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Abstract

Let Ω be a connected bounded open set in RN , N ≥ 2, with lipschitzian
boundary. The best constant in the Poincaré type inequality:

| u |2
2
≤ C(Ω) ‖ grad (u) ‖2−1

, ∀u ∈ L2(Ω)/R

is the inverse of the smallest spectral value of the the bounded self-adjoint
linear operator T = −div(−∆)−1grad in L2(Ω)/R ([4]). In this paper we
show that, in the case of an elliptical domain of R2, the point spectrum of this
operator is the set σp(T ) = { λn , λ̃n , 1 ; n ∈ N*}, where 1 is an eigenvalue
of infinite multiplicity and

λn =
1
2
− 2ab(n+ 1)(a2 − b2)n

(a+ b)2n+2 − (a− b)2n+2
, λ̃n =

1
2

+
2ab(n+ 1)(a2 − b2)n

(a+ b)2n+2 − (a− b)2n+2
.

If a 6= b, λn and λ̃n are eigenvalues of multiplicity 1, they converge
to 1/2 when n → ∞ and σ(T ) = σp(T ) ∪ {1/2}. If a = b, λn = λ̃n =
1/2 is an eigenvalue of infinite multiplicity and σ(T ) = σp(T ) = {1/2 , 1}.

Consequently, if b ≤ a,
a2 + b2

b2
is the best constant in the preceding Poincaré

type inequality.
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1 Preliminaries

Let Ω be a bounded, open, connected domain in RN , N ≥ 2, with regular
boundary ∂Ω. Throughout this paper, we use the usual product topology on the
product spaces.

In L2(Ω), the Hilbert norm and the scalar product are written | · |2 and ( · , · )2 .
Let M(Ω) be the closed subspace of L2(Ω) of functions of zero mean :

M(Ω) =
{
u ∈ L2(Ω) ;

∫
Ω
u(x)dx = 0

}
.

M(Ω) is equipped with the norm induced by the Hilbert space L2(Ω), and it is
isometrically isomorphic to the quotient space L2(Ω)/R.

The Sobolev space H1
0 (Ω) is equipped with the gradient norm. We denote by

H−1(Ω) the dual space of H1
0 (Ω) normed by :

‖ f ‖
H−1(Ω)

= Sup

 < f, v >

‖ v ‖
H1

0
(Ω)

; v ∈ H1
0 (Ω) , v 6= 0

 ,
where < ·, · > denotes the duality between H−1(Ω) and H1

0 (Ω). (H1
0 (Ω))N is isomor-

phic to (H−1(Ω))N and −∆ is this isometric isomorphism. We shall write ‖ · ‖−1 for
the norm on (H−1(Ω))N .

The important inequality which follow is proved in [5] :

Proposition 1. There exists a constant C(Ω) ≥ 1, depending only on Ω, such
that :

| u |2
2
≤ C(Ω) ‖ grad (u) ‖2

−1
, ∀u ∈M(Ω). (1)

Notation. In the remainder of this paper, the best value of constant C(Ω) in
the inequality (1) is denoted by P (Ω) :

P (Ω)−1 = Inf

{‖ grad (u) ‖2
−1

| u |2
2

; u ∈M(Ω) , u 6= 0

}
.

From proposition 1, the operator T = −div(−∆)−1grad is an isomorphism from
M(Ω) onto M(Ω). Moreover, for all u ∈ M(Ω), we have (Tu, u)2 = ‖ grad (u) ‖2

−1
.

Consequently,

P (Ω)−1 = Inf { (Tu, u)2 ; u ∈M(Ω) , u 6= 0}

Important properties of this operator T are proved in [4] :

Theorem 1. T is a self-adjoint and coercive operator. Tu − u is a harmonic
function, ∀u ∈M(Ω). ‖ T ‖= 1 and 1 is an eigenvalue of T of infinity multiplicity.
If u is an eigenvector of T corresponding to an eigenvalue λ6= 1, then u is a harmonic
function.

