
On the expressibility of languages by word

equations with a bounded number of variables
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Abstract
A language (resp. a relation) is expressible by a word equation e if it is

defined as the set of all values of an unknown (resp. a set of unknowns) over
all solutions of the equation e. We first present some tools for proving that
languages or relations are not expressibles unless a certain number of auxil-
iary variables enter into the equation. As a consequence an infinite hierarchy -
based on the number of auxiliary unknowns - of expressible language is estab-
lished. Also the necessary number of auxiliary unknowns to encode a boolean
combination of word equations into a single equation or inequality is consid-
ered. Finally, we present two new tools for establishing the nonexpressibility
in general, and, as a consequence, we obtain a gap theorem for expressible
languages.

Résumé
Un langage (resp. une relation) est définissable par une équation sur les

mots e s’il est l’ensemble de toutes les valeurs prise par une variable (resp.
un n-uplet de variables) quand on parcourt les solutions de e. On donne des
méthodes pour prouver la non-définissabilité de langages ou relations par des
equations qui utilisent un nombre fixé de variables auxiliaires. On obtient,
comme conséquence, une hierarchie infinie de languages définissable, hierar-
chie basée sur le nombre de variables auxliaires. On étudie le nombre de vari-
ables auxiliaires qui sont necessaires pour coder une combinaison booléenne
d’équations sur les mots en une unique equation. On introduit deux nouveaux
outils pour prouver la non-définissabilité en géneral. Ces derniers permettent
d’établir un “gap theorem” pour les languages définissables.
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1 Introduction

Properties of word equations have been studied extensively during the past ten
years or so. The seminal Makanin’s result, cf. [20], has inspired a lot of research
on word equations, see [6] for a survey. Very recently the known complexity of
the satisfiability problem was drastically lowered, by showing that the problem is in
PSPACE, see [22, 23]. Research on different aspects of word equations was proposed
in [13], where the question, originally proposed in [5], was raised about what kinds of
languages or relations can be expressed as values of unknowns in solutions of a word
equation. Shortly, we would like to know what kinds of properties are expressible
by word equations.

It is well known that many simple properties like being a power of a same word,
the conjugacy of two words or imprimitiveness of a word are expressible by word
equations. The Makanin’s result shows that all expressible languages are recursive.
Besides that the first result showing the nonexpressibility seems to be that of Büchi,
see [3], where he shows that the language {anbn : n ≥ 1} is not expressible. In [13] a
systematic study of expressible and nonexpressible languages was initiated, among
other things, several tools to show nonexpressibility was established. However, these
tools did not allow to prove that a language cannot be expressed by a certain number
of unknowns. A major goal of this note is to fill this gap.

We consider in this paper three problem areas. First in Section 3 we intro-
duce new methods to show that some languages are not expressible. These results
are based on subword complexity. Combining this with a method of compressing
solutions of word equations, cf. [24], we can prove a gap theorem for expressible
languages: the classical subword complexity of an expressible language is either
bounded by α2log2 n for some real constant α, or the language must contain a pat-
tern language, cf. [1, 12], and hence the limsup of the complexity is exponential.
As a consequence, we can conclude that many sets of power-free words are not
expressible.

In Section 4 we consider properties expressible by boolean formulae of equa-
tions. As pointed out in [13] each such formula can be transformad into a single
word equation expressing the same language or relation. We show here that in this
transformation not more than two more unknowns are necessary for any positive
formula, ie. for the formula not containing inequality. Further we show that each
property expressible by inequality u 6= v using auxiliary unknowns can be expressed
by inequality without auxiliary uknowns.

Finally, in Section 5 we prove our main result. We develop a method to show
that some expressible languages are no expressible by using only a certain number
of auxiliary unknowns. As a conclusion we obtain an infinite proper hierachy of
expressible languages based on the number of auxiliary unknowns. Or even more
strongly, for each k ≥ 1, there exists a language expressible by a word equation with
k + 1 unknowns, but not with k unknowns.

2 Preliminaries

We assume that the reader is familiar with the basics of combinatorics of words, cf. [5]
Let Σ be an alphabet of constants and Θ be an alphabet of variables. We assume
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that these alphabets are disjoint. We use the convention that lower case letters
represent constants and capital letters represent variables. We assume an unusual,
but for our purposes usefull, convention that positions in a word are between its
consecutive letters. Then each word w has |w|+ 1 positions 0,1,. . . ,|w|. We say that
an occurrence of a subword v of w overlaps position i if w = a1 . . . asvak . . . a|w| with
aj ∈ Σ, and s < i < k.

