γ, i.e. it is an invariant of
{LΓ}. But given some L it is clearly not an invariant of {ΓL}. With respect to this,
we say that a transformation τ of a graph is a graph move iff {LΓ} ⊆ {Lτ(Γ)}. In
other words, a lamination L ∈ {LΓ} is still maximal rel. to τ (Γ). So graph moves
allow one to navigate in {ΓL}, and accordingly to manipulate the complexity of the
coding of a lamination. In particular, if coherence is preserved by a graph move τ ,
Theorem 3.2 can still be applied after having performed τ .

The first transformation we consider, denoted byMov1, consists in collapsing one
edge e of Γ linking two vertices v1, v2, i.e. e is replaced by a unique vertex whose
incident edges are the ones of v1 and v2 in the same cyclic order (see Figure 4).
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Figure 4: Generic graph moves.

Lemma 3.3. Mov1 is a graph move on Γ if the two vertices linked by the collapsed
edge are distinct in Γ.

Proof. Let L ∈ {LΓ}. A vertex of Γ corresponds to a crossway for the leaves
of L which may be contained into a ε-disk of M as small as one wants. Collapsing
an edge between two distinct vertices amounts in agglomerating two crossways to
make another one, which can also be contained in a ε-disk: the collapsed edge is
just integrated inside the new crossway. So, L is still carried by Γ′ = Mov1(Γ).
Moreover, if one curve could be added to L and be carried by Γ′, it could clearly be
also carried by Γ, a contradiction to maximality. Hence, L ∈ {LΓ′}. ♦

So in case Mov1 leads to a coherent carrying graph (which is not always the case),
the complexity of the coding language is given by Theorem 3.2. For instance, for
the graphs shown in Figures 1 and 3, every edge bi can be collapsed by Mov1 while
preserving coherence. These correspond in fact to a case where one can maximally
collapse a graph Γ by a sequence of Mov1 into a coherently embedded bouquet of

circles, i.e. a graph with |V | = 1 and |E| = k, k > 0. The complexities of the coding
langages becomes (k− 1)n+ 1 where k equals the number of remaining edges. As a
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matter of fact, laminations carried by a coherent bouquet of circles Γ are suspensions
of interval exchange transformations (see e.g. [22]) whose permutation is fixed by
the embedding of Γ in M . Consistently, complexities (k− 1)n+ 1 match the known
one computed for the natural symbolic coding of the orbits of irrational interval
exchange transformations on k intervals (see e.g. [16, 4, 18]).

There exists an inverse of Mov1, denoted by Mov2, which consists in splitting
a vertex v of Γ into two vertices v1 and v2 linked by a new edge e. Namely Mov2

at the vertex v is characterized by a partition of the set of edges adjacent to v into
two non-empty sets E1 and E2 of cyclically consecutive edges such that either E1

contains all the outcoming edges from v or E2 contains all the ingoing edges to v. To
perform the move itself remove v, link the pending edges of Ei to the new vertices
vi, i = 1, 2, and add a new edge e from v2 to v1. The condition on Ei insures that
the resulting graph can still be embedded in M as a coherent graph. For instance
in Figure 4, E1 = {e1, ..., e5} and E2 = {e6, e7}.

Lemma 3.4. Mov2 is a graph move on Γ.

Proof. Reverse the one of Lemma 3.3. ♦
Mov2 always preserves coherence, so that Theorem 3.2 can always be applied. A
useful particular case of Mov2, called subdivision, is when one of the two sets of the
partition contains exactly one edge. Subdivision amounts to replacing a single edge
by two edges in a row linked by one new vertex. It is a convenient tool to modify
complexity.

Remark 3.5. For every α, β ∈ N∗, there is a graph Γ such that for every L ∈ {LΓ},
pcod(L)(n) = αn + β, for n ∈ N∗.

Proof. Consider a complexity α0n + β0 for some α0, β0 ∈ N∗. Let Γ be an
embedded coherent bouquet of circles with α0+1 edges: for instance the one obtained
after collapsing the edges bi with i ∈ {2..g} of a graph as in Figure 1 embedded into
a surface of genus g = α0. Next, apply β0 − 1 subdivisions to the edges of Γ. ♦

4 Construction of Words and Languages with

Linear Complexity

We apply now the above results to effectively construct linear complexity languages
and words. The system of curve case has been already discussed in [19, 20] to
obtain pseudo-Anosov surface automorphisms together with their fixed laminations.
We recall here the method.

