Recognizing $\mathcal{Q}_{p, 0}$ Functions per Dirichlet Space Structure

K.J. Wirths J. Xiao*

Abstract

Under $p \in(0, \infty)$ and Möbius map $\sigma_{w}(z)=(w-z) /(1-\bar{w} z)$, a holomorphic function on the unit disk Δ is said to be of $\mathcal{Q}_{p, 0}$ class if $\lim _{|w| \rightarrow 1} E_{p}(f, w)=0$, where $$
E_{p}(f, w)=\int_{\triangle}\left|f^{\prime}(z)\right|^{2}\left[1-\left|\sigma_{w}(z)\right|^{2}\right]^{p} d m(z)
$$ and where $d m$ means the element of the Lebesgue area measure on \triangle. In particular, $\mathcal{Q}_{p, 0}=\mathcal{B}_{0}$, the little Bloch space for all $p \in(1, \infty), \mathcal{Q}_{1,0}=V M O A$ and $\mathcal{Q}_{p, 0}$ contains \mathcal{D}, the Dirichlet space. Motivated by the linear structure of \mathcal{D}, this paper is devoted to: first show that $\mathcal{Q}_{p, 0}$ is a Möbius invariant space in the sense of Arazy-Fisher-Peetre; secondly identify $\mathcal{Q}_{p, 0}$ with the closure of all polynomials; thirdly characterize the extreme points of the unit closed ball of $\mathcal{Q}_{p, 0}$; and finally investigate the semigroups of the composition operators on $\mathcal{Q}_{p, 0}$.

Introduction

Let \triangle and $\partial \triangle$ be the unit disk and the unit circle in the finite complex plane \mathbb{C}. Denote by \mathcal{H} the set of functions holomorphic on \triangle, endowed with the topology of the compact-open (i.e. the uniform convergence on compact subsets of \triangle). The

[^0]symbol $\operatorname{Aut}(\triangle)$ is employed to represent the group of all conformal automorphisms of \triangle, i.e. all Möbius maps of the form $\lambda \sigma_{a}$, where $\lambda \in \partial \triangle, a \in \triangle$ and
$$
\sigma_{a}(z)=\frac{a-z}{1-\bar{a} z}
$$
is the symmetry interchanging 0 and a. The Bloch space \mathcal{B} is the class of all $f \in \mathcal{H}$ with the semi-norm
$$
\|f\|_{\mathcal{B}}=\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty
$$

Moreover, the little Bloch space \mathcal{B}_{0} is the family of functions $f \in \mathcal{H}$ satisfying

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0 .
$$

Recently, it has been found that \mathcal{B} and \mathcal{B}_{0} can be embedded into two new function families, i.e., the so-called \mathcal{Q}_{p} and $\mathcal{Q}_{p, 0}$, respectively (cf. [AuLa, AuXiZh, EsXi, NiXi]). Recall that for $p \in(0, \infty), \mathcal{Q}_{p}$ resp. $\mathcal{Q}_{p, 0}$ is the class of functions $f \in \mathcal{H}$ with

$$
\|f\|_{\mathcal{Q}_{p}}=\sup _{w \in \triangle}\left[E_{p}(f, w)\right]^{\frac{1}{2}}<\infty \quad \text { resp. } \quad \lim _{|w| \rightarrow 1} E_{p}(f, w)=0 .
$$

Here and throughout this paper,

$$
E_{p}(f, w)=\int_{\Delta}\left|f^{\prime}(z)\right|^{2}\left[1-\left|\sigma_{w}(z)\right|^{2}\right]^{p} d m(z)
$$

where $d m$ stands for the element of the Lebesgue area measure on \triangle. With respect to

$$
\|f\|_{\mathcal{Q}_{p}}=|f(0)|+\|f\|_{\mathcal{Q}_{p}},
$$

\mathcal{Q}_{p} becomes a normed linear space and has $\mathcal{Q}_{p, 0}$ as its subspace. Of particular interest is to point out that if $p \in(1, \infty)$ or $p=1$ then $\mathcal{Q}_{p}=\mathcal{B} ; \mathcal{Q}_{p, 0}=\mathcal{B}_{0}$ or $\mathcal{Q}_{p}=B M O A ; \mathcal{Q}_{p, 0}=V M O A$.

Let \mathcal{D} be the classical Dirichlet space consisting of functions $f \in \mathcal{H}$ with

$$
\|f\|_{\mathcal{D}}=\left[\int_{\triangle}\left|f^{\prime}(z)\right|^{2} d m(z)\right]^{\frac{1}{2}}<\infty
$$

By some simple calculations involving power series, it is easy to establish that for $f \in \mathcal{H}$ and $w \in \triangle$,

$$
F_{p}(f, w) \leq E_{p}(f, w) \leq 2^{p} F_{p}(f, w)
$$

where

$$
F_{p}(f, w)=p \int_{0}^{1}(1-r)^{p-1}\left[\int_{|z|<r}\left|\left(f \circ \sigma_{w}\right)^{\prime}(z)\right|^{2} d m(z)\right] d r .
$$

An important observation is that $\left(\mathcal{Q}_{p, 0},\|\cdot\|_{\mathcal{Q}_{p}}\right)$ decreases to $\left(\mathcal{D},\|\cdot\|_{\mathcal{D}}\right)$ as $p \searrow 0$. In fact, if $f \in \mathcal{D}$ then for arbitrary $\epsilon>0$, there is a $\delta \in(0,1)$ such that

$$
\int_{|z|>\delta}\left|f^{\prime}(z)\right|^{2} d m(z)<\epsilon ; \quad \int_{\delta}^{1}(1-r)^{p-1} d r<\epsilon .
$$

Thus,

$$
\begin{aligned}
\lim _{|w| \rightarrow 1} E_{p}(f, w) & \leq \lim _{|w| \rightarrow 1} 2^{p} F_{p}(f, w) \\
& \leq p 2^{p} \lim _{|w| \rightarrow 1} \int_{0}^{\delta}(1-r)^{p-1}\left[\int_{|z|<r}\left|\left(f \circ \sigma_{w}\right)^{\prime}(z)\right|^{2} d m(z)\right] d r+\epsilon p 2^{p}\|f\|_{\mathcal{D}}^{2} \\
& \leq\left[2^{p}\left(1+p\|f\|_{\mathcal{D}}^{2}\right)\right] \epsilon
\end{aligned}
$$

which implies $f \in \mathcal{Q}_{p, 0}$. On the other hand, the measure $p(1-r)^{p-1} d r$ (defined on $[0,1])$ converges weak-star to the point mass at 1 as $p \searrow 0$. Since $\int_{|z|<r} \mid(f \circ$ $\left.\sigma_{w}\right)\left.^{\prime}(z)\right|^{2} d m(z)$ is an increasing function of r, we have

$$
\lim _{p \rightarrow 0} E_{p}(f, w)=\lim _{p \rightarrow 0} F_{p}(f, w)=\sup _{r \in(0,1)} \int_{|z|<r}\left|\left(f \circ \sigma_{w}\right)^{\prime}(z)\right|^{2} d m(z) .
$$

This leads to: \mathcal{D} consists of those functions for which there is a constant $K(f)>0$ (depending on f) with $\|f\|_{\mathcal{Q}_{p}} \leq K(f)$ for all $p>0$ and so, can be viewed as a limit space of $\mathcal{Q}_{p, 0}$ as $p \searrow 0$.