A word equation is a pair of words (u, v) ∈ (Σ∪Θ)∗× (Σ∪Θ)∗ usually denoted
by u = v. The size of an equation e, written as |e|, is the sum |u|+ |v|. A solution
of a word equation u = v is a morphism h : (Σ ∪ Θ)∗ → Σ∗ such that h(a) = a, for
a ∈ Σ, and h(u) = h(v).

Definition 1. We say that a language L is expressible, if there is an equation e and
a variable X such that

L = {h(X) : h is a solution of e}.

Similarly, we say that a relation R ∈ (Σ∗)k is expressible by an equation e if there
are variables X1, . . . , Xk such that

R = {(h(X1), . . . , h(Xk)) : h is a solution of e}.

Here we call variables X1, . . . , Xk the expressing variables and variables of e from
Θ− {X1, . . . , Xk} auxiliary varables.

Hence, in case of expressing a language all variables of the equation except the
expressing one are auxiliary.

A pattern is a word over alphabets of constants and variables, ie. an element in
(Σ∪Θ)+. A pattern language L defined by a pattern p is the set of all morphic images
of p under morphisms h : (Σ ∪ Θ)∗ → Σ∗ such that, h(a) = a, for each constant
a ∈ Σ. Assume the pattern p contains t different variables. Then a pattern language
defined by p is denoted by p((Σ∗)t). We say that a language L is pattern-free if there
is no pattern p with s ≥ 1 variables such that p((Σ∗)s) ⊆ L.

A D0L system is a triple (Σ, h, w) where Σ is an alphabet, h a morphism h : Σ∗ →
Σ∗ and w a word over Σ. The D0L system defines a D0L language {hi(w) : i ≥ 0}
where hi is an i-folded composition of h, see [26] for more of D0L systems.

3 Tools to prove the nonexpr essibility

Let h be a solution of a word equation e : u = v and let u = u1u2. A position in
h(u) between h(u1) and h(u2) is called a left cut. Similarly, if v = v1v2 a position
in h(u) = h(v) between h(v1) and h(v2) is called a right cut. A cut in h(u) is a left
or right cut. The proof of the following lemma is anologuous to that of Lemma 6
in [24].

Lemma 2. Let L be a pattern-free language expressible by a variable X in an
equation e : u = v. Then for every solution h of e, each subword t of h(X) of length
at least two has an occurrence in h(u) overlapping a cut.
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For a word w denote by pw(n), for 1 ≤ n ≤ |w|, the number of different subwords,
or factors or contiguous subwords, of w of length n. The function pw : N|w| → N ,
where N|w| denotes the set {n ∈ N : n ≤ |w|}, is called the subword complexity of
w.

The subword complexity of a language have been determined in a number of
cases, see [25] and references therein.

Theorem 3. Let L be an expressible pattern-free language. Then there is a constant
k such that, for each word w ∈ L and for 1 ≤ n ≤ |w|

pw(n) ≤ kn.

Proof. Let w ∈ L and let L be expressible via a variable X in an equation e. Then
there is a solution h of e such that h(X) = w. By Lemma 2, each subword of w
has an occurrence over a cut. The number of cuts is at most |e| so the number
of different words of length n which has an occurrence over a cut is at most |e|n.
Hence, pw(n) ≤ |e|n and it is enough to take k = |e|. This completes the proof. �

For a language L, denote by cL(n) the number of words in L of length n. Clearly,
for languages which are not pattern-free, ie. contain a pattern language, we have
cL(an+ b) > 2αn for some α > 0 and integers a, b, i.e. the subsequence cL(an+ b)
of c(n) has exponential growth and, consequently, the limsup of the complexity is
exponential.

Example 4. Denote by dn a word that is a fixed concatenation of all words over
{a, b} of length n containing exactly two occurrences of the letter a and set L =
{dn : n ≥ 2}. Then L is not expressible by word equations. Indeed, since

pdn(n) ≥
(
n
2

)

there is no constant k such that for all words w in L, pw(n) ≤ kn. Hence, by
Theorem 3 L is not expressible by a word equation.

Concerning the subword complexity of a D0L language, the reader can see [5]
and the Pansiot’s paper mentioned therein.

Example 5. A D0L-language ({0, 1, 2}, h, 0) where h(0) = 012, h(1) = 02, h(2) = 1
is not expressible by word equations since its subword complexity is Θ(n log n),
see [8].