Consequently ([1]), the spectrum σ(T ) of T is closed, σ(T ) ⊂ [P (Ω)−1 , 1], the
residual spectrum of T is empty and P (Ω) is the inverse of smallest spectral value
of T .
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2 Case where Ω is an elliptical domain

In the particular case where Ω is an elliptical domain :

Ω =

{
(x, y) ∈ R2 ;

x2

a2
+
y2

b2
< 1

}
,

we are able to give the spectrum σ(T ) of the operator T .
Proposition 2. The point spectrum of the operator T = −div(−∆)−1grad is

the set σp(T ) =
{
λn , λ̃n , 1 ; n ∈ N∗

}
where

λn =
1

2
− 2ab(n+ 1)(a2 − b2)n

(a + b)2n+2 − (a− b)2n+2
and λ̃n =

1

2
+

2ab(n+ 1)(a2 − b2)n

(a + b)2n+2 − (a− b)2n+2
.

1 is an eigenvalue of infinite multiplicity. If a 6= b, λn and λ̃n are eigenvalues
of multiplicity 1, they converge to 1/2 when n → ∞ and σ(T ) = σp(T ) ∪ 1/2. If

a = b, λn = λ̃n = 1/2 is an eigenvalue of infinite multiplicity and σ(T ) = σp(T ) =
{1/2, 1}.

Proof.- We are going to search harmonic polynomials of degree n such that they

are eigenvectors of T . We shall write ∂x for
∂

∂x
and ∂y for

∂

∂y
.

Let un = ρn cos (nθ) be the harmonic homogeneous polynomial of degree n =
2m (even) :

un = xn − ( n2 )xn−2y2 + ( n4 )xn−4y4 + . . .+ (−1)m−1( n
n − 2 )x2yn−2 + (−1)myn.

Let us calculate Tun = −∂x(−∆)−1∂xun − ∂y(−∆)−1∂yun. The first step is to
obtain (−∆)−1∂xun. For this, we search a polynomial of the form

α0 x
n−1 + α2 x

n−3y2 + . . .+ αn−4 x
3yn−4 + αn−2 xy

n−2 + Pn−3(x, y),

where Pn−3(x, y) is a polynomial of degree n − 3, such that

−∆

[(
α0 x

n−1 + α2 x
n−3y2 + . . .+ αn−2 xy

n−2 + Pn−3(x, y)
)(x2

a2
+
y2

b2
− 1

)]
= ∂xun.

We develop this expression and identifying the coefficients of the terms of degree
n− 1, we obtain the following system of m linear equations in m unknowns :

−
(

(n+ 1)n

a2
+

2

b2

)
α0 −

2

a2
α2 = n,

− (n− j + 1)(n− j)
b2

αj−2 −
(

(n− j + 1)(n− j)
a2

+
(j + 2)(j + 1)

b2

)
αj −

− (j + 2)(j + 1)

a2
αj+2 = (−1)

j
2 n (

n− 1
j

) , j = 2, 4, . . . , n− 4, (2)
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− 6

b2
αn−4 −

(
6

a2
+
n(n − 1)

b2

)
αn−2 = (−1)

n−2
2 n(n− 1),

and the equation :

−∆

[
−(α0 x

n−1 + α2 x
n−3y2 + . . . + αn−2 xy

n−2) + Pn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
= 0.

(3)
We solve the system (2) by successive elimination of unknowns α0, α2, α4, . . .

and we obtain

αn−2 =
(−1)m b2

[
n( n+ 1

0 ) an+1 + (n− 2)( n+ 1
2 ) an−1b2 + . . . + 2( n+ 1

n− 2 ) a3bn−2

]
2
[
( n+ 1

0 ) an+1 + ( n + 1
2 ) an−1b2 + . . .+ ( n+ 1

n− 2 ) a3bn−2 + ( n+ 1
n ) abn

] ,
that is

αn−2 = (−1)m−1b2

[
1

2
− a(n+ 1) ((a + b)n + (a− b)n)

2 ((a + b)n+1 + (a− b)n+1)

]
. (4)

Hence, we easily compute αn−4, . . . α2, α0.
Similarly, to calculate (−∆)−1∂yun we search a polynomial of the form

β0 y
n−1 + β2 y

n−3x2 + . . . + βn−4 y
3xn−4 + βn−2 yx

n−2 +Qn−3(x, y),

where Qn−3(x, y) is a polynomial of degree n − 3, such that

−∆

[
(β0 y

n−1 + β2 y
n−3x2 + . . .+ βn−2 yx

n−2) +Qn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
= ∂yun.