The preceding observation appears to induce an idea: in order to solve problems regarding $\mathcal{Q}_{p, 0}$, we may treat $\mathcal{Q}_{p, 0}$ as a 'kind' of Dirichlet space and use the methods of functional analysis. This viewpoint has already be testified by [NiXi] where the closed graph theorem is an effective tool to discuss interpolation and projection problems from $\mathcal{Q}_{p, 0}$. In the present article, we shall study the linear \mathcal{D}-like structure of $\mathcal{Q}_{p, 0}$ in some details. The material we cover is as follows: 1) Möbius invariance of $\mathcal{Q}_{p, 0}$ in the strict sense of Arazy-Fisher-Peetre; 2) density of the polynomials in $\mathcal{Q}_{p, 0}$; 3) characterization of the extreme points in the unit ball of $\left.\mathcal{Q}_{p, 0} ; 4\right)$ semigroups of the composition operators on $\mathcal{Q}_{p, 0}$.

1 Möbius Invariance

Since the norm $\|\cdot\|_{\mathcal{Q}_{p}}$ and the semi-norm $\|\cdot\|_{\mathcal{Q}_{p}}$ differ by one nonnegative constant, the first thing to do is to see how the semi-norm $\|\cdot\|_{\mathcal{Q}_{p}}$ affects $\mathcal{Q}_{p, 0}$. We shall find that all the $\mathcal{Q}_{p, 0}$ spaces are Möbius invariant in the sense of Arazy-Fisher-Peetre (cf.[ArFiPe]).

A semi-normed linear space $\left(X,\|\cdot\|_{X}\right)$ is called a Möbius invariant space provided the following conditions hold:

- $X \subset \mathcal{B}$ with $\|\cdot\|_{X} \leq K\|\cdot\|_{\mathcal{B}}$ for some constant $K>0 ;$
- X is complete under the semi-norm $\|\cdot\|_{X}$;
- Aut (\triangle)-invariance: for each $\sigma \in \operatorname{Aut}(\triangle)$ and each $f \in X$ the composition $C_{\sigma}(f)=f \circ \sigma$ belongs to X and $\left\|C_{\sigma}(f)\right\|_{X}=\|f\|_{X}$;
- Continuity of $\operatorname{Aut}(\triangle)$-action: for every $f \in X$ the map $\sigma \rightarrow C_{\sigma}(f)$ is continuous from $\operatorname{Aut}(\triangle)$ to X in the semi-norm $\|\cdot\|_{X}$.

It is well-known that \mathcal{B}_{0} is Möbius invariant, and according to the above definition, \mathcal{B} is not so in that \mathcal{B} does not satisfy the strict continuity of $\operatorname{Aut}(\triangle)$-action. There are some other Möbius invariant spaces such as $V M O A$ and the Besov p space B_{p}. In $[\mathrm{ArFi}]$ it is proved that the unique Möbius invariant Hilbert space is
$\left(\mathcal{D},\|\cdot\|_{\mathcal{D}}\right)$. Nevertheless, as to a Möbius invariant Banach space which lies between $\left(\mathcal{D},\|\cdot\|_{\mathcal{D}}\right)$ and $\left(\mathcal{B}_{0},\|\cdot\|_{\mathcal{B}}\right)$, we have
Theorem 1.1. Let $p \in(0, \infty)$. Then $\left(\mathcal{Q}_{p, 0},\|\cdot\|_{\mathcal{Q}_{p}}\right)$ is a Möbius invariant space.
Proof. Observe first that for any $f \in \mathcal{Q}_{p}$,

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq\left(\frac{2^{p+1}}{\pi}\right)^{\frac{1}{2}}\|f\|_{\mathcal{Q}_{p}}, \quad z \in \triangle . \tag{1.1}
\end{equation*}
$$

Thus $\mathcal{Q}_{p, 0} \subset \mathcal{Q}_{p} \subset \mathcal{B}$ with $\|\cdot\|_{\mathcal{B}} \leq K\|\cdot\|_{\mathcal{Q}_{p}}$ where $K=\left(2^{p+1} / \pi\right)^{\frac{1}{2}}$.
Assume next that $\left\{f_{n}\right\}$ is a Cauchy sequence in $\left(\mathcal{Q}_{p, 0},\|\cdot\|_{\mathcal{Q}_{p}}\right)$. Then for arbitrary $\epsilon>0$ there is a positive integer n_{0} such that as $m, n \geq n_{0},\left\|f_{m}-f_{n}\right\|_{\mathcal{Q}_{p}}<\epsilon$. By the principle of normal family and (1.1), there exists some function $f \in \mathcal{Q}_{p}$ such that $\left\|f_{n_{0}}-f\right\|_{\mathcal{Q}_{p}} \leq \epsilon$. Since $f_{n_{0}} \in \mathcal{Q}_{p, 0}$, it follows from the definition of $\mathcal{Q}_{p, 0}$ that $f \in \mathcal{Q}_{p, 0}$. So $\left(\mathcal{Q}_{p, 0},\|\cdot\|_{\mathcal{Q}_{p}}\right)$ is complete.

Because $E_{p}(f \circ \sigma, w)=E_{p}(f, \sigma(w))$, each $\mathcal{Q}_{p, 0}$ is $\operatorname{Aut}(\triangle)$-invariant: $\|f \circ \sigma\|_{\mathcal{Q}_{p}}=$ $\|f\|_{\mathcal{Q}_{p}}$ for all $f \in \mathcal{Q}_{p, 0}$ and $\sigma \in \operatorname{Aut}(\triangle)$.