Example 6. Consider the languege

L = {abcbc2bc3 . . . bcn : n ≥ 1}.

The language L is generated by D0L-system ({a, b, c}, h, a) where h(a) = abc, h(b) =
bc, h(c) = c. The subword complexity of the language L is Θ(n2), see Example 9.8
in [5]. Hence, L is not expressible by word equations.
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In our second tool for proving nonexpressibility we use the fact that words in
expressible pattern-free languages are well compressible in terms of special context-
free grammars, cf. [24]. Consider a context-free grammar in which each nonterminal
occurs on the left hand side of the productions only once which means that for each
nonterminal there is at most one derivation which produces a terminal word. The
productions in the grammar are of the form A → a, for a terminal symbol a or
A→ B1[b1, e1]B2[b2, e2] . . . Bk[bk, ek], for k ≤ 3 where bi, ei are positive integers and
A, Bi are nonterminals. In the above Bi[bi, ei] represents a subword of the terminal
word generated by Bi which starts at position bi and ends at position ei. The
grammar represents a terminal word which is derivable from the start nonterminal.
The size of the grammar is the number of the productions it contains. Let us call
grammars of that form normal.

Lemma 7. Let L be an expressible pattern-free language. Let L be a pattern-free
language expressible by a word equation of size k. Then for each word w ∈ L there
is a normal grammar of size kdlog |w|e+ 1 representing w.

Proof. Let L be expressible via a variable X in an equation e : u = v and let w ∈ L.
Then, by Lemma 2, there is a solution h of e such that h(X) = w and each subword
of w has an occurrence over a cut in h(u). Let Cuts be the set of all cuts in h(u)
and denote x = h(u) = h(v). Consider the words

xγ,i = x[max{γ − 2i, 1},min{γ + 2i, |x|]

for any cut γ and an integer 0 ≤ i ≤ dlog |w|e where the logarithm is at base 2.
Clearly, h(X) = w is a subword of one of the words xα,dlog |w|e. We have xγ,i+1 = sxγ,it
where |s|, |t| ≤ 2i By the definition of h, the word s has an occurrence over a cut,
say β. Since |s| ≤ 2i this occurrence is completely contained in, ie. is a subword
of, the word xβ,i. Similarly, t is a subword of xσ,i for some σ ∈ Cuts. This gives
the definition of words xγ,i+1 where γ ranges over Cuts in terms of subwords of the
words xγ,i. These dependences allow to build a normal grammar representing w
and containing at most kdlog |w|e + 1 productions where k is the size of Cuts, in
particular k ≤ |e|. �

Theorem 8. Each expressible pattern-free language L satisfies

cL(n) < 2α2log2 n

for some real constant α.

Proof. Let L be expressible by a word equation of length k. A grammar of size
N represents a word of length at most 3N . Hence, the indices which occur in the
grammar can be represented in 2N bits. By Lemma 7, each word in L of length n is
represented by a normal grammar of size kdlogne+1 and therefore can be described
by c log2 n bits for a suitable constant c. The number of different bit sequences of
length at most c log2 n is 2c log2 n+1 − 2. This completes the proof. �

As a straightforward consequence of Theorem 8 we obtain a gap theorem for
languages expressible by word equations.
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Corollary 9. Let L be a language expressible by a word equation. Then either

cL(n) < 2α2log2 n

for some real constant α > 0

or cL(an+ b) > 2αn for some α and integers a and b,

Using above we can re-prove and sharpen some earlier results, cf. [13] and [16].

Example 10. The language L = (a ∪ b)∗ is not expressible by equations over the
alphabet {a, b, c} because the language L is pattern-free and cL(n) = 2n.

Example 11. For k > 2 the language of k-power free words is not expressible by
word equations since they are pattern-free and the complexity function cL for them
is 2Ω(n), see [5].

We note that it is possible to derive directly from Theorem 3, by using the 1978
version of the Lempel and Ziv compression algorithm (LZ’78), a weaker version of
Theorem 8. Indeed next proposition shows a general combinatorial result that links
the local complexity of every word of a language to the complexity of the whole
language.

Proposition 12. Let L be a language and let Q be a fixed polynomial such that,
for each word w ∈ L and for 1 ≤ n ≤ |w|

pw(n) ≤ Q(n).

Then
cL(n) = 2o(n).

Proof. We refer to [15] for notations and definitions not explicitely defined in this
proof.