As previously, we obtain the system

−
(

2

a2
+

(n + 1)n

b2

)
β0 −

2

b2
β2 = (−1)

n
2 n,

− (n− j + 1)(n− j)
a2

βj−2 −
(

(j + 2)(j + 1)

a2
+

(n− j + 1)(n− j)
b2

)
βj −

− (j + 2)(j + 1)

b2
βj+2 = (−1)

n−j
2 n (

n − 1
j

) , j = 2, 4, . . . , n− 4, (5)

− 6

a2
βn−4 −

(
n(n − 1)

a2
+

6

b2

)
βn−2 = −n(n− 1),

and the equation :

−∆

[
−(β0 y

n−1 + β2 y
n−3x2 + . . .+ βn−2 yx

n−2) +Qn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
= 0.

(6)
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We solve the system (5) by successive elimination of unknowns βn−2, βn−4, βn−6, . . .
and we obtain

β0 =
(−1)m−1ab2

2

(a+ b)n − (a− b)n
(a + b)n+1 − (a− b)n+1

. (7)

Hence, we easily compute β2, . . . , βn−4, βn−2.
Now we are going to determine the polynomials Pn−3(x, y) and Qn−3(x, y) such

that they verify the equations (3) and (6). For this, we get Pn−3(x, y) of the form

Pn−3(x, y) = γ0 x
n−3 + γ2 x

n−5y2 + . . . + γn−6 x
3yn−6 + γn−4 xy

n−4 + Pn−5(x, y),

with Pn−5(x, y) polynomial of degree n− 5. Since the polynomial

(α0 x
n−1 + α2 x

n−3y2 + . . .+ αn−4 x
3yn−4 + αn−2 xy

n−2)− Pn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)

must be harmonic (equation (3)), we get Pn−3(x, y) such that

α0 x
n−1+. . .+αn−2 xy

n−2−(γ0 x
n−3+. . .+γn−4 xy

n−4+Pn−5(x, y))

(
x2

a2
+
y2

b2
− 1

)
=

= σn−1 un−1 + σn−3 un−3 + . . .+ σ3 u3 + σ1 u1, (8)

where uj is the harmonic homogenous polynomial defined by ρjcos(jρ) (j odd) and
σj ∈ R.

Identifying the coefficients of the terms of degree n− 1, we obtain the system :

− 1

a2
γ0 + α0 = σn−1,

− 1

b2
γj−2 −

1

a2
γj + αj = (−1)

j
2 (

n− 1
j

)σn−1 , j = 2, 4, . . . , n− 4, (9)

− 1

b2
γn−4 + αn−2 = (−1)

n−2
2 σn−1.

It is easy to solve this system and we have γ0, γ2, . . . , γn−4 and σn−1 (the values
αj are given by system (2)).

To calculate Pn−5(x, y) we write

Pn−5(x, y) = η0 x
n−5 + η2 x

n−7y2 + . . .+ ηn−8 x
3yn−8 + γn−6 xy

n−6 + Pn−7(x, y),

with Pn−7(x, y) polynomial of degree n− 7.
Introducing this expression in (8) and identifying the coefficients of the terms

of degree n − 3, we obtain a system similar to (9). Solving this system we obtain
η0, η2, . . . , ηn−6 and σn−3.

To calculate Pn−7(x, y) we proceed similarly and so on. Thus, we can consider
that σn−1, σn−3, . . . , σ1 and Pn−3(x, y) are calculated.