To prove continuity of $\operatorname{Aut}(\triangle)$-action on $\mathcal{Q}_{p, 0}$, it suffices, by homogeneity, to verify that if $a \rightarrow 0$ in Δ, then $f\left(-\sigma_{a}\right) \rightarrow f$ in $\mathcal{Q}_{p, 0}$ whenever $f \in \mathcal{Q}_{p, 0}$. Suppose $f \in \mathcal{Q}_{p, 0}$, thus, for every $\epsilon>0$ there exists a $\delta_{1} \in(0,1)$ such that

$$
\begin{equation*}
\sup _{|w|>\delta_{1}} E_{p}(f, w)<\epsilon . \tag{1.2}
\end{equation*}
$$

Without loss of generality, one may assume $|a|<1 / 2$. Then there is a $\delta_{2} \geq \delta_{1}$ such that as $|w|>\delta_{2}$ one has $\left|\sigma_{a}(w)\right|>\delta_{1}$ and by (1.2), $\sup _{|w|>\delta_{2}} E_{p}\left(f, \sigma_{a}(w)\right)<\epsilon$. Hence

$$
\begin{equation*}
\sup _{|w|>\delta_{2}} E_{p}\left(f \circ \sigma_{a}-f, w\right)<4 \epsilon \tag{1.3}
\end{equation*}
$$

In what follows, let $|w| \leq \delta_{2}$, and for $r \in(0,1)$ set

$$
E_{p}\left(f \circ \sigma_{a}-f, w\right)=\left(\int_{|z| \leq r}+\int_{|z|>r}\right)(\cdots) d m(z)=I_{1}(r, a)+I_{2}(r, a) .
$$

Concerning $I_{2}(r, a)$, we apply the following basic inequality $\left|\sigma_{a}(w)\right| \leq(|a|+$ $|w|) /(1+|a||w|)$ to get that $\left|\sigma_{a}(w)\right|<\delta_{3}=\left(1+2 \delta_{2}\right) /\left(2+\delta_{2}\right)$ for $|w| \leq \delta_{2}$ and $|a| \leq 1 / 2$. Since $f \in \mathcal{Q}_{p, 0}$, f obeys $E_{p}(f, 0)<\infty$, and for the above $\epsilon>0$ there is an $r_{0} \in(0,1)$ such that

$$
\int_{|z|>r_{0}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d m(z)<\epsilon
$$

Furthermore, some elementary calculations imply that for $r^{2}=\left(2+r_{0}^{2}\right) / 3$,

$$
\begin{align*}
I_{2}(r, a) & \leq\left[\frac{2^{2+p}}{\left(1-\delta_{2}\right)^{p}}+\frac{2^{2+p}}{\left(1-\delta_{3}\right)^{p}}\right] \int_{|z|>r_{0}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d m(z) \\
& <\epsilon\left[\frac{2^{2+p}}{\left(1-\delta_{2}\right)^{p}}+\frac{2^{2+p}}{\left(1-\delta_{3}\right)^{p}}\right] . \tag{1.4}
\end{align*}
$$

However, it is obvious that $\lim _{a \rightarrow 0} I_{1}(r, a)=0$ for each $r \in(0,1)$. Therefore, from (1.3) and (1.4) we derive that $\lim _{a \rightarrow 0}\left\|f\left(-\sigma_{a}\right)-f\right\|_{\mathcal{Q}_{p}}=0$. This concludes the proof.

Due to Theorem 1.1, those general properties of Möbius invariant spaces (shown in Section 1 of [ArFiPe]) are valid for $\mathcal{Q}_{p, 0}$. Specially, we have
Corollary 1.2. Let $p \in(0, \infty)$. Then the $\operatorname{Aut}(\triangle)$-invariant dual $\mathcal{Q}_{p, 0}^{*}$ consists of all $f \in \mathcal{H}$ obeying $\sup \left\{|\langle f, g\rangle|: g \in \mathcal{Q}_{p, 0},\|g\|_{\mathcal{Q}_{p}} \leq 1\right\}<\infty$, where

$$
\langle f, g\rangle=\int_{\triangle} f^{\prime}(z) \overline{g^{\prime}(z)} d m(z)
$$

is the $\operatorname{Aut}(\triangle)$-invariant pair.
Remark 1.3 a) Each \mathcal{Q}_{p} has a weak continuity of $\operatorname{Aut}(\triangle)$-action: for $f \in \mathcal{Q}_{p}$ the map $\sigma \rightarrow C_{\sigma}(f)$ is continuous from $\operatorname{Aut}(\triangle)$ to \mathcal{Q}_{p} with respect to the compact-open topology. For a discussion of the cases $p \geq 1$, refer to [ArFiPe].
b) The Hahn-Banach theorem can be used to establish that the second $\operatorname{Aut}(\triangle)$ invariant dual of $\mathcal{Q}_{p, 0}$ is isomorphic to \mathcal{Q}_{p} under $\langle\cdot, \cdot\rangle$. It is worth pointing out that \mathcal{D}^{*} is isomorphic to \mathcal{D}, moreover if $p=1$ resp. $p>1$ then $\mathcal{Q}_{p, 0}^{*}$ isomorphic to the Hardy-Sobolev space \mathcal{W} resp. the Besov space \mathcal{M}, which consists of all $f \in \mathcal{H}$ obeying

$$
\|f\|_{\mathcal{W}}=\int_{\partial \Delta}\left|f^{\prime}(z) \| d z\right|<\infty \quad \text { resp. } \quad\|f\|_{\mathcal{M}}=\int_{\triangle}\left[\left|f^{\prime}(z)\right|+\left|f^{\prime \prime}(z)\right|\right] d m(z)<\infty
$$

It would be interesting to provide a function-theoretic characterization of $\mathcal{Q}_{p, 0}^{*}$ similar to that of \mathcal{D}, \mathcal{W} or \mathcal{M}.

2 Polynomial Density

Although Theorem 1.1 actually tells us that \mathcal{Q}_{p} and $\mathcal{Q}_{p, 0}$ are Banach spaces under $\|\cdot\|_{\mathcal{Q}_{p}}$, since $\mathcal{Q}_{p, 0}$ contains all polynomials, it is worth to consider the density of \mathcal{P}, the class of the polynomials, and hence to imply that $\mathcal{Q}_{p, 0}$ is a closed subspace of \mathcal{Q}_{p} with respect to the norm $\left\|\|\cdot\|_{\mathcal{Q}_{p}}\right.$.
Theorem 2.1. Let $p \in(0, \infty)$ and let $f \in \mathcal{Q}_{p}$ with $f_{r}(z)=f(r z)$ for $r \in(0,1)$. Then the following are equivalent: (i) $f \in \mathcal{Q}_{p, 0}$; (ii) $\lim _{r \rightarrow 1}\left\|f_{r}-f\right\|_{\mathcal{Q}_{p}}=0$. (iii) f belongs to the closure of \mathcal{P} in the norm $\|\cdot\|_{\mathcal{Q}_{p}}$. (iv) For any $\epsilon>0$ there is a $g \in \mathcal{Q}_{p, 0}$ such that $\left\|\|g-f\|_{\mathcal{Q}_{p}}<\epsilon\right.$.