A substitution θ over an alphabet A is a transformation which sends the letters
of A to words over A, and which extends to any word w = ...wiwi+1... with wi ∈ A
by sending it to ...θ(wi)θ(wi+1).... Let Lθ = {θn(s), s ∈ A,n ∈ N} be the language
associated to the substitution θ. We then consider the closure rel. to the Cantor
metric of the words of Lθ indexed and padded to both infinities (see e.g. [26]). This
gives a set of one-way and two-way infinite words. We denote by Bi(Lθh) any set of
representatives of the two-way infinite ones quotiented by the shift operation.

An automorphism h of a surface M sends any embedded graph Γ to another
one, via a graph map up to homotopy under certain conditions. If Γ is invariant (up
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to homotopy) by h, then h is a conjugate of a group morphism (a Thurston’s idea
used e.g. in [7]). The results in [19, 20] are based on cases where this conjugacy
holds towards free monoid morphisms, i.e. substitutions. More precisely, let Γ be
free, labelled over A, and let C be a set of curves carried by Γ. Then h induces
a unique substitution θh over A such that cod(h(C)) = θh(cod(C)) (examples are
given in the next pages). A Dehn twist is a basic automorphisms of a surface M
(see e.g. [10, 30]) which is built from a non-null homotopic simple closed curve γ: it
consists in cutting M along γ and in applying one (or more) turn(s) to one of the
two separated parts before repasting them back2. The advantage of working with
a system of curves C ∪ D is that one can associate a Dehn twist to each curve by
putting a copy of C ∪D in general position with respect to M ’s orientation and the
original C ∪D, either slightly over it or slightly under (see Figure 5). This makes a
set of |C|+ |D| Dehn twists denoted by TC∪D.

over under

Figure 5: The two possible general positions we consider, in a neighborhood of a
vertex: twists are in bold style and C ∪D in dashed style.

It can be seen [37, 27, 19] that every C ∪ D considered as a graph Γ is invariant
under every automorphism which is a composition of positive twists in TC∪D. Corre-
sponding substitutions are the compositions of the substitutions conjugated to the
individual twists of TC∪D. In [27, 19], the following semigroup of automorphisms of
M has been defined:

H+(C,D) = {ti1◦...◦tin, tij ∈ TC∪D, where each twist of TC∪D occurs at least once}
One of the nice properties about this semi-group is that the corresponding substitu-
tions are all primitive [19, 20], i.e. for each such substitution θ there exists a power
K > 0 such that all the letters of the alphabet A occur at the K-th iterate of θ
on any letter. This is the case mainly because systems of curves C ∪D have been
assumed connected. The following result has been proved in [20]:

Proposition 4.1. Let Γ = (V,E) come from a free system of curves C∪D embedded
in M . Let h ∈ H+(C,D) and let θh be its corresponding substitution over A. Then
Bi(Lθh) is the coding language of a maximal lamination rel. to Γ and invariant
under h.

Corollary 4.2. Let Γ = (V,E) come from a free system of curves C ∪D embedded
in M . Let h ∈ H+(C,D) and let θh be its corresponding substitution. Then:

pBi(Lθh)(n) = pw(n) = |V |n+ |V | for all w ∈ Bi(Lθh).

2More formally, a Dehn twist applies to a parametrized annulus {(r, eiα) | r ∈ [r0, r1], 0 < r0 <

r1, α ∈ [0, 2π)} and is homotopic to fn : (r, eiα)→ (r, e
2iπn

r−r0
r1−r0 eiα) for some n ∈ Z. According to

n’s sign, a twist is said positive or negative.
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Proof. By applying Lemma 3.1, we have the specified language complexity
function. Since θh is primitive, Bi(Lθh) is a minimal language. Thus each word in
it has the same complexity. ♦

Note that since θh above is a primitive substitution, it must be prefix-preserving

(resp. suffix-preserving) for some power k > 0 and some letter a ∈ A, i.e. θkh(a) = av
(resp. θkh(a) = va), where v is a non-empty word over A. By minimality and
primitivity of θh, the corresponding one-way infinite fixed point θωkh (a) has the same
complexity as the words in Bi(Lθh). Now, let us compute the basic substitutions
corresponding to the examples shown above:

1. Figure 1 shows a surface M of genus g ≥ 1 with a system of curves C ∪D = Γ
with |C ∪ D| = g + 1, thus yielding g + 1 basic substitutions. We fix the
general position of TC∪D to be under Γ. So for instance, the curve of the
twist δ1 intersects the edge b2 near its extremity. The effect of one positive
turn of δ1 is therefore to drag the edge b2 once along a1. Accordingly it has
the same effect on all the curves of a carried lamination. As a result the
substitution conjugated to δ1 – denoted also by δ1 to save notation – sends b2

to b2a1 while being the identity on the other letters of the alphabet. Applying
this argument to all the twists gives us the substitutions conjugated to the
elements of TC∪D, hence of H+(C,D) too (in the next formulas we only write
down the images of the letters not sent to themselves):

δ1(b2) = b2a1, δ2(b3) = b3a2, ... δg(b1) = b1ag,

γ1(a1) = a1b1bgbg−1...b2, γ1(a2) = a2b2b1bgbg−1...b3, ..., γ1(ag) = agbgbg−1...b1.

According to Corollary 4.2, every composition containing at least one oc-
curence of each of these basic substitutions leads to a minimal language of
complexity gn + g. Since it must be prefix-preserving on all letters, one can
readily obtain one-way infinite words with the same complexity. Note that
when g = 1, this corresponds to the Sturmian case.

The form taken by the substitutions depends on the chosen general position
of TC∪D rel. to C ∪D. If we take the other one indicated in Figure 5, i.e. over
Γ, we get suffix-preserving substitutions instead. For instance, the curve of δ1

intersects this time the edge b1 only near its origin, and its effect is to drag it
along a1. Thus, the associated substitution sends b1 to a1b1 while being the
identity on the other letters of the alphabet. This gives the following set of
substitutions associated to TC∪D:

δ1(b1) = a1b1, δ2(b2) = a2b2, ... δg(bg) = agbg,

γ1(a1) = b1bgbg−1...b2a1, γ1(a2) = b2b1bgbg−1...b3a2, ..., γ1(ag) = bgbg−1...b1ag.

Note however that for a substitution θh with h ∈ H+(C,D), the language
Bi(Lθh) does not depend on the general position. A way of proving that is
to remark that the fixed stable lamination of a given automorphism of M is
unique (see e.g. [10]).
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2. Figure 2 shows a surface M of genus g ≥ 2 with a system of curves C ∪D = Γ
with |C ∪ D| = 2g − 1. We fix the general position of TC∪D to be under Γ.
Figure 6 shows the positions of the twist curves rel. to Γ.

1

3

2

ba1

δ

d2

a

2
c2

3

c 1

γ

b

δγ γ
a

d

1 3
1 2 2

Figure 6: A zoom at Figure 2 where twists curves in TC∪D are indicated in bold style.

It explains why the associated substitutions depends on the parity of g:

γ1(c1) = c1a1.
γg(bg−1) = bg−1ag if g ≡ 0 mod 2.
γg(cg−1) = cg−1ag if g ≡ 1 mod 2.
δg−1(ag−1) = ag−1bg−1cg−1, δg−1(ag) = agcg−1bg−1, if g ≡ 0 mod 2.
δg−1(dg−1) = dg−1cg−1bg−1, δg−1(ag) = agbg−1cg−1, if g ≡ 1 mod 2.

For i ≡ 0 mod 2, (1 < i < g for the γi’s, 1 ≤ i < g − 1 for the δi’s):

γi(bi−1) = bi−1diai, γi(bi) = biaidi.
δi(di) = dicibi, δi(di+1) = di+1bici.

For i ≡ 1 mod 2, (1 < i < g for the γi’s, 1 ≤ i < g − 1 for the δi’s):

γi(ci−1) = ci−1aidi, γi(ci) = cidiai.
δi(ai) = aibici, δi(ai+1) = ai+1cibi.

So, since the number of vertices is 2(g − 1), every composition containing at
least one occurence of each of these basic substitutions leads to a minimal
language of complexity 2(g − 1)n+ 2(g − 1).

3. Figure 3 shows a surface M of genus 1 with k + 1 punctures needed to make
free the system of curves C∪D = Γ, with |C∪D| = 2. Fixing again the general
position of TC∪D under Γ, we obtain the following pair of substitutions:

δ1(b1) = b1a1a2...ak, δ1(b2) = b2a2a3...aka1, ..., δ1(bk) = bkaka1...ak−1.
γ1(a1) = a1b1bkbk−1...b2, γ1(a2) = a2b2b1bk...b3, ..., γ1(ak) = akbkbk−1...b1.

