Recognizing $Q_{p,0}$ Functions per Dirichlet Space Structure

K.J. Wirths J. Xiao^{*}

Abstract

Under $p \in (0, \infty)$ and Möbius map $\sigma_w(z) = (w-z)/(1-\bar{w}z)$, a holomorphic function on the unit disk \triangle is said to be of $\mathcal{Q}_{p,0}$ class if $\lim_{|w|\to 1} E_p(f,w) = 0$, where

$$E_p(f,w) = \int_{\Delta} |f'(z)|^2 [1 - |\sigma_w(z)|^2]^p dm(z),$$

and where dm means the element of the Lebesgue area measure on \triangle . In particular, $\mathcal{Q}_{p,0} = \mathcal{B}_0$, the little Bloch space for all $p \in (1, \infty)$, $\mathcal{Q}_{1,0} = VMOA$ and $\mathcal{Q}_{p,0}$ contains \mathcal{D} , the Dirichlet space. Motivated by the linear structure of \mathcal{D} , this paper is devoted to: first show that $\mathcal{Q}_{p,0}$ is a Möbius invariant space in the sense of Arazy-Fisher-Peetre; secondly identify $\mathcal{Q}_{p,0}$ with the closure of all polynomials; thirdly characterize the extreme points of the unit closed ball of $\mathcal{Q}_{p,0}$; and finally investigate the semigroups of the composition operators on $\mathcal{Q}_{p,0}$.

Introduction

Let \triangle and $\partial \triangle$ be the unit disk and the unit circle in the finite complex plane \mathbb{C} . Denote by \mathcal{H} the set of functions holomorphic on \triangle , endowed with the topology of the compact-open (i.e. the uniform convergence on compact subsets of \triangle). The

Received by the editors $\,$ February 2000.

1991 Mathematics Subject Classification : 30D45, 32A37, 46E15, 47B33.

Key words and phrases : $Q_{p,0}$, Möbius invariance, polynomial density, extreme points, composition semigroups.

Bull. Belg. Math. Soc. 8 (2001), 47-59

^{*}Project supported by the AvH-Foundation of Germany as well as the NNSF (19771006) and SEC of China.

Communicated by J. Delanghe.

symbol $Aut(\triangle)$ is employed to represent the group of all conformal automorphisms of \triangle , i.e. all Möbius maps of the form $\lambda \sigma_a$, where $\lambda \in \partial \triangle$, $a \in \triangle$ and

$$\sigma_a(z) = \frac{a-z}{1-\bar{a}z}$$

is the symmetry interchanging 0 and a. The Bloch space \mathcal{B} is the class of all $f \in \mathcal{H}$ with the semi-norm

$$||f||_{\mathcal{B}} = \sup_{z \in \Delta} (1 - |z|^2) |f'(z)| < \infty.$$

Moreover, the little Bloch space \mathcal{B}_0 is the family of functions $f \in \mathcal{H}$ satisfying

$$\lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0.$$

Recently, it has been found that \mathcal{B} and \mathcal{B}_0 can be embedded into two new function families, i.e., the so-called \mathcal{Q}_p and $\mathcal{Q}_{p,0}$, respectively (cf. [AuLa, AuXiZh, EsXi, NiXi]). Recall that for $p \in (0, \infty)$, \mathcal{Q}_p resp. $\mathcal{Q}_{p,0}$ is the class of functions $f \in \mathcal{H}$ with

$$||f||_{\mathcal{Q}_p} = \sup_{w \in \Delta} [E_p(f, w)]^{\frac{1}{2}} < \infty \quad resp. \quad \lim_{|w| \to 1} E_p(f, w) = 0.$$

Here and throughout this paper,

$$E_p(f,w) = \int_{\Delta} |f'(z)|^2 [1 - |\sigma_w(z)|^2]^p dm(z),$$

where dm stands for the element of the Lebesgue area measure on \triangle . With respect to

$$|||f|||_{\mathcal{Q}_p} = |f(0)| + ||f||_{\mathcal{Q}_p}$$

 \mathcal{Q}_p becomes a normed linear space and has $\mathcal{Q}_{p,0}$ as its subspace. Of particular interest is to point out that if $p \in (1,\infty)$ or p = 1 then $\mathcal{Q}_p = \mathcal{B}$; $\mathcal{Q}_{p,0} = \mathcal{B}_0$ or $\mathcal{Q}_p = BMOA$; $\mathcal{Q}_{p,0} = VMOA$.

Let \mathcal{D} be the classical Dirichlet space consisting of functions $f \in \mathcal{H}$ with

$$||f||_{\mathcal{D}} = \left[\int_{\Delta} |f'(z)|^2 dm(z)\right]^{\frac{1}{2}} < \infty.$$

By some simple calculations involving power series, it is easy to establish that for $f \in \mathcal{H}$ and $w \in \Delta$,

$$F_p(f,w) \le E_p(f,w) \le 2^p F_p(f,w),$$

where

$$F_p(f,w) = p \int_0^1 (1-r)^{p-1} \left[\int_{|z| < r} |(f \circ \sigma_w)'(z)|^2 dm(z) \right] dr.$$

An important observation is that $(\mathcal{Q}_{p,0}, \|\cdot\|_{\mathcal{Q}_p})$ decreases to $(\mathcal{D}, \|\cdot\|_{\mathcal{D}})$ as $p \searrow 0$. In fact, if $f \in \mathcal{D}$ then for arbitrary $\epsilon > 0$, there is a $\delta \in (0, 1)$ such that

$$\int_{|z|>\delta} |f'(z)|^2 dm(z) < \epsilon; \quad \int_{\delta}^1 (1-r)^{p-1} dr < \epsilon.$$