Proof. Since the implications: $(\mathrm{ii}) \Rightarrow$ (iii),(iii) \Rightarrow (iv) and (iv) \Rightarrow (i) are nearly obvious, it suffices to verify the implication: (i) \Rightarrow (ii). Let $f \in \mathcal{Q}_{p}$. An application of Poisson's formula to f_{r} gives

$$
\begin{equation*}
f_{r}(z)=\frac{1}{2 \pi} \int_{\partial \Delta} f(z \zeta) \frac{1-r^{2}}{|1-r \bar{\zeta}|^{2}}|d \zeta| . \tag{2.1}
\end{equation*}
$$

Derivating both sides of (2.1) with respect to z, integrating and using Minkowski's inequality, one has

$$
\begin{align*}
{\left[E_{p}\left(f_{r}, w\right)\right]^{\frac{1}{2}} } & \leq \frac{1}{2 \pi} \int_{\partial \Delta}\left[\int_{\triangle}\left|f^{\prime}(z \zeta)\right|^{2}\left[1-\left|\sigma_{w}(z)\right|\right]^{p} d m(z)\right]^{\frac{1}{2}} \frac{1-r^{2}}{|1-r \bar{\zeta}|^{2}}|d \zeta| \\
& =\frac{1}{2 \pi} \int_{\partial \triangle}\left[E_{p}(f, \bar{\zeta} w)\right]^{\frac{1}{2}} \frac{1-r^{2}}{|1-r \bar{\zeta}|^{2}}|d \zeta| . \tag{2.2}
\end{align*}
$$

Consequently, $\left\|\left\|f_{r}\right\|_{\mathcal{Q}_{p}} \leq\right\| f \|_{\mathcal{Q}_{p}}$. Furthermore, if $f \in \mathcal{Q}_{p, 0}$, then by (2.2), $\lim _{|w| \rightarrow 1}$ $E_{p}\left(f_{r}-f, w\right)=0$ holds for a fixed $r \in(0,1)$. Also, for a given $\eta \in(0,1)$ it is not hard (by dividing the integral into two parts) to determine $\lim _{r \rightarrow 1} \sup _{|w| \leq \eta} E_{p}\left(f_{r}-f, w\right)=$ 0 . Summing up, we see that $\lim _{r \rightarrow 1}\left\|f_{r}-f\right\|_{\mathcal{Q}_{p}}=0$ and hence (i) \Rightarrow (ii) holds.

Corollary 2.2. Let $p \in(0, \infty)$. Then $\left(\mathcal{Q}_{p, 0},\|\cdot\| \|_{\mathcal{Q}_{p}}\right)$ is a separable closed subspace of $\left(\mathcal{Q}_{p},\|\cdot\|_{\mathcal{Q}_{p}}\right)$.

As for $f \in \mathcal{Q}_{p}$, denote by $d\left(f, \mathcal{Q}_{p, 0}\right)$ the distance of f to $\mathcal{Q}_{p, 0}$, namely, $d\left(f, \mathcal{Q}_{p, 0}\right)=$ $\inf _{h \in \mathcal{Q}_{p, 0}}\|f-h\|_{\mathcal{Q}_{p}}$. Meanwhile, put

$$
\delta_{\mathcal{Q}_{p}}(f)=\underset{|w| \rightarrow 1}{\limsup }\left[E_{p}(f, w)\right]^{\frac{1}{2}} .
$$

The argument for Theorem 2.1 can infer the following result.
Corollary 2.3. Let $p \in(0, \infty)$ and let $f \in \mathcal{Q}_{p}$. Then

$$
\begin{equation*}
\delta_{\mathcal{Q}_{p}}(f) \leq d\left(f, \mathcal{Q}_{p, 0}\right) \leq 2 \delta_{\mathcal{Q}_{p}}(f) \tag{2.3}
\end{equation*}
$$

Proof. On the one hand, since $\lim _{|w| \rightarrow 1} E_{p}(h, w)=0$ for any $h \in \mathcal{Q}_{p, 0}$, by the triangle inequality of $\|\cdot\|_{\mathcal{Q}_{p}}$ one has

$$
\left[E_{p}(f, w)\right]^{\frac{1}{2}} \leq\left[E_{p}(f-h, w)\right]^{\frac{1}{2}}+\left[E_{p}(h, w)\right]^{\frac{1}{2}} ;
$$

consequently,

$$
\delta_{\mathcal{Q}_{p}}(f) \leq \sup _{w \in \Delta}\left[E_{p}(f-h, w)\right]^{\frac{1}{2}}
$$

for every $h \in \mathcal{Q}_{p, 0}$. In other words, the left-hand side estimate of (2.3) holds.
On the other hand, if $f \in \mathcal{Q}_{p}$ with $f_{r}(z)=f(r z), r \in(0,1)$, then $d\left(f, \mathcal{Q}_{p, 0}\right) \leq$ $\left\|f-f_{r}\right\|_{\mathcal{Q}_{p}}$, owing to $f_{r} \in \mathcal{Q}_{p, 0}$. From the proof of Theorem 2.1 it is seen that for arbitrary $\epsilon>0$ and a fixed $\eta \in(0,1)$, there is an $r_{0} \in(0,1)$ such that as $r \in\left[r_{0}, 1\right)$,

$$
\left[E_{p}\left(f-f_{r}, w\right)\right]^{1 / 2} \leq(1-\eta)^{-p}\left[E_{p}\left(f-f_{r}, 0\right)\right]^{1 / 2}<\epsilon
$$

Hence by (2.2),

$$
d\left(f, \mathcal{Q}_{p, 0}\right) \leq\left\|f-f_{r}\right\|_{\mathcal{Q}_{p}} \leq \epsilon+\sup _{|w| \geq \eta}\left[E_{p}\left(f-f_{r}, w\right)\right]^{1 / 2} \leq \epsilon+2 \sup _{|w| \geq \eta}\left[E_{p}(f, w)\right]^{1 / 2}
$$