We suppose that the language L is closed by subwords, i.e. it contains as element
all subwords (or factors) of words in L. A language closed by subwords is often called
in the litterature factorial. If L is not closed by subwords, then we can consider
its closure by subwords L′ (i.e. the language of all subwords of words in L). The
hypothesis of the proposition are still verified for L′ and the result will hold a fortiori
for L.

The classical topological entropy of Languages is defined as H(L) = limsup
1
n

log cL(n), where the logarithm is in base 2 and, by convention, log 0 = 0 (cf. [15]
and references therein). All we have to prove is that the topological entropy H(L)
of L is equal to zero. By Proposition 1 and Proposition 6 of [15] it follows that, in
order to prove the proposition, we have to prove that the compression rate τ (L) =
limsup |γ(w)|/|w| of the LZ’78 compressor γ on L is equal to zero. Therefore it is
sufficient to prove that, for w ∈ L, the ratio |γ(w)|/|w| tends to zero when |w| tends
to infinity. It is known that |γ(w)| ≤ m logm + km for some constant k depending
on the alphabet, where m is the number of nodes of the Lempel and Ziv trie T (w).
The Lempel and Ziv trie T (w) must be a subtrie of the trie TL representig L, that is
the k-ary tree (supposing that {1, · · · k} is the alphabet of L), where the path from
the root to each node corresponds to a word in L. Trie TL is well defined since L
is closed by subwords, and hence it is closed by prefixes. The i-th level of trie TL
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contains pw(i) ≤ Q(i) nodes, and therefore the i-th level of the Lempel and Ziv trie
T (w) has at most Q(i) nodes.

By very definition of trie T (w), we know that |w| ≥ Σm
i=1 height(vi), where v’s

are the nodes of T (w) (cf. [15]). But, since the i-th level of the Lempel and Ziv trie
T (w) has at most Q(i) nodes, it follows that

Σm
i=1height(vi) ≥ (ΣJ

i=1Q(i)i) + (J + 1)r,

0 ≤ r ≤ Q(J + 1), where m = r+ (ΣJ
i=1Q(i). In other words, in previous inequality

we consider a trie with same number of nodes and with “smallest” height, under the
constrain imposed by the polynomial Q.

As |w| goes to infinity, the same do m and J . It is known that m is in Θ(Jd(Q)+1)
and (ΣJ

i=1Q(i)i)+(J+1)r is in Θ(Jd(Q)+2), where d(Q) is the degree of the polynomial

Q. Therefore m is in O(|w|
d(Q)+1
d(Q)+2 ).

By inequality |γ(w)| ≤ m logm + km, the claim follows. �

4 Boolean formulae of equations

In [13] it was shown that all relations or languages expressible by Boolean formulae
are actually expressible by a single equation. Here we sharpen this result by paying
attention to the number of needed new auxiliary varaibles.

We recall here the notion of expressible language by boolean formulae of word
equations. We say that a language L is expressible by a variable X in a boolean
formulae ψ(X,X1, . . . , Xk) on word equations containing variables X, X1,. . .Xk if
and only if

L = {x : ∃x1 . . . ∃xkψ(x, x1, . . . , xk)}.
Similarly, we say that a relation ρ ⊆ (Σ∗)k is expressible by variables Y1,. . . , Yk in
a boolean formulae ψ(Y1, . . . , Yk, X1, . . . , Xl) of word equations containing variables
Y1,. . . ,Yk and X1,. . . ,Xl if and only if

ρ = {(y1, . . . , yk) : ∃x1 . . . ∃xlψ(y1, . . . , yk, x1, . . . , xl)}.

The variables x1, . . . xl are again referred to as auxiliary. We say that a boolean
formula is positive if it does not contain not operator.

Example 13. The formula u1 = v1 and u2 = v2 is equivalent to the equation

u1au2u1bu2 = v1av2v1bv2

where a and b are different constants, see [13]. Hence, any relation expressible by
a system of equations is expressible by a single equation with the same auxiliary
variables.

Lemma 14. A relation expressible by the formula

φ : (u1 = v1 or u2 = v2 or . . . uk = vk)

is expressible by a single equation using only two new auxiliary variables not occur-
ring in φ.
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Proof. First we prove that we may assume that u = u1 = u2 = · · · = uk. Indeed,
the formula φ is equivalent to the formula

u1u2 . . . uk = v1u2 . . . uk or u1u2 . . . uk = u1v2u3 . . . uk or . . .

or u1u2 . . . uk = u1u2 . . . uk−1vk.

where left hand sides of all equations in the formula are the same. Define the
mapping <>: (Σ ∪Θ)+ → (Σ ∪Θ)+

< α >= αaαb with a, b ∈ Σ, a 6= b.