Proceeding as previously, we obtain Qn−3(x, y) and τn−1, τn−3, . . . , τ1 ∈ R such
that

(β0 y
n−1+. . .+βn−2 yx

n−2)−Qn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)
= τn−1 vn−1+τn−3 vn−3+. . .+τ1 v1,
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where vj is the harmonic homogeneous polynomial defined by par ρjsin(jθ) with j
odd.

Let us return to Tun. We have

Tun = −
∑

j=0,2,4,...,n

(
n + 1− j

b2
αj−2 +

n+ 1− j
a2

αj +
j + 1

a2
βn−j−2 +

j + 1

b2
βn−j

)
xn−jyj−

− ∂x
[
−(α0 x

n−1 + α2 x
n−3y2 + . . .+ αn−2 xy

n−2) + Pn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
−

− ∂y
[
−(β0 y

n−1 + β2 y
n−3x2 + . . . + βn−2 yx

n−2) +Qn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
.

Now, we are going to prove that there exits λn ∈ R such that

Tun = λnun − ∂x

[
−(α0x

n−1 + . . . + αn−2xy
n−2) + Pn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
−

− ∂y
[
−(β0 y

n−1 + β2 y
n−3x2 + . . . + βn−2 yx

n−2) +Qn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
.

For this, we must find λn satisfying

−n+ 1

a2
α0 −

1

a2
βn−2 = λn,

−(n+ 1− j)
(
αj−2

b2
+
αj
a2

)
− (j + 1)

(
βn−j−2

a2
+
βn−j
b2

)
= (−1)

j
2 λn( nj ), (10)

j = 2, 4, . . . , n− 2

− 1

b2
αn−2 −

n+ 1

b2
β0 = (−1)

n
2 λn.

Introducing αn−2 and β0 given by (4) and (7) in the last equation of system
(10), we obtain

λn =
1

2
− 2ab(n+ 1)(a2 − b2)n

(a+ b)2n+2 − (a− b)2n+2
. (11)

To show that this λn verifies the others equations of system (10), we add the

last equation of (2) multiplied by par
1

2
and the first equation of (5) multiplied by

n− 1

2
. Thanks to the last equation of (10), we find the next to last equation of

system (10). Repeating this procedure, we show that this λn verify all equations of
system (10).

On the other hand, for the harmonic homogeneous polynomials uk = ρkcos(kθ)
and vk = ρksin(kθ), k ≥ 1, we have ∂xuk = kuk−1 and ∂yvk = kuk−1, therefore

∂x

[
(α0 x

n−1 + α2 x
n−3y2 + . . .+ αn−2 xy

n−2)− Pn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
+
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+ ∂y

[
(β0 y

n−1 + β2 y
n−3x2 + . . . + βn−2 yx

n−2)−Qn−3(x, y)

(
x2

a2
+
y2

b2
− 1

)]
=

= ∂x(σn−1 un−1 + σn−3 un−3 + . . .+ σ1 u1) + ∂y(τn−1 vn−1 + τn−3 vn−3 + . . .+ τ1 v1) =

= (n−1)σn−1 un−2+(n−3)σn−3 un−4+. . .+3σ3 u2+σ1+(n−1)τn−1 un−2+. . .+3τ3 u2+τ1.

Hence,

Tun = λnun+(n−1)(σn−1+τn−1)un−2+(n−3)(σn−3+τn−3)un−4+. . .+3(σ3+τ3)u2+σ1+τ1.

Obsiously, we have a similar expresion for un−2 = ρn−2cos((n− 2)θ) :

Tun−2 = λn−2un−2 + (n− 3)(µn−3 + νn−3)un−4 + . . . + 3(µ3 + ν3)u2 + µ1 + ν1.

Therefore

T

(
un +

(n− 1)(σn−1 + τn−1)

λn − λn−2
un−2

)
= λnun+

+λn
(n− 1)(σn−1 + τn−1)

λn − λn−2
un−2 + ωn−4 un−4 + . . .+ ω2 u2 + ω0.