This implies that the right-hand side of (2.3) is true.
Remark 2.4. a) Theorem 2.1 is an extension of the corresponding results on \mathcal{B}_{0} and VMOA. See also [An, Theorem 1; Si4, p.236].
b) For (analytic and geometric) estimates of the distance to VMOA (related to Corollary 2.3), see also [AxSha, $\mathrm{CaCu}, \mathrm{StSt}]$.
c) In the case $p \in(0,1)$, the density of the polynomials in $\mathcal{Q}_{p, 0}$ doesn't mean that the disc algebra \mathcal{A} (consisting of functions $f \in \mathcal{H}$ continuous on $\partial \triangle$) is a subset of $\mathcal{Q}_{p, 0}$. Indeed, let $f_{1}(z)=\sum_{k=0}^{\infty} 2^{-k(1-p) / 2} z^{2^{k}}$. Then from [AuXiZh, Theorem 6] it
follows that $f_{1} \in \mathcal{A} \backslash \mathcal{Q}_{p}$. This phenomenon distinguishes the cases $p \in(0,1)$ from the cases $p \in[1, \infty)$.
d) An example of an unbounded function in $\mathcal{Q}_{p, 0}$ is easily constructed by using the Riemann mapping theorem. Let Ω be the inside domain of the curve $\gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$, where

$$
\left\{\begin{array}{lll}
\gamma_{1}=\{(x, y) \in \mathbb{C}: & x^{2}+y^{2}=1, & x \in[-1,0]\} ; \\
\gamma_{2}=\{(x, y) \in \mathbb{C}: & y-e^{-x}=0, & x \in[0, \infty)\} ; \\
\gamma_{3}=\{(x, y) \in \mathbb{C}: & y+e^{-x}=0, & x \in[0, \infty)\} .
\end{array}\right.
$$

Let f_{2} be a conformal map of \triangle onto Ω. Clearly, f_{2} is unbounded, but in $\mathcal{D} \subset \mathcal{Q}_{p, 0}$, owing to $\left\|f_{2}\right\|_{\mathcal{D}}^{2}=\left(\pi^{2}+4\right) / 2$.

3 Extreme Points

Given a norm $\|\cdot\|_{X}$ on a Banach space X. In studying $\left(X,\|\cdot\|_{X}\right)$, one problem of considerable interest is that of characterizing the geometry of the unit closed ball

$$
\left(B_{X},\|\cdot\|_{X}\right)=\left\{f \in X:\|f\|_{X} \leq 1\right\}
$$

In particular, we would like to find the extreme points of $\left(B_{X},\|\cdot\|_{X}\right)$, namely, the points in $\left(B_{X},\|\cdot\|_{X}\right)$ which are not a proper convex combination of two different points of $\left(B_{X},\|\cdot\| \|_{X}\right)$. The problem addressed here deals with the extreme points of $\left(B_{\mathcal{Q}_{p, 0}},\|\cdot\| \|_{\mathcal{Q}_{p}}\right)$ in order to better understand the linear structure of $\mathcal{Q}_{p, 0}$.

The following result is the Proposition 1 in [CiWo].
Lemma 3.1. Let X and Y be Banach spaces with norms $\|\cdot\| \|_{X}$ and $\|\cdot \cdot\|_{Y}$ respectively. Let $N:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ be a function so that $(x, y) \rightarrow N(|x|,|y|)$ is a norm on \mathbb{R}^{2}. Define a norm $\|\cdot\|_{Z}$ on $Z=X \oplus Y$ by

$$
\|x \oplus y\|_{Z}=N\left(\|x\|_{X},\|y\|_{Y}\right), \quad \text { for } \quad x \in X, \quad y \in Y
$$

Then $x \oplus y$ is an extreme point of $\left(B_{Z},\|\cdot\|_{Z}\right)$ if and only if the following three conditions hold: (i) x is an extreme point of the closed ball of radius $\|x\|_{X}$ of X. (ii) y is an extreme point of the closed ball of radius $\|y\|_{Y}$ of Y. (iii) $\left(\|x\|_{X},\|y\|_{Y}\right)$ is an extreme point of the unit closed ball of \mathbb{R}^{2} with the norm N.

Before stating our result, we still need another useful lemma whose hyperbolic version is presented in [SmZh , Lemma 2.3].
Lemma 3.2. Let $p \in(0, \infty)$ and $f \in \mathcal{H}$. If $E_{p}(f, w)$ is finite for some $w \in \triangle$, then $E_{p}(f, \cdot)$ is a continuous function on \triangle.

Proof. It is easy to figure out that for three points $z, w_{1}, w_{2} \in \triangle$,

$$
\begin{equation*}
\frac{\left(1-\mid w_{1}\right)\left(1-\left|w_{2}\right|\right)}{4} \leq \frac{1-\left|\sigma_{w_{1}}(z)\right|^{2}}{1-\left|\sigma_{w_{2}}(z)\right|^{2}} \leq \frac{4}{\left(1-\mid w_{1}\right)\left(1-\left|w_{2}\right|\right)} . \tag{3.1}
\end{equation*}
$$

This indicates that if $E_{p}(f, \cdot)$ is finite at some point of Δ then so is it at all points of \triangle. Let now $E_{p}(f, w)<\infty$. To prove the continuity of $E_{p}(f, \cdot)$, it suffices to verify
that it is continuous at w. For this end, one assumes that $\left\{w_{n}\right\} \subset \triangle$ is convergent to w. Then there is a positive integer n_{0} such that as $n \geq n_{0}, 1-\left|w_{n}\right| \geq(1-|w|) / 2$ and thus, by (3.1),

$$
\frac{1-\left|\sigma_{w_{n}}(z)\right|^{2}}{1-\left|\sigma_{w}(z)\right|^{2}} \leq \frac{8}{(1-|w|)^{2}} .
$$

Accordingly,

$$
\left|E_{p}\left(f, w_{n}\right)-E_{p}(f, w)\right| \leq\left[1+\frac{8^{p}}{(1-|w|)^{2 p}}\right] E_{p}(f, w)<\infty
$$

An application of the Lebesgue Dominated Convergence Theorem implies that $E_{p}\left(f, w_{n}\right) \rightarrow E_{p}(f, w)$ as $n \rightarrow \infty$, i.e., $E_{p}(f, \cdot)$ is continuous at w. The proof is complete.

It is a classical result that for a Hilbert space X (certainly, including $\mathcal{D})$, the extreme points of $\left(B_{X},\|\cdot\|_{X}\right)$ are precisely those on the unit sphere:

$$
\left(S_{X},\|\cdot\|_{X}\right)=\left\{f \in X:\|f\|_{X}=1\right\} .
$$

The following (which seems surprising to us) says that this is also valid for the non-Hilbert space $\mathcal{Q}_{p, 0}$.
Theorem 3.3. Let $p \in(0, \infty)$ and $f \in \mathcal{Q}_{p, 0}$. Then f is an extreme point of $\left(B_{\mathcal{Q}_{p, 0}},\|\cdot\| \|_{\mathcal{Q}_{p}}\right)$ if and only if either $f \equiv \lambda$ with $|\lambda|=1$ or $f(0)=0$ with $\|f\|_{\mathcal{Q}_{p}}=1$.