Then, as a consequence of basic results on combinatorics on words, see e.g. [5], for
each α, the shortest period of < α > is longer than half of the length of < α >,
in particular < α > is primitive. Denote v = v1v2 . . . vk. Now the result is a
consequence of the following equivalence:

u = v1 or u = v2 or . . . or u = vk ⇐⇒ ∃Z,Z ′ : X = ZY Z ′, (1)

where
Y =< v >2 u < v >2

and
X =< v >2 v1 < v >2 v2 < v >2 · · · < v >2 vk < v >2 .

The proof of the equivalence (1) follows directly from the fact that the word < v >2

is a prefix and a suffix of Y , and it occurs in X in exactly k + 1 places which are
indicated in the formula for X. The last fact, in turn, is based on two properties
of the word < v >. First, since it is primitive it occurs inside the word < v >2 in
exactly two places: as a prefix and as a suffix. Second, the word < v >2 cannot
occur in < v > vi < v > since < v > is at least twice as long as vi, and the shortest
period of < v > is longer than the half of its length. �

We obtain the following interesting result.

Theorem 15. Any relation expressible by a positive boolean formula of word equa-
tions with k auxiliary variables is expressible by a single word equation with k + 2
auxiliary variables.

Proof. Each positive boolean formula of word equations can be represented as a
disjunction of conjunctions. The and operator does not require new variables so we
first replace all conjunctions by a single word equation. Then, by Lemma 14, the
disjunction can be replaced by one equation using two new auxiliary variables. �

Example 16. The property ”Z is imprimitive” over the alphabet {a, b} is express-
ible by a formula

(ZaX = aXZ or ZbX = bXZ) and (Z = aXaT or Z = bXbT ).

By Theorem 15, this formula can be transformed to a word equation with 5 variables
expressing the property. On the other hand, the property is not expressible by a
word equation with only one variable. Indeed, suppose it is expressible by a word
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equation e with one variable X. Then e is of the form X · · · = wX . . . . Hence,
see [9], all solutions of e are prefixes of the infinite word wω. However, there is no
infinite word such that all imprimitive words are prefixes of it. The minimal number
of needed auxiliary variables is thus something from 1 to 4.

We now turn to consider the expressing power of the inequality.

Theorem 17. Any relation expressible by a formula not e with k auxiliary variables
is also expressibile by a formula of the form not e1 without auxiliary variables.

Proof. Let R be expressible by variables X1, . . . , Xn in an inequality u1 6= u2 which
contains auxiliary variables Y1, Y2, . . .Yk. We substitute the variables X1, . . . , Xn in
u1 and u2 by any sequence of n words x1, . . . , xn to obtain two words u′1 and u′2 over
Y1,. . .Yk and Σ. There are two possibilities. Either the words u′1 and u′2 are identical,
and then (x1, . . . , xn) 6∈ R, or they are not identical and then there is a substitution
Y1 = y1, Y2 = y2. . .Yk = yk such that u′1 6= u′2 and consequently, (x1, . . . , xn) ∈ R. If
the first case takes place then the variables Y1, Y2, . . . , Yk occur in u1 and u2 in the
same order. Moreover, the occurrences of the variables Y1,. . . , Yk in u1 and u2 divide
these words into two sequences of words over constants and variables X1,. . . , Xn,
and these sequences must be equal under the substitution X1 = x1, . . . , Xn = xn.
Conversely, if these conditions are satisfied, then the first case holds true. Hence,
the n-tuples which does not belong toR are precisely those which satisfy a system of
equations over variables X1,. . . , Xn. This system is equivalent to a single equation,
say u = v, with no new auxiliary variables, see Example 13. Thus, tuples in R are
precisely those which satisfy u 6= v. This completes the proof. �

We conclude by an interesting consequence.

Corollary 18. Any relation expressible by a nonequality is a complement of a
relation expressible by a word equation without auxiliary variables.

5 The hierarchy

In this section we show that there exists a proper infinite hierarchy of expressible
languages based on the number of auxiliary variables.

Let S be a set of words of a fixed length. Define a factorization FS(w) of a
word w in the following way. If there is no occurrence of a word of S in w then
FS(w) = w. Otherwise,

FS(w) = w[0, i1], w[i1, i2], . . . , w[ik, |w|],

where i1 < i2 · · · < ik are all starting positions of occurrences of words of S in w.