Thus,

$$\lim_{|w| \to 1} E_p(f, w) \leq \lim_{|w| \to 1} 2^p F_p(f, w)$$

$$\leq p 2^p \lim_{|w| \to 1} \int_0^\delta (1 - r)^{p-1} \left[\int_{|z| < r} |(f \circ \sigma_w)'(z)|^2 dm(z) \right] dr + \epsilon p 2^p ||f||_{\mathcal{D}}^2$$

$$\leq \left[2^p (1 + p ||f||_{\mathcal{D}}^2) \right] \epsilon,$$

which implies $f \in \mathcal{Q}_{p,0}$. On the other hand, the measure $p(1-r)^{p-1}dr$ (defined on [0,1]) converges weak-star to the point mass at 1 as $p \searrow 0$. Since $\int_{|z| < r} |(f \circ \sigma_w)'(z)|^2 dm(z)$ is an increasing function of r, we have

$$\lim_{p \to 0} E_p(f, w) = \lim_{p \to 0} F_p(f, w) = \sup_{r \in (0,1)} \int_{|z| < r} |(f \circ \sigma_w)'(z)|^2 dm(z).$$

This leads to: \mathcal{D} consists of those functions for which there is a constant K(f) > 0(depending on f) with $||f||_{\mathcal{Q}_p} \leq K(f)$ for all p > 0 and so, can be viewed as a limit space of $\mathcal{Q}_{p,0}$ as $p \searrow 0$.

The preceding observation appears to induce an idea: in order to solve problems regarding $\mathcal{Q}_{p,0}$, we may treat $\mathcal{Q}_{p,0}$ as a 'kind' of Dirichlet space and use the methods of functional analysis. This viewpoint has already be testified by [NiXi] where the closed graph theorem is an effective tool to discuss interpolation and projection problems from $\mathcal{Q}_{p,0}$. In the present article, we shall study the linear \mathcal{D} -like structure of $\mathcal{Q}_{p,0}$ in some details. The material we cover is as follows: 1) Möbius invariance of $\mathcal{Q}_{p,0}$ in the strict sense of Arazy-Fisher-Peetre; 2) density of the polynomials in $\mathcal{Q}_{p,0}$; 3) characterization of the extreme points in the unit ball of $\mathcal{Q}_{p,0}$; 4) semigroups of the composition operators on $\mathcal{Q}_{p,0}$.

1 Möbius Invariance

Since the norm $\| \cdot \|_{\mathcal{Q}_p}$ and the semi-norm $\| \cdot \|_{\mathcal{Q}_p}$ differ by one nonnegative constant, the first thing to do is to see how the semi-norm $\| \cdot \|_{\mathcal{Q}_p}$ affects $\mathcal{Q}_{p,0}$. We shall find that all the $\mathcal{Q}_{p,0}$ spaces are Möbius invariant in the sense of Arazy-Fisher-Peetre (cf.[ArFiPe]).

A semi-normed linear space $(X, \|\cdot\|_X)$ is called a *Möbius invariant space* provided the following conditions hold:

- $X \subset \mathcal{B}$ with $\|\cdot\|_X \leq K \|\cdot\|_{\mathcal{B}}$ for some constant K > 0;
- X is complete under the semi-norm $\|\cdot\|_X$;

• $Aut(\triangle)$ -invariance: for each $\sigma \in Aut(\triangle)$ and each $f \in X$ the composition $C_{\sigma}(f) = f \circ \sigma$ belongs to X and $\|C_{\sigma}(f)\|_{X} = \|f\|_{X}$;

• Continuity of $Aut(\triangle)$ -action: for every $f \in X$ the map $\sigma \to C_{\sigma}(f)$ is continuous from $Aut(\triangle)$ to X in the semi-norm $\|\cdot\|_X$.

It is well-known that \mathcal{B}_0 is Möbius invariant, and according to the above definition, \mathcal{B} is not so in that \mathcal{B} does not satisfy the strict continuity of $Aut(\triangle)$ -action. There are some other Möbius invariant spaces such as VMOA and the Besov *p*space B_p . In [ArFi] it is proved that the unique Möbius invariant Hilbert space is $(\mathcal{D}, \|\cdot\|_{\mathcal{D}})$. Nevertheless, as to a Möbius invariant Banach space which lies between $(\mathcal{D}, \|\cdot\|_{\mathcal{D}})$ and $(\mathcal{B}_0, \|\cdot\|_{\mathcal{B}})$, we have

Theorem 1.1. Let $p \in (0, \infty)$. Then $(\mathcal{Q}_{p,0}, \|\cdot\|_{\mathcal{Q}_p})$ is a Möbius invariant space.

Proof. Observe first that for any $f \in \mathcal{Q}_p$,

$$(1 - |z|^2)|f'(z)| \le \left(\frac{2^{p+1}}{\pi}\right)^{\frac{1}{2}} ||f||_{\mathcal{Q}_p}, \quad z \in \Delta.$$
(1.1)

Thus $\mathcal{Q}_{p,0} \subset \mathcal{Q}_p \subset \mathcal{B}$ with $\|\cdot\|_{\mathcal{B}} \leq K \|\cdot\|_{\mathcal{Q}_p}$ where $K = (2^{p+1}/\pi)^{\frac{1}{2}}$.