Proof. For $p \in(0, \infty)$ let $\mathcal{Q}_{p, 0}^{0}=\left\{f \in \mathcal{Q}_{p, 0}: f(0)=0\right\}$. Notice that $\|f\|_{\mathcal{Q}_{p}}=$ $|f(0)|+\|f\|_{\mathcal{Q}_{p}}$ for $f \in \mathcal{Q}_{p, 0}$. So by Lemma 3.1, we need only to verify that a function $f \in \mathcal{Q}_{p, 0}^{0}$ is an extreme point of the unit closed ball $B_{\mathcal{Q}_{p, 0}^{0}}$ in $\mathcal{Q}_{p, 0}^{0}$ if and only if $\|f\|_{\mathcal{Q}_{p}}=1$.

The necessity is essentially trivial. The key is to argue the sufficiency. Now suppose that f lies in $\mathcal{Q}_{p, 0}^{0}$ with $\|f\|_{\mathcal{Q}_{p}}=1$. Since $\lim _{|w| \rightarrow 1} E_{p}(f, w)=0$, there is an $r \in(0,1)$ such that $\sup _{|w|>r} E_{p}(f, w) \leq 1 / 2$. Consequently, we have

$$
1=\|f\|_{\mathcal{Q}_{p}}=\sup _{w \in \triangle} E_{p}(f, w)=\max _{|w| \leq r} E_{p}(f, w) .
$$

Applying Lemma 3.2 to this f, we see that $E_{p}(f, \cdot)$ is continuous on the compact set $\{w \in \triangle:|w| \leq r\}$, and thus there exists a $w_{0} \in \triangle\left(\left|w_{0}\right| \leq r\right)$ to ensure $E_{p}\left(f, w_{0}\right)=1$.

Let g be any function in $\mathcal{Q}_{p, 0}^{0}$ such that $\|f+g\|_{\mathcal{Q}_{p}} \leq 1$ and $\|f-g\|_{\mathcal{Q}_{p}} \leq 1$. Then

$$
E_{p}\left(f, w_{0}\right)+E_{p}\left(g, w_{0}\right)=2^{-1}\left[E_{p}\left(f+g, w_{0}\right)+E_{p}\left(f-g, w_{0}\right)\right] \leq 1 .
$$

Therefore $E_{p}\left(g, w_{0}\right)=0$. This implies that $g=0$. We conclude that f is extreme.
The previous proof actually leads to a sufficient condition for $f \in \mathcal{Q}_{p}$ to be an extreme point of $\left(B_{\mathcal{Q}_{p}},\|\cdot\|_{\mathcal{Q}_{p}}\right)$.

Corollary 3.4. Let $p \in(0, \infty)$ and $f \in \mathcal{Q}_{p}$. If f is an extreme point of $\left(B_{\mathcal{Q}_{p}},\|\cdot\| \|_{\mathcal{Q}_{p}}\right)$ then $\|f\|_{\mathcal{Q}_{p}}=1$. Conversely, if either $f \equiv \lambda$ with $|\lambda|=1$ or there exists a point $w_{0} \in \triangle$ such that $E_{p}\left(f, w_{0}\right)=1$, then f is an extreme point of $\left(B_{\mathcal{Q}_{p}},\|\cdot\| \|_{\mathcal{Q}_{p}}\right)$.

Remark 3.5. a) Different norms produce different sets of the extreme points. This viewpoint is reflected by our Theorem 3.3, Cima-Wogen's Corollary 1 and Theorem 2 in [CiWo], and Axler-Shields' Theorem in [AxShi].
b) It would be interesting to give a full description of the extreme points of $\left(B_{\mathcal{Q}_{p}},\|\cdot\| \|_{\mathcal{Q}_{p}}\right)$.

4 Composition Semigroups

Let now $\left\{\psi_{t}: t \geq 0\right\}$ be a composition semigroup of the holomorphic self-maps ψ_{t} of \triangle, that is: $\psi_{t} \circ \psi_{s}=\psi_{t+s}$ for $t, s \geq 0 ; \psi_{0}(z)=z$; and $\psi_{t}(z)$ is continuous in two-parameters: t and z.

A composition semigroup always consists of univalent functions and all such semigroups can be classified in two classes Ψ_{0} and Ψ_{1}, according to whether the common fixed point of ψ_{t} is in \triangle or on $\partial \triangle$. Without loss of generality, one can assume that the fixed point is 0 for Ψ_{0} and 1 for Ψ_{1} (where the fixed point 1 is understood to be the Denjoy-Wolff point, namely, $\lim _{r \rightarrow 1} \psi_{t}(r)=1$ for any $\left\{\psi_{t}\right\} \in$ Ψ_{1}). Hence

- $\left\{\psi_{t}\right\} \in \Psi_{0}$ is of the form $\psi_{t}(z)=h^{-1}\left(e^{-c t} h(z)\right)$, where $\Re c \geq 0$ and $h \in \mathcal{H}$ with: $h(0)=0$ and $w \exp (-c t) \in h(\triangle)$ for each $w \in h(\triangle)$.
- $\left\{\psi_{t}\right\} \in \Psi_{1}$ has the form $\psi_{t}(z)=h^{-1}(c t+h(z))$, where $\Re c \geq 0, h \in \mathcal{H}$ with: $h(0)=0$ and $\Re\left(c^{-1}(z-1)^{2} h^{\prime}(z)\right) \geq 0$ for each $z \in \triangle$.