Theorem 19. Let L be a pattern-free language which is expressible by word equa-
tion e with k variables. Then, for each i ≥ 2 and for each word w ∈ L there is a
set S of at most k words of length i such that each factor of FS(w) is shorter than
(|e|+ 1)i|e|+ i. Moreover, if |w| ≥ i, then one of the words in S is a prefix of w.
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Proof. Take any w ∈ L. Let L be expressible by a variable X in e : u = v. By
Lemma 2, there is a solution h of e such that h(X) = w and each subword of
h(u) = h(v) has an occurrence over a cut. Denote by S the set of all prefixes of
length i of words h(Y ) where Y ranges over all variables. It is enough to prove
that the factors of FS(h(u)) are shorter than (|e| + 1)i|e| + i. Suppose there is a
factor f in FS(h(u)) which is longer than (|e|+ 1)i|e|+ i. By the definition of the
factorization a prefix of f of length i is in S and f does not contain an occurrence
of a word in S. By Lemma 2, f has an occurrence over a cut. The cut divides the
word f into two pieces say f1 and f2. Since f does not contain an occurrence of a
word in S we have |f2| < i|e| (Otherwise it contains a prefix of length i of a word
h(Y ) for some variable Y ). Now, we apply Lemma 2 again but to a factor f1 being
a prefix of f and satisfying |f1| > |e|i|e|+ i). Again f1 has an occurrence over a cut,
and the cut divides the word into two parts say f ′1, f ′2 such that |f ′2| < i|e|. Now
|f ′1| > (|e| − 1)i|e|+ i.

We repeat this procedure with f ′1 up to the moment when we hit the same cut for
the second time. Then we obtain a prefix of f of length at least i which is contained
in another prefix of f . This, however, is impossible since f does not contain words
in S as subwords, a contradiction. �

As an application of Theorem 19 we consider two concrete examples.

Example 20. Let a, a1, . . . , ak be different letters. The language

L = aa∗1a
∗
2 . . . a

∗
k

is expressible by a word equation with k + 1 variables since it is expressible by the
following system of equations:

aiXi = Xiai, for 1 ≤ i ≤ k

Z = aX1 . . . Xk

However,L is not expressible by any word equation with k variables. Indeed, suppose
it is expressible by a word equation e with k variables. Take i = 2, j = (|e|+2)(2|e|+
2) + 2. Then, by Theorem 19, there is a set S of k words of length 2 such that each
factor of FS(aaj1aj2 . . . ajk) is shorter than j−2. This means that there is an occurrence
of a word in S in the subwords aj1, a

j
2,. . . , ajk. Hence, all of the words a2

1, a
2
2,. . . ,a2

k

are in S. The word aa1 as a prefix of aaj1 . . . a
j
k is also in S. Consequently, we have

found k + 1 words of S, a contradiction.

Example 21. The language over two-letter alphabet {a, b}

b(bka)∗(bk−1a2)∗ . . . (bak)∗

is not expressibble by a word equation with k variables. Indeed, assume that it is
expressible by an equation e. Take i = k+1 and j = (|e|+2)((k+1)|e|+k+1)+k+1
and let S be the set as in Theorem 19. Similarly, as in Example 20 we prove that
one of the conjugates of bak, one of the conjugates of b2ak−1, . . . , and one of the
conjugates of bka belongs to S, and moreover a prefix bk+1 belongs to S. Since



On the expressibility of languages by word equations 303

the sets of conjugates are disjoint we again have k + 1 words in a k element set, a
contradiction. On he other hand, the language

b(bka)∗(bk−1a2)∗ . . . (bak)∗

clearly is expressible by a word equation with k + 1 varaibles.

In order to state the main result of this section we denote by Lk the family of
languages which are defined by equations using at most k variables. By Examples 20
and 21, we have:

Theorem 22. For each k ≥ 1, Lk is a proper subset of Lk+1. Consequently, there
exists an infinite proper hierarchy among expressible languages based on the number
of auxiliary variables.
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[5] Choffrut, C., and Karhumäki, J., Combinatorics of words, in G.Rozenberg and
A.Salomaa (eds), Handbook of Formal Languages, Springer, 1997.

[6] Diekert V., Makanin’s algorithm, a Chapter in Algebraic aspects of combina-
torics on words (Ed.: J. Berstel and D.Perrin), 1999, to appear.
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