Every composition containing at least one occurence of each of these basic
substitutions leads to a minimal language of complexity kn + k.

Proposition 4.3. For every α, β ∈ N∗ with β ≥ α, there are semi-groups of substi-
tutions giving words of complexity αn + β, n ∈ N∗ when iterated to infinity.
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Proof. Consider a complexity α0n+β0 for some α0, β0 ∈ N∗, with β0 ≥ α0. The
generic curve system C ∪ D in Figure 1 gives languages and words of complexity
gn + g where g ≥ 1 is the genus of the surface. So let Γ = C ∪ D be the graph
such that g = α0, and apply β0 − α0 subdivisions to its edges. This yields a graph
Γ′ carrying maximal laminations whose coding languages complexity is α0n + β0.
Since the effect of the twists can be restricted to annuli ε-neighbourhoods of their
curves, each can be taken so that it intersects only one edge. Thus invariance still
holds, and associated substitutions can be computed.

To have equality between word and language complexity one must ensure min-
imality of the language. However subdivisions produce edges which are no more
in intersection with the twist curves, so that resulting substitutions are no more
primitive. Nevertheless, let θ be a substitution corresponding to an automorphism
in H+(C,D), and θ′ be the corresponding substitution on Γ′. The language Bi(Lθ′)
is equal to θ′′(Bi(Lθ)), where θ′′ is the substitution which replaces the label of each
edge e in Γ by the label of the edge-path given by the subdivisions applied to e. So,
if Bi(Lθ) is minimal, θ′′(Bi(Lθ)) is also minimal. Hence Corollary 4.2 applies. ♦
For instance let the subdivisions in the above proof be all applied to the edge b1 of
Γ in Figure 1. If W = d1...dk is the label of the edge-path made of the k new edges
after the application of k subdivisions to b1, the coding of the initial edge b1 can be
transformed into Wb1. Fixing the genus g of the surface and the general position to
be under C ∪D, the substitutions become (see the above example (1)):

δ1(b2) = b2a1, δ2(b3) = b3a2, ... δg(b1) = b1ag,

γ1(a1) = a1Wb1bgbg−1...b2, γ1(a2) = a2b2Wb1bgbg−1...b3, ...,

γ1(ag) = agbgbg−1...b2Wb1.

Every composition containing at least one occurence of each of these substitutions
leads to a minimal language of complexity gn+ (g + k).

Remark 4.4. Systems of curves C ∪D can be enumerated, and so are their asso-
ciated substitutions.

Proof. Consider a non-empty set of pairwise disjoint cycles C1, C2, ..., Ck, in the
graph sense, with respective sets of vertices V1, V2, ..., Vk. Let π be a permutation on
V =

⋃k
i=1 Vi and define an oriented edge for each v ∈ V going from v to π(v). The

resulting graph Γ is quadrivalent and covered by two sets of pairwise disjoint cycles
which makes a system of curves on a surface M . Indeed C =

⋃k
i=1Ci, D comes from

the cycles of π (in the permutation sense), and the surface M can be constructed as
follows: replace each vertex v ∈ V of Γ by a disk B2, and each oriented edge by a
rectangle with two marked sides: the side corresponding to the origin of its associated
edge, and the opposite side corresponding to the end. Next, glue the rectangles
on their corresponding disks along their marked sides according to the incidence
relations in Γ, but in such a way that the resulting surface is orientable. This gives
a surface M ′ where C and D are obviously embedded and intersect as required by
the definition of a system of curves. Capping off the boundary components of M ′

with disks yields a closed orientable surface M with possibly some punctures, such
that C ∪D as a graph is free and carries laminations whose coding languages have
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complexity |V |n+ |V |. Clearly, every system of curves C ∪D can be built by using
this construction. ♦

As a last illustration of the method, we show how to drop the constraint β ≥ α
of Proposition 4.3 by applying Mov1 graph moves to carrying graphs. Here however,
in contrast to Proposition 4.3 where Mov2 graph moves were applied, the recoding
cannot be directly read from the initial substitutions. One must apply one final
substitution to obtain the desired language (the process of generation becomes then
a so-called HD0L-system [33, 9]):

Proposition 4.5. For every α, β ∈ N∗, there are semi-groups of substitutions giving
words of complexity αn + β, n ∈ N∗, when iterated to infinity and projected to
subalphabets.