Assume next that $\{f_n\}$ is a Cauchy sequence in $(\mathcal{Q}_{p,0}, \|\cdot\|_{\mathcal{Q}_p})$. Then for arbitrary $\epsilon > 0$ there is a positive integer n_0 such that as $m, n \ge n_0$, $\|f_m - f_n\|_{\mathcal{Q}_p} < \epsilon$. By the principle of normal family and (1.1), there exists some function $f \in \mathcal{Q}_p$ such that $\|f_{n_0} - f\|_{\mathcal{Q}_p} \le \epsilon$. Since $f_{n_0} \in \mathcal{Q}_{p,0}$, it follows from the definition of $\mathcal{Q}_{p,0}$ that $f \in \mathcal{Q}_{p,0}$. So $(\mathcal{Q}_{p,0}, \|\cdot\|_{\mathcal{Q}_p})$ is complete.

Because $E_p(f \circ \sigma, w) = E_p(f, \sigma(w))$, each $\mathcal{Q}_{p,0}$ is $Aut(\Delta)$ -invariant: $||f \circ \sigma||_{\mathcal{Q}_p} = ||f||_{\mathcal{Q}_p}$ for all $f \in \mathcal{Q}_{p,0}$ and $\sigma \in Aut(\Delta)$.

To prove continuity of $Aut(\Delta)$ -action on $\mathcal{Q}_{p,0}$, it suffices, by homogeneity, to verify that if $a \to 0$ in Δ , then $f(-\sigma_a) \to f$ in $\mathcal{Q}_{p,0}$ whenever $f \in \mathcal{Q}_{p,0}$. Suppose $f \in \mathcal{Q}_{p,0}$, thus, for every $\epsilon > 0$ there exists a $\delta_1 \in (0, 1)$ such that

$$\sup_{|w| > \delta_1} E_p(f, w) < \epsilon.$$
(1.2)

Without loss of generality, one may assume |a| < 1/2. Then there is a $\delta_2 \geq \delta_1$ such that as $|w| > \delta_2$ one has $|\sigma_a(w)| > \delta_1$ and by (1.2), $\sup_{|w| > \delta_2} E_p(f, \sigma_a(w)) < \epsilon$. Hence

$$\sup_{|w|>\delta_2} E_p(f \circ \sigma_a - f, w) < 4\epsilon.$$
(1.3)

In what follows, let $|w| \leq \delta_2$, and for $r \in (0, 1)$ set

$$E_p(f \circ \sigma_a - f, w) = \left(\int_{|z| \le r} + \int_{|z| > r} \right) (\cdots) dm(z) = I_1(r, a) + I_2(r, a).$$

Concerning $I_2(r, a)$, we apply the following basic inequality $|\sigma_a(w)| \leq (|a| + |w|)/(1 + |a||w|)$ to get that $|\sigma_a(w)| < \delta_3 = (1 + 2\delta_2)/(2 + \delta_2)$ for $|w| \leq \delta_2$ and $|a| \leq 1/2$. Since $f \in \mathcal{Q}_{p,0}$, f obeys $E_p(f, 0) < \infty$, and for the above $\epsilon > 0$ there is an $r_0 \in (0, 1)$ such that

$$\int_{|z|>r_0} |f'(z)|^2 (1-|z|^2)^p dm(z) < \epsilon.$$

Furthermore, some elementary calculations imply that for $r^2 = (2 + r_0^2)/3$,

$$I_{2}(r,a) \leq \left[\frac{2^{2+p}}{(1-\delta_{2})^{p}} + \frac{2^{2+p}}{(1-\delta_{3})^{p}}\right] \int_{|z|>r_{0}} |f'(z)|^{2} (1-|z|^{2})^{p} dm(z)$$

$$< \epsilon \left[\frac{2^{2+p}}{(1-\delta_{2})^{p}} + \frac{2^{2+p}}{(1-\delta_{3})^{p}}\right].$$
(1.4)

However, it is obvious that $\lim_{a\to 0} I_1(r,a) = 0$ for each $r \in (0,1)$. Therefore, from (1.3) and (1.4) we derive that $\lim_{a\to 0} ||f(-\sigma_a) - f||_{\mathcal{Q}_p} = 0$. This concludes the proof.

Due to Theorem 1.1, those general properties of Möbius invariant spaces (shown in Section 1 of [ArFiPe]) are valid for $Q_{p,0}$. Specially, we have

Corollary 1.2. Let $p \in (0, \infty)$. Then the $Aut(\triangle)$ -invariant dual $\mathcal{Q}_{p,0}^*$ consists of all $f \in \mathcal{H}$ obeying $\sup\{|\langle f, g \rangle| : g \in \mathcal{Q}_{p,0}, \|g\|_{\mathcal{Q}_p} \leq 1\} < \infty$, where

$$\langle f,g\rangle = \int_{\Delta} f'(z)\overline{g'(z)}dm(z)$$

is the $Aut(\triangle)$ -invariant pair.

Remark 1.3 a) Each \mathcal{Q}_p has a weak continuity of $Aut(\Delta)$ -action: for $f \in \mathcal{Q}_p$ the map $\sigma \to C_{\sigma}(f)$ is continuous from $Aut(\Delta)$ to \mathcal{Q}_p with respect to the compact-open topology. For a discussion of the cases $p \geq 1$, refer to [ArFiPe].

b) The Hahn-Banach theorem can be used to establish that the second $Aut(\triangle)$ invariant dual of $\mathcal{Q}_{p,0}$ is isomorphic to \mathcal{Q}_p under $\langle \cdot, \cdot \rangle$. It is worth pointing out that \mathcal{D}^* is isomorphic to \mathcal{D} , moreover if p = 1 resp. p > 1 then $\mathcal{Q}_{p,0}^*$ isomorphic to the Hardy-Sobolev space \mathcal{W} resp. the Besov space \mathcal{M} , which consists of all $f \in \mathcal{H}$ obeying

$$\|f\|_{\mathcal{W}} = \int_{\partial \bigtriangleup} |f'(z)| |dz| < \infty \quad resp. \quad \|f\|_{\mathcal{M}} = \int_{\bigtriangleup} [|f'(z)| + |f''(z)|] dm(z) < \infty.$$

It would be interesting to provide a function-theoretic characterization of $\mathcal{Q}_{p,0}^*$ similar to that of \mathcal{D} , \mathcal{W} or \mathcal{M} .

2 Polynomial Density

Although Theorem 1.1 actually tells us that \mathcal{Q}_p and $\mathcal{Q}_{p,0}$ are Banach spaces under $\| \cdot \|_{\mathcal{Q}_p}$, since $\mathcal{Q}_{p,0}$ contains all polynomials, it is worth to consider the density of \mathcal{P} , the class of the polynomials, and hence to imply that $\mathcal{Q}_{p,0}$ is a closed subspace of \mathcal{Q}_p with respect to the norm $\| \cdot \|_{\mathcal{Q}_p}$.

Theorem 2.1. Let $p \in (0, \infty)$ and let $f \in \mathcal{Q}_p$ with $f_r(z) = f(rz)$ for $r \in (0, 1)$. Then the following are equivalent: (i) $f \in \mathcal{Q}_{p,0}$; (ii) $\lim_{r\to 1} \|f_r - f\|_{\mathcal{Q}_p} = 0$. (iii) f

belongs to the closure of \mathcal{P} in the norm $\|\cdot\|_{\mathcal{Q}_p}$. (iv) For any $\epsilon > 0$ there is a $g \in \mathcal{Q}_{p,0}$ such that $\|\|g - f\|\|_{\mathcal{Q}_p} < \epsilon$.

Proof. Since the implications: (ii) \Rightarrow (iii),(iii) \Rightarrow (iv) and (iv) \Rightarrow (i) are nearly obvious, it suffices to verify the implication: (i) \Rightarrow (ii). Let $f \in Q_p$. An application of Poisson's formula to f_r gives

$$f_r(z) = \frac{1}{2\pi} \int_{\partial \triangle} f(z\zeta) \frac{1 - r^2}{|1 - r\overline{\zeta}|^2} |d\zeta|.$$

$$(2.1)$$

Derivating both sides of (2.1) with respect to z, integrating and using Minkowski's inequality, one has

$$[E_p(f_r, w)]^{\frac{1}{2}} \leq \frac{1}{2\pi} \int_{\partial \Delta} \left[\int_{\Delta} |f'(z\zeta)|^2 [1 - |\sigma_w(z)|]^p dm(z) \right]^{\frac{1}{2}} \frac{1 - r^2}{|1 - r\overline{\zeta}|^2} |d\zeta| = \frac{1}{2\pi} \int_{\partial \Delta} [E_p(f, \overline{\zeta}w)]^{\frac{1}{2}} \frac{1 - r^2}{|1 - r\overline{\zeta}|^2} |d\zeta|.$$
(2.2)

Consequently, $|||f_r|||_{\mathcal{Q}_p} \leq |||f|||_{\mathcal{Q}_p}$. Furthermore, if $f \in \mathcal{Q}_{p,0}$, then by (2.2), $\lim_{|w|\to 1} E_p(f_r - f, w) = 0$ holds for a fixed $r \in (0, 1)$. Also, for a given $\eta \in (0, 1)$ it is not hard (by dividing the integral into two parts) to determine $\lim_{r\to 1} \sup_{|w|\leq \eta} E_p(f_r - f, w) = 0$. Summing up, we see that $\lim_{r\to 1} |||f_r - f|||_{\mathcal{Q}_p} = 0$ and hence (i) \Rightarrow (ii) holds.

Corollary 2.2. Let $p \in (0, \infty)$. Then $(\mathcal{Q}_{p,0}, \|\cdot\|_{\mathcal{Q}_p})$ is a separable closed subspace of $(\mathcal{Q}_p, \|\cdot\|_{\mathcal{Q}_p})$.

As for $f \in \mathcal{Q}_p$, denote by $d(f, \mathcal{Q}_{p,0})$ the distance of f to $\mathcal{Q}_{p,0}$, namely, $d(f, \mathcal{Q}_{p,0}) = \inf_{h \in \mathcal{Q}_{p,0}} ||f - h||_{\mathcal{Q}_p}$. Meanwhile, put

$$\delta_{\mathcal{Q}_p}(f) = \limsup_{|w| \to 1} \left[E_p(f, w) \right]^{\frac{1}{2}}.$$

The argument for Theorem 2.1 can infer the following result.

Corollary 2.3. Let $p \in (0, \infty)$ and let $f \in \mathcal{Q}_p$. Then

$$\delta_{\mathcal{Q}_p}(f) \le d(f, \mathcal{Q}_{p,0}) \le 2\delta_{\mathcal{Q}_p}(f).$$
(2.3)

Proof. On the one hand, since $\lim_{|w|\to 1} E_p(h, w) = 0$ for any $h \in \mathcal{Q}_{p,0}$, by the triangle inequality of $\|\cdot\|_{\mathcal{Q}_p}$ one has

$$[E_p(f,w)]^{\frac{1}{2}} \le [E_p(f-h,w)]^{\frac{1}{2}} + [E_p(h,w)]^{\frac{1}{2}};$$

consequently,

$$\delta_{\mathcal{Q}_p}(f) \le \sup_{w \in \Delta} [E_p(f-h,w)]^{\frac{1}{2}}$$

for every $h \in \mathcal{Q}_{p,0}$. In other words, the left-hand side estimate of (2.3) holds.

On the other hand, if $f \in \mathcal{Q}_p$ with $f_r(z) = f(rz), r \in (0, 1)$, then $d(f, \mathcal{Q}_{p,0}) \leq ||f - f_r||_{\mathcal{Q}_p}$, owing to $f_r \in \mathcal{Q}_{p,0}$. From the proof of Theorem 2.1 it is seen that for arbitrary $\epsilon > 0$ and a fixed $\eta \in (0, 1)$, there is an $r_0 \in (0, 1)$ such that as $r \in [r_0, 1)$,

$$\left[E_p(f - f_r, w)\right]^{1/2} \le (1 - \eta)^{-p} \left[E_p(f - f_r, 0)\right]^{1/2} < \epsilon.$$

Hence by (2.2),

$$d(f, \mathcal{Q}_{p,0}) \le \|f - f_r\|_{\mathcal{Q}_p} \le \epsilon + \sup_{|w| \ge \eta} \left[E_p(f - f_r, w) \right]^{1/2} \le \epsilon + 2 \sup_{|w| \ge \eta} \left[E_p(f, w) \right]^{1/2}.$$

This implies that the right-hand side of (2.3) is true.

Remark 2.4. a) Theorem 2.1 is an extension of the corresponding results on \mathcal{B}_0 and VMOA. See also [An, Theorem 1; Si4, p.236].

b) For (analytic and geometric) estimates of the distance to VMOA (related to Corollary 2.3), see also [AxSha, CaCu, StSt].

c) In the case $p \in (0, 1)$, the density of the polynomials in $\mathcal{Q}_{p,0}$ doesn't mean that the disc algebra \mathcal{A} (consisting of functions $f \in \mathcal{H}$ continuous on $\partial \Delta$) is a subset of $\mathcal{Q}_{p,0}$. Indeed, let $f_1(z) = \sum_{k=0}^{\infty} 2^{-k(1-p)/2} z^{2^k}$. Then from [AuXiZh, Theorem 6] it follows that $f_1 \in \mathcal{A} \setminus \mathcal{Q}_p$. This phenomenon distinguishes the cases $p \in (0, 1)$ from the cases $p \in [1, \infty)$.

d) An example of an unbounded function in $\mathcal{Q}_{p,0}$ is easily constructed by using the Riemann mapping theorem. Let Ω be the inside domain of the curve $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3$, where

$$\begin{cases} \gamma_1 = \{(x, y) \in \mathbb{C} : x^2 + y^2 = 1, x \in [-1, 0]\}; \\ \gamma_2 = \{(x, y) \in \mathbb{C} : y - e^{-x} = 0, x \in [0, \infty)\}; \\ \gamma_3 = \{(x, y) \in \mathbb{C} : y + e^{-x} = 0, x \in [0, \infty)\}. \end{cases}$$

Let f_2 be a conformal map of \triangle onto Ω . Clearly, f_2 is unbounded, but in $\mathcal{D} \subset \mathcal{Q}_{p,0}$, owing to $||f_2||_{\mathcal{D}}^2 = (\pi^2 + 4)/2$.

3 Extreme Points

Given a norm $\|\cdot\|_X$ on a Banach space X. In studying $(X, \|\cdot\|_X)$, one problem of considerable interest is that of characterizing the geometry of the unit closed ball

$$(B_X, \| \cdot \|_X) = \{ f \in X : \| f \|_X \le 1 \}.$$

In particular, we would like to find the extreme points of $(B_X, || \cdot ||_X)$, namely, the points in $(B_X, || \cdot ||_X)$ which are not a proper convex combination of two different points of $(B_X, || \cdot ||_X)$. The problem addressed here deals with the extreme points of $(B_{\mathcal{Q}_{p,0}}, || \cdot ||_{\mathcal{Q}_p})$ in order to better understand the linear structure of $\mathcal{Q}_{p,0}$.

The following result is the Proposition 1 in [CiWo].

Lemma 3.1. Let X and Y be Banach spaces with norms $||| \cdot |||_X$ and $||| \cdot |||_Y$ respectively. Let $N : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be a function so that $(x, y) \to N(|x|, |y|)$ is a norm on \mathbb{R}^2 . Define a norm $||| \cdot ||_Z$ on $Z = X \oplus Y$ by

$$|||x \oplus y|||_Z = N(|||x|||_X, |||y|||_Y), \quad for \quad x \in X, \quad y \in Y.$$

Then $x \oplus y$ is an extreme point of $(B_Z, ||| \cdot |||_Z)$ if and only if the following three conditions hold: (i) x is an extreme point of the closed ball of radius $|||x|||_X$ of X. (ii) y is an extreme point of the closed ball of radius $|||y|||_Y$ of Y. (iii) $(|||x|||_X, |||y|||_Y)$ is an extreme point of the unit closed ball of \mathbb{R}^2 with the norm N.

Before stating our result, we still need another useful lemma whose hyperbolic version is presented in [SmZh, Lemma 2.3].

Lemma 3.2. Let $p \in (0, \infty)$ and $f \in \mathcal{H}$. If $E_p(f, w)$ is finite for some $w \in \Delta$, then $E_p(f, \cdot)$ is a continuous function on Δ .

Proof. It is easy to figure out that for three points $z, w_1, w_2 \in \Delta$,

$$\frac{(1-|w_1)(1-|w_2|)}{4} \le \frac{1-|\sigma_{w_1}(z)|^2}{1-|\sigma_{w_2}(z)|^2} \le \frac{4}{(1-|w_1)(1-|w_2|)}.$$
(3.1)

This indicates that if $E_p(f, \cdot)$ is finite at some point of \triangle then so is it at all points of \triangle . Let now $E_p(f, w) < \infty$. To prove the continuity of $E_p(f, \cdot)$, it suffices to verify

that it is continuous at w. For this end, one assumes that $\{w_n\} \subset \Delta$ is convergent to w. Then there is a positive integer n_0 such that as $n \ge n_0$, $1 - |w_n| \ge (1 - |w|)/2$ and thus, by (3.1),

$$\frac{1 - |\sigma_{w_n}(z)|^2}{1 - |\sigma_w(z)|^2} \le \frac{8}{(1 - |w|)^2}$$

Accordingly,

$$|E_p(f, w_n) - E_p(f, w)| \le \left[1 + \frac{8^p}{(1 - |w|)^{2p}}\right] E_p(f, w) < \infty$$

An application of the Lebesgue Dominated Convergence Theorem implies that $E_p(f, w_n) \to E_p(f, w)$ as $n \to \infty$, i.e., $E_p(f, \cdot)$ is continuous at w. The proof is complete.

It is a classical result that for a Hilbert space X (certainly, including \mathcal{D}), the extreme points of $(B_X, \|\cdot\|_X)$ are precisely those on the unit sphere:

$$(S_X, \| \cdot \| _X) = \{ f \in X : \| f \|_X = 1 \}.$$

The following (which seems surprising to us) says that this is also valid for the non-Hilbert space $Q_{p,0}$.

Theorem 3.3. Let $p \in (0, \infty)$ and $f \in \mathcal{Q}_{p,0}$. Then f is an extreme point of $(B_{\mathcal{Q}_{p,0}}, \|\cdot\|_{\mathcal{Q}_p})$ if and only if either $f \equiv \lambda$ with $|\lambda| = 1$ or f(0) = 0 with $\|f\|_{\mathcal{Q}_p} = 1$.

Proof. For $p \in (0,\infty)$ let $\mathcal{Q}_{p,0}^0 = \{f \in \mathcal{Q}_{p,0} : f(0) = 0\}$. Notice that $|||f|||_{\mathcal{Q}_p} = |f(0)| + ||f||_{\mathcal{Q}_p}$ for $f \in \mathcal{Q}_{p,0}$. So by Lemma 3.1, we need only to verify that a function $f \in \mathcal{Q}_{p,0}^0$ is an extreme point of the unit closed ball $B_{\mathcal{Q}_{p,0}^0}$ in $\mathcal{Q}_{p,0}^0$ if and only if $||f||_{\mathcal{Q}_p} = 1$.

The necessity is essentially trivial. The key is to argue the sufficiency. Now suppose that f lies in $\mathcal{Q}_{p,0}^0$ with $||f||_{\mathcal{Q}_p} = 1$. Since $\lim_{|w| \to 1} E_p(f, w) = 0$, there is an $r \in (0, 1)$ such that $\sup_{|w|>r} E_p(f, w) \leq 1/2$. Consequently, we have

$$1 = ||f||_{\mathcal{Q}_p} = \sup_{w \in \Delta} E_p(f, w) = \max_{|w| \le r} E_p(f, w).$$

Applying Lemma 3.2 to this f, we see that $E_p(f, \cdot)$ is continuous on the compact set $\{w \in \Delta : |w| \leq r\}$, and thus there exists a $w_0 \in \Delta$ $(|w_0| \leq r)$ to ensure $E_p(f, w_0) = 1$.

Let g be any function in $\mathcal{Q}_{p,0}^0$ such that $||f+g||_{\mathcal{Q}_p} \leq 1$ and $||f-g||_{\mathcal{Q}_p} \leq 1$. Then

$$E_p(f, w_0) + E_p(g, w_0) = 2^{-1}[E_p(f+g, w_0) + E_p(f-g, w_0)] \le 1$$

Therefore $E_p(g, w_0) = 0$. This implies that g = 0. We conclude that f is extreme.

The previous proof actually leads to a sufficient condition for $f \in \mathcal{Q}_p$ to be an extreme point of $(B_{\mathcal{Q}_p}, \| \cdot \|_{\mathcal{Q}_p})$.

Corollary 3.4. Let $p \in (0, \infty)$ and $f \in \mathcal{Q}_p$. If f is an extreme point of $(B_{\mathcal{Q}_p}, \|\|\cdot\|\|_{\mathcal{Q}_p})$ then $\|\|f\|\|_{\mathcal{Q}_p} = 1$. Conversely, if either $f \equiv \lambda$ with $|\lambda| = 1$ or there exists a point $w_0 \in \Delta$ such that $E_p(f, w_0) = 1$, then f is an extreme point of $(B_{\mathcal{Q}_p}, \|\|\cdot\|\|_{\mathcal{Q}_p})$.

Remark 3.5. a) Different norms produce different sets of the extreme points. This viewpoint is reflected by our Theorem 3.3, Cima-Wogen's Corollary 1 and Theorem 2 in [CiWo], and Axler-Shields' Theorem in [AxShi].

b) It would be interesting to give a full description of the extreme points of $(B_{\mathcal{Q}_p}, \|\cdot\|_{\mathcal{Q}_p}).$

4 Composition Semigroups

Let now $\{\psi_t : t \ge 0\}$ be a composition semigroup of the holomorphic self-maps ψ_t of \triangle , that is: $\psi_t \circ \psi_s = \psi_{t+s}$ for $t, s \ge 0$; $\psi_0(z) = z$; and $\psi_t(z)$ is continuous in two-parameters: t and z.

A composition semigroup always consists of univalent functions and all such semigroups can be classified in two classes Ψ_0 and Ψ_1 , according to whether the common fixed point of ψ_t is in Δ or on $\partial \Delta$. Without loss of generality, one can assume that the fixed point is 0 for Ψ_0 and 1 for Ψ_1 (where the fixed point 1 is understood to be the Denjoy-Wolff point, namely, $\lim_{r\to 1} \psi_t(r) = 1$ for any $\{\psi_t\} \in$ Ψ_1). Hence

• $\{\psi_t\} \in \Psi_0$ is of the form $\psi_t(z) = h^{-1}(e^{-ct}h(z))$, where $\Re c \ge 0$ and $h \in \mathcal{H}$ with: h(0) = 0 and $w \exp(-ct) \in h(\Delta)$ for each $w \in h(\Delta)$.

• $\{\psi_t\} \in \Psi_1$ has the form $\psi_t(z) = h^{-1}(ct + h(z))$, where $\Re c \ge 0$, $h \in \mathcal{H}$ with: h(0) = 0 and $\Re(c^{-1}(z-1)^2 h'(z)) \ge 0$ for each $z \in \Delta$.

It is clear that each semigroup $\{\psi_t\}$ induces a one-parameter operator semigroup by composition $\{C_{\psi_t}\}: C_{\psi_t}(f) = f \circ \psi_t$. As in the \mathcal{D} -setting [Si3], more is true:

Theorem 4.1. Let $p \in (0, \infty)$. Then $\{C_{\psi_t}\}$ is strongly continuous on $\mathcal{Q}_{p,0}$. Moreover (i) The infinitesimal generator of $\{C_{\psi_t}\}$ is given by $\Gamma(f) = Gf'$ and its domain is $\{f \in \mathcal{Q}_{p,0} : Gf' \in \mathcal{Q}_{p,0}\}$, where G = -c(h/h') or c/h' whenever $\{\psi_t\} \in \Psi_0$ or Ψ_1 . (ii) $\{C_{\psi_t}\}$ is not continuous in the uniform topology unless it is trivial. (iii) The growth bound $\omega = \lim_{t\to\infty} t^{-1} \log ||C_{\psi_t}|| = 0$, where

$$||C_{\psi_t}|| = \inf\{M : |||C_{\psi_t}(f)|||_{\mathcal{Q}_p} \le M |||f|||_{\mathcal{Q}_p}, \quad f \in \mathcal{Q}_{p,0}\}$$

Proof. Notice that if a holomorphic map $\psi : \Delta \to \Delta$ is univalent then

$$E_p(f \circ \psi, w) \le \int_{\psi(\Delta)} |f'(z)|^2 \left[1 - |\sigma_{\psi(w)}(z)|\right]^p dm(z),$$

and so the composition $C_{\psi}(f) = f \circ \psi$ exists as a bounded linear operator on \mathcal{Q}_p with

$$|||C_{\psi}(f)|||_{\mathcal{Q}_{p}} \leq \left[1 + \left(\frac{2^{p-1}}{\pi}\right)^{1/2} \log \frac{1 + |\psi(0)|}{1 - |\psi(0)|}\right] |||f|||_{\mathcal{Q}_{p}} = K_{1} |||f|||_{\mathcal{Q}_{p}}.$$
 (4.1)

Moreover, if $f \in \mathcal{Q}_{p,0}$ and $\epsilon > 0$, then by Theorem 2.1, there exists a polynomial p_n such that $|||f - p_n|||_{\mathcal{Q}_p} < \epsilon$. Thus (4.1) implies $|||C_{\psi}(f) - C_{\psi}(p_n)|||_{\mathcal{Q}_p} < \epsilon K_1$. Owing to $C_{\psi}(p_n) \in \mathcal{Q}_{p,0}$, it follows that $C_{\psi}(f) \in \mathcal{Q}_{p,0}$. Therefore $C_{\psi} : \mathcal{Q}_{p,0} \to \mathcal{Q}_{p,0}$ exists as a bounded operator with $||C_{\psi}|| \leq K_1$.

In order to show that each semigroup $\{C_{\psi_t}\}$ is strongly continuous on $\mathcal{Q}_{p,0}$, it suffices to verify that $\lim_{t\to 0} |||C_{\psi_t}(f) - f|||_{\mathcal{Q}_p} = 0$ for every $f \in \mathcal{Q}_{p,0}$ and every $\{\psi_t\} \in \Psi_0 \cup \Psi_1$. Since the polynomials are dense in $(\mathcal{Q}_{p,0}, ||| \cdot |||_{\mathcal{Q}_p})$ but also (4.1) infers that

$$|||C_{\psi_t}(f) - f|||_{\mathcal{Q}_p} \le K_1 |||f - P|||_{\mathcal{Q}_p} + |||C_{\psi_t}(P) - P|||_{\mathcal{Q}_p}$$

holds for any polynomial P, it is enough, by the properties of Ψ_0 and Ψ_1 , to prove $\lim_{t\to 0} \|\psi_t - z\|_{\mathcal{Q}_p} = 0$. While, this is a simple thing in that $\lim_{t\to 0} \|\psi_t - z\|_{\mathcal{D}} = 0$ and $\|\psi_t - z\|_{\mathcal{Q}_p} \leq \|\psi_t - z\|_{\mathcal{D}}$.

The infinitesimal generator Γ of C_{ψ_t} is determined by

$$\Gamma(f)(z) = \frac{\partial C_{\psi_t}(f)(z)}{\partial t}\Big|_{t=0} = G(z)f'(z),$$

where G is the generator of $\{\psi_t\}$:

$$G = \begin{cases} \frac{-ch}{h'}, & \{\psi_t\} \in \Phi_0\\ \frac{c}{h'}, & \{\psi_t\} \in \Phi_1. \end{cases}$$

By definition, the domain of Γ is the following set:

$$D(\Gamma) = \left\{ f \in \mathcal{Q}_{p,0} : \lim_{t \to 0} \frac{C_{\psi_t}(f) - f}{t} \quad exists \quad in \quad \mathcal{Q}_{p,0} \right\}.$$

On the one hand, if $f \in D(\Gamma)$ then some calculations involving Ψ_0 and Ψ_1 deduce that f meets the requirements of the domain stated in Theorem 4.1 (ii). On the other hand, if f is in $\mathcal{Q}_{p,0}$ with $g = Gf' \in \mathcal{Q}_{p,0}$ and G being as above, then for t > 0one has

$$\frac{1}{t}\int_0^t C_{\psi_s}(g)ds = \frac{C_{\psi_t}(f) - f}{t}.$$

Because $\{C_{\psi_t}\}$ is a strongly continuous semigroup, the left-hand side of the last equation has a limit g as $t \to 0$, with respect to $\|\cdot\|_{\mathcal{Q}_p}$. Accordingly, $f \in D(\Gamma)$.

Next, observe that the strongly continuity of $\{C_{\psi_t}\}$ is equivalent to the boundedness of $\Gamma : \Gamma(f) = Gf'$ (cf. [Si4, p.231]). So if Γ is bounded on $\mathcal{Q}_{p,0}$ then $Gf' \in \mathcal{Q}_{p,0}$ when $f \in \mathcal{Q}_{p,0}$. In particular,

$$\||\Gamma(f_{n,p})||_{\mathcal{Q}_p} \le ||\Gamma|| |||f_{n,p}||_{\mathcal{Q}_p}, \tag{4.2}$$

where $\|\Gamma\|$ means the norm of operator Γ , and for each integer $n \ge 1$,

$$f_{n,p}(z) = \begin{cases} z^n, & p \ge 1\\ \frac{z^n}{n}, & p \in (0,1) \end{cases}$$

Now consider $p \in (0, 1)$. Clearly, $|||f_{n,p}|||_{\mathcal{Q}_p} \leq 2$. If $G(z) = \sum_{k=0}^{\infty} a_k z^k$, then through (4.2) and some elementary calculations, we can find out a constant $K_2 > 0$ depending only on $p \in (0, 1)$ such that

$$\sum_{k=0}^{\infty} |a_k|^2 (k+n-1)^{1-p} \le K_2 \|\Gamma\|$$

This derives all $a_k = 0$, and so G = 0 which is impossible.

The \mathcal{B}_0 and VMOA settings may be similarly treated, using the facts: $\mathcal{Q}_{1,0} = VMOA$ and $\mathcal{Q}_{p,0} = \mathcal{B}_0$ for p > 1.

Finally, let us come to the proof of $\omega = 0$. Since all C_{ψ_t} keep 1 unchanged, one always has $||C_{\psi_t}|| \ge 1$ and so $\omega \ge 0$. Further, if $\{\psi_t\} \in \Psi_0$, then $\omega = 0$ in that $\psi_t(0) = 0$ and thus $||C_{\psi_t}|| \le 1$ (thanks to the constant K_1 above). However, if $\{\psi_t\} \in \Psi_1$ then by [Si3,(3.3)],

$$\limsup_{t \to \infty} \frac{\log \log[1/(1 - |\psi_t(0)|)]}{t} \le 0,$$

which, together with $||C_{\psi_t}|| \leq K_1$, implies $\omega \leq 0$ and hence $\omega = 0$. The proof is complete.

Remark 4.2. a) $\lambda - \Gamma$ is invertible on $\mathcal{Q}_{p,0}$ whenever $\Re \lambda > 0$, and

$$(\lambda - \Gamma)^{-1}(f) = \int_0^\infty e^{-\lambda t} C_{\psi_t}(f) dt.$$

In addition, the spectral radius of C_{ψ_t} (acting