It is clear that each semigroup $\left\{\psi_{t}\right\}$ induces a one-parameter operator semigroup by composition $\left\{C_{\psi_{t}}\right\}: C_{\psi_{t}}(f)=f \circ \psi_{t}$. As in the \mathcal{D}-setting [Si3], more is true:
Theorem 4.1. Let $p \in(0, \infty)$. Then $\left\{C_{\psi_{t}}\right\}$ is strongly continuous on $\mathcal{Q}_{p, 0}$. Moreover (i) The infinitesimal generator of $\left\{C_{\psi_{t}}\right\}$ is given by $\Gamma(f)=G f^{\prime}$ and its domain is $\left\{f \in \mathcal{Q}_{p, 0}: G f^{\prime} \in \mathcal{Q}_{p, 0}\right\}$, where $G=-c\left(h / h^{\prime}\right)$ or c / h^{\prime} whenever $\left\{\psi_{t}\right\} \in \Psi_{0}$ or Ψ_{1}. (ii) $\left\{C_{\psi_{t}}\right\}$ is not continuous in the uniform topology unless it is trivial. (iii)
The growth bound $\omega=\lim _{t \rightarrow \infty} t^{-1} \log \left\|C_{\psi_{t}}\right\|=0$, where

$$
\left\|C_{\psi_{t}}\right\|=\inf \left\{M:\left\|C_{\psi_{t}}(f)\right\|\left\|_{\mathcal{Q}_{p}} \leq M\right\| f \|_{\mathcal{Q}_{p}}, \quad f \in \mathcal{Q}_{p, 0}\right\} .
$$

Proof. Notice that if a holomorphic map $\psi: \triangle \rightarrow \Delta$ is univalent then

$$
E_{p}(f \circ \psi, w) \leq \int_{\psi(\Delta)}\left|f^{\prime}(z)\right|^{2}\left[1-\left|\sigma_{\psi(w)}(z)\right|\right]^{p} d m(z)
$$

and so the composition $C_{\psi}(f)=f \circ \psi$ exists as a bounded linear operator on \mathcal{Q}_{p} with

$$
\begin{equation*}
\left\|C_{\psi}(f)\right\|_{\mathcal{Q}_{p}} \leq\left[1+\left(\frac{2^{p-1}}{\pi}\right)^{1 / 2} \log \frac{1+|\psi(0)|}{1-|\psi(0)|}\right]\|f\|_{\mathcal{Q}_{p}}=K_{1}\|f\|_{\mathcal{Q}_{p}} \tag{4.1}
\end{equation*}
$$

Moreover, if $f \in \mathcal{Q}_{p, 0}$ and $\epsilon>0$, then by Theorem 2.1, there exists a polynomial p_{n} such that $\left\|f f-p_{n}\right\|_{\mathcal{Q}_{p}}<\epsilon$. Thus (4.1) implies $\left\|C_{\psi}(f)-C_{\psi}\left(p_{n}\right)\right\|_{\mathcal{Q}_{p}}<\epsilon K_{1}$. Owing to $C_{\psi}\left(p_{n}\right) \in \mathcal{Q}_{p, 0}$, it follows that $C_{\psi}(f) \in \mathcal{Q}_{p, 0}$. Therefore $C_{\psi}: \mathcal{Q}_{p, 0} \rightarrow \mathcal{Q}_{p, 0}$ exists as a bounded operator with $\left\|C_{\psi}\right\| \leq K_{1}$.

In order to show that each semigroup $\left\{C_{\psi_{t}}\right\}$ is strongly continuous on $\mathcal{Q}_{p, 0}$, it suffices to verify that $\lim _{t \rightarrow 0}\left\|C_{\psi_{t}}(f)-f\right\|_{\mathcal{Q}_{p}}=0$ for every $f \in \mathcal{Q}_{p, 0}$ and every $\left\{\psi_{t}\right\} \in \Psi_{0} \cup \Psi_{1}$. Since the polynomials are dense in $\left(\mathcal{Q}_{p, 0},\|\cdot\|_{\mathcal{Q}_{p}}\right)$ but also (4.1) infers that

$$
\left\|C_{\psi_{t}}(f)-f\right\|_{\mathcal{Q}_{p}} \leq K_{1}\|f-P\|_{\mathcal{Q}_{p}}+\left\|C_{\psi_{t}}(P)-P\right\|_{\mathcal{Q}_{p}}
$$

holds for any polynomial P, it is enough, by the properties of Ψ_{0} and Ψ_{1}, to prove $\lim _{t \rightarrow 0}\left\|\psi_{t}-z\right\|_{\mathcal{Q}_{p}}=0$. While, this is a simple thing in that $\lim _{t \rightarrow 0}\left\|\psi_{t}-z\right\|_{\mathcal{D}}=0$ and $\left\|\psi_{t}-z\right\|_{\mathcal{Q}_{p}} \leq\left\|\psi_{t}-z\right\|_{\mathcal{D}}$.

The infinitesimal generator Γ of $C_{\psi_{t}}$ is determined by

$$
\Gamma(f)(z)=\left.\frac{\partial C_{\psi_{t}}(f)(z)}{\partial t}\right|_{t=0}=G(z) f^{\prime}(z)
$$

where G is the generator of $\left\{\psi_{t}\right\}$:

$$
G=\left\{\begin{array}{cl}
\frac{-c h}{h^{\prime}}, & \left\{\psi_{t}\right\} \in \Phi_{0} \\
\frac{c}{h^{\prime}}, & \left\{\psi_{t}\right\} \in \Phi_{1} .
\end{array}\right.
$$

By definition, the domain of Γ is the following set:

$$
D(\Gamma)=\left\{f \in \mathcal{Q}_{p, 0}: \lim _{t \rightarrow 0} \frac{C_{\psi_{t}}(f)-f}{t} \quad \text { exists in } \mathcal{Q}_{p, 0}\right\} .
$$

On the one hand, if $f \in D(\Gamma)$ then some calculations involving Ψ_{0} and Ψ_{1} deduce that f meets the requirements of the domain stated in Theorem 4.1 (ii). On the other hand, if f is in $\mathcal{Q}_{p, 0}$ with $g=G f^{\prime} \in \mathcal{Q}_{p, 0}$ and G being as above, then for $t>0$ one has

$$
\frac{1}{t} \int_{0}^{t} C_{\psi_{s}}(g) d s=\frac{C_{\psi_{t}}(f)-f}{t}
$$

Because $\left\{C_{\psi_{t}}\right\}$ is a strongly continuous semigroup, the left-hand side of the last equation has a limit g as $t \rightarrow 0$, with respect to $\left\|\|\cdot\|_{\mathcal{Q}_{p}}\right.$. Accordingly, $f \in D(\Gamma)$.

Next, observe that the strongly continuity of $\left\{C_{\psi_{t}}\right\}$ is equivalent to the boundedness of $\Gamma: \Gamma(f)=G f^{\prime}$ (cf. [Si4, p.231]). So if Γ is bounded on $\mathcal{Q}_{p, 0}$ then $G f^{\prime} \in \mathcal{Q}_{p, 0}$ when $f \in \mathcal{Q}_{p, 0}$. In particular,

$$
\begin{equation*}
\left\|\Gamma\left(f_{n, p}\right)\right\|\left\|_{\mathcal{Q}_{p}} \leq\right\| \Gamma\left\|\left\|\left\|f_{n, p}\right\|_{\mathcal{Q}_{p}},\right.\right. \tag{4.2}
\end{equation*}
$$

where $\|\Gamma\|$ means the norm of operator Γ, and for each integer $n \geq 1$,

$$
f_{n, p}(z)= \begin{cases}z^{n}, & p \geq 1 \\ \frac{z^{n}}{n}, & p \in(0,1) .\end{cases}
$$

Now consider $p \in(0,1)$. Clearly, $\left\|f_{n, p}\right\|_{\mathcal{Q}_{p}} \leq 2$. If $G(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, then through (4.2) and some elementary calculations, we can find out a constant $K_{2}>0$ depending only on $p \in(0,1)$ such that

$$
\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}(k+n-1)^{1-p} \leq K_{2}\|\Gamma\| .
$$

This derives all $a_{k}=0$, and so $G=0$ which is impossible.
The \mathcal{B}_{0} and VMOA settings may be similarly treated, using the facts: $\mathcal{Q}_{1,0}=$ $V M O A$ and $\mathcal{Q}_{p, 0}=\mathcal{B}_{0}$ for $p>1$.

Finally, let us come to the proof of $\omega=0$. Since all $C_{\psi_{t}}$ keep 1 unchanged, one always has $\left\|C_{\psi_{t}}\right\| \geq 1$ and so $\omega \geq 0$. Further, if $\left\{\psi_{t}\right\} \in \Psi_{0}$, then $\omega=0$ in that $\psi_{t}(0)=0$ and thus $\left\|C_{\psi_{t}}\right\| \leq 1$ (thanks to the constant K_{1} above). However, if $\left\{\psi_{t}\right\} \in \Psi_{1}$ then by [Si3,(3.3)],

$$
\limsup _{t \rightarrow \infty} \frac{\log \log \left[1 /\left(1-\left|\psi_{t}(0)\right|\right)\right]}{t} \leq 0
$$

which, together with $\left\|C_{\psi_{t}}\right\| \leq K_{1}$, implies $\omega \leq 0$ and hence $\omega=0$. The proof is complete.

Remark 4.2. a) $\lambda-\Gamma$ is invertible on $\mathcal{Q}_{p, 0}$ whenever $\Re \lambda>0$, and

$$
(\lambda-\Gamma)^{-1}(f)=\int_{0}^{\infty} e^{-\lambda t} C_{\psi_{t}}(f) d t
$$

In addition, the spectral radius of $C_{\psi_{t}}$ (acting on $\mathcal{Q}_{p, 0}$) is 1 .
b) Suppose $\left\{\psi_{t}\right\} \in \Psi_{0}$ and n is a natural number. Then, as in [Si3, Corollary 2], the semigroup $S_{t}(f)=\left(\psi_{t}\right)^{n} C_{\psi_{t}}(f)$ is strongly continuous on $\mathcal{Q}_{p, 0}$ with generator

$$
\Gamma_{n}(f)(z)=-c\left[h(z) / h^{\prime}(z)\right] f^{\prime}(z)-c n\left[h(z) /\left(z h^{\prime}(z)\right)\right] f(z) .
$$

Acknowledgment. J. Xiao is grateful to S. Axler, M. Essén and A. Siskakis for interesting discussions.

References

[An] J. M. Anderson, Bloch functions: the basic theory, S.C. Power(ed.), Operators and Function Theory, 1-17.
[ArFi] J. Arazy and S. Fisher, The uniqueness of the Dirichlet space among Möbius invariant Hilbert spaces, Illi. J. Math. 29(1985), 449-462.
[ArFiPe] J. Arazy, S. Fisher and J. Peetre, Möbius invariant function spaces, J. reine angew. Math. 363(1985), 110-145.
[AuLa] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications, Pitman Research Notes in Math. 305, Longman Scientific\& Technical Harlow (1994), 136-146.
[AuXiZh] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and $U B C$, Analysis, 15(1995), 101-121.
[AxSha] S. Axler and J. H. Shapiro, Putnam's theorem, Alexander's spectral area estimate, and VMO, Math. Ann. 271(1985), 161-183.
[AxShi] S. Axler and A. Shields, Extreme points in VMO and BMO, Indiana Univ. Math. J. 31(1982), 1-6.
$[\mathrm{CaCu}]$ J. J. Carmona and J. Cufí, On the distance of an analytic function to VMO, J. London Math. Soc.(2) 34(1986), 52-66.
[CiWo] J. Cima and W. Wogen, Extreme points of the unit ball of the Bloch space \mathcal{B}_{0}, Michigan Math. J. 25(1978), 213-222.
[G] J. Garnett, Bounded analytic functions, Academic Press 1981.
[EsXi] M. Essén and J. Xiao, Some results on Q_{p} spaces, $0<p<1$, J. reine angew. Math., 485(1997), 173-195.
[NiXi] A. Nicolau and J. Xiao, Bounded functions in Möbius invariant Dirichlet spaces, J. Funct. Anal., 150(1997), 383-425.
[Si1] A. Siskakis, Composition semigroups and the Cesàro operator on H^{p}, J. London. Math. Soc.(2) 36(1987), 153-164.
[Si2] A. Siskakis, The Cesàro operator is bounded on H^{1}, Proc. Amer. Math. 110(1990), 461-462.
[Si3] A. Siskakis, Semigroups of composition operators on the Dirichlet space, Results Math. 30(1996), 165-173.
[Si4] A. Siskakis, Semigroups of composition operators on spaces of analytic functions, a review, Contemp. Math. 213(1998), 229-252.
[SmZh] W. Smith and R. Zhao, Composition operators mapping into the Q_{p} spaces, Analysis, 17(1997), 239-263.
[StSt] D. A. Stegenga and K. Stephenson, Sharp geometric estimates of the distance to VMOA, Contemp. Math. 137(1992), 421-432.

K. J. Wirths
Institute of Analysis
TU-Braunschweig
D-38106 Braunschweig,Germany
E-mail: kjwirths@ws.rz.tu-bs.de
J. Xiao
Department of Mathematics and Statistics
Concordia University
1455 de Maisonneuve Blvd. West
H3G 1M8 Montreal, Qc
Canada
E-mail : jxiao@discrete.concordia.CA

[^0]: *Project supported by the AvH-Foundation of Germany as well as the NNSF (19771006) and SEC of China.

 Received by the editors February 2000.
 Communicated by J. Delanghe.
 1991 Mathematics Subject Classification : 30D45, 32A37, 46E15, 47B33.
 Key words and phrases : $\mathcal{Q}_{p, 0}$, Möbius invariance, polynomial density, extreme points, composition semigroups.