Proof. Consider a complexity α0n + β0 for some α0, β0 ∈ N∗, with β0 < α0 (if
β0 ≥ α0 apply Proposition 4.3). Consider again the generic curve system C ∪D in
Figure 1 and a substitution θ leading to a language Bi(Lθ) of complexity α0n+ α0

via Corollary 4.2. Next, apply α0−β0 times graph moves Mov1 to C∪D so that the
edges b2, ..., bα0−β0+1 are collapsed: this gives a coherent graph inducing from Bi(Lθ)
a language of complexity α0n+ β0. With respect to the coding languages, applying
a move Mov1 amounts to get rid of the letter corresponding to the collapsed edge,
i.e. to apply a projective substitution. Minimality of Bi(Lθ) is not impaired by
projection on single letters, so that Corollary 4.2 applies too. ♦

For instance in case g = 3, the graph Γ of Figure 1 leads to the following substitutions
(see the above example (1)):

δ1(b2) = b2a1, δ2(b3) = b3a2, δ3(b1) = b1a3,

γ1(a1) = a1b1b3b2, γ1(a2) = a2b2b1b3, γ1(a3) = a3b3b2b1.

Every composition θ containing at least one occurence of each of these basic substi-
tutions leads to a minimal coding language Bi(Lθ) of complexity 3n + 3. Getting
rid by projection of the occurences of the letter b2 (resp. both b2 and b3) in Bi(Lθ)
leads to a language of complexity 3n + 2 (resp. 3n + 1).

5 Discussion

The method presented here gives a generic way of obtaining linear complexity words
by using graphs and iterating substitutions. The existence of substitutions heavily
relies on the invariance of a system of curves C ∪D under the compositions of the
associated twist maps. So the first open question is to ask whether there are other
invariant generic graphs. To find out some of them could allow to drop the condi-
tion β ≥ α in Proposition 4.3. Note however that our geometric method seems not
adapted to construct words with complexity αn + β for the cases where β ≤ 0 (as
in [9] where HD0L-systems are mainly used). Note also that from surface automor-
phisms viewpoint C ∪D systems are not so restrictive, since every automorphism of
a surface is known to be generated by compositions of twists belonging to systems
of curves (see e.g. [8]).
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With respect to the constraint β ≥ α again, we already noted that words with
complexity αn+ 1 with α ∈ N∗ generated by iterating substitutions have been stud-
ied. As a matter of fact, this can be done by using the idea of Rauzy induction [31]
on interval exchange transformations. This has been exploited for the particular
case of Rauzy substitutions (also called generalized Fibonacci substitutions) used
in [3, 4, 9, 35], and for the general case in [18, 21]. In fact, this can be extended to
complexities αn + β with α, β ∈ N∗: if one takes a symbolic coding of the orbits of
an interval exchange transformation T depending on a finer partition than the one
classically given by the initial subintervals, the constant term β can be increased
at will. This partition is given by subdividing the initial subintervals by preimages
of the discontinuity points of T . However, we do not know at this time how to
relate this construction to the invariance of embedded graphs under automorphisms
of surfaces.

In Section 3.3, we have quoted a relationship between carrying graphs and inter-
val exchange transformations, in particular when the former are coherent bouquets of
circles. In fact, this relationship is much more general since laminations can always
be considered as suspensions of interval exchange transformations (see e.g. [15]).
This amounts to say that for every lamination L there is always at least one coher-
ent bouquet of circles in {ΓL}. With respect to this, a third question is to know
whether there is a complete set of local graph moves like Mov1 and Mov2 which
exhaust every graph in {ΓL}, so that in particular one could always transform a
carrying graph Γ into a coherent bouquet of circles.

Finally, there still remain two general open problems to be solved. The first one
is to characterize which linear words can be generated by iterating substitutions.
This has been solved for the n+ 1 complexity case in [11]. The second problem is to
characterize which linear complexity languages can be obtained as coding languages
of laminations by the method described here.

Acknowledgement: We thank the referees for their remarks which allowed
us to improve the original manuscript, in particular for having pointed to us the
extended construction based on Rauzy induction.
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