Also

Tun−4 = λn−4un−4 + (n− 5)(ρn−5 + δn−5)un−6 + . . .+ 3(ρ3 + δ3)u2 + ρ1 + δ1

thus,

T

(
un +

(n− 1)(σn−1 + τn−1)

λn − λn−2

un−2 +
ωn−4

λn − λn−4

un−4

)
= λnun+

+λn
(n− 1)(σn−1 + τn−1)

λn − λn−2
un−2 +λn

ωn−4

λn − λn−4
un−4+εn−6 un−6+. . .+ε2 u2+ε0 .

Finally, repeating this procedure, we show that λn is an eigenvalue of T .
If we take vn = ρnsin(nθ) (n = 2m) and we repeat the same reasoning, we

show that

λ̃n =
1

2
+

2ab(n+ 1)(a2 − b2)n

(a + b)2n+2 − (a− b)2n+2
(12)

is an eigenvalue of T of multiplicity 1.
Similarly, if n = 2m − 1, taking un = ρncos(nθ) (resp. vn = ρnsin(nθ)) we

show that λ̃n (resp. λn) is an eigenvalue of T de multiplicity 1.
Finally, since Tu− u is harmonic ∀u ∈ L2(Ω)/R, the orthogonal in L2(Ω)/R

of the space of harmonic functions is included in the eigenspace corresponding to
the eigenvalue λ = 1. On the other hand ([3]), the family of harmonic polynomials
is a basis (in L2(Ω)/R) of the subspace of harmonic functions. Thus λn, λ̃n with
n ∈ N, and 1 are the only eigenvalues of T and the corresponding eigenvectors form
a basis of L2(Ω)/R. Consequently ([1]), like the limit of λn and λ̃n, as n→∞, is
1/2, the spectrum of T is the set σ(T ) = σp(T ) ∪ 1/2.

In the particular case where b = a, all eigenvalues λn and λ̃n condense in 1/2
and the spectrum of T only contain the eigenvalues of infinite multiplicity 1 and 1/2
([4]).
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If b < a, {λn} is an increasing sequence and the eigenvalue
b2

a2 + b2
is the

smallest spectral value of T . Thus,
a2 + b2

b2
is the best constant in the inequality

(1).

Remark 1. In dimension 3, if Ω is the ellipsoid

Ω =

{
(x, y, z) ∈ R3 ;

x2

a2
+
y2

b2
+
z2

c2
< 1

}
with c ≤ b ≤ a,

this problem is more complicated since an nth degree harmonic polynomial un contains
2n+1 arbitrary constants and is a linear combination of 2n+1 linearly independent
harmonic polynomials. In this case, we obtain systems that cannot be solved explicitly.

However, we conjecture that the eigenvalue
b2c2

a2b2 + a2c2 + b2c2
corresponding to the

eigenvector u(x, y, z) = x is the smallest spectral value of T and thus,
a2b2 + a2c2 + b2c2

b2c2

is the best constant in the Poincaré type inequality (1).
In the particular case where Ω is the sphere

Ω =
{

(x, y, z) ∈ R3 ; x2 + y2 + z2 < 1
}
,

each harmonic homogeneous polynomial of degree n ≥ 1 is an eigenvector of T

corresponding to the eigenvalue
n

2n + 1
. The point spectrum is σp(T ) = { n

2n+ 1
, 1 ;

n ∈ N*}, where 1 is an eigenvalue of infinite multiplicity,
n

2n + 1
has finite

multiplicity (= 2n + 1), and σ(T ) = σp(T ) ∪ {1/2}. Consequently, 3 is the best
constant in the Poincaré type inequality (1) ([4]).

Remark 2. We note that the operator T = −div(−∆)−1grad appears in
the static elasticity theory and that the best constant in the Poincaré inequality (1)
is used in constructing and substantiating algorithms for solving equations like the
Stokes and the Navier-Stokes equations ([2]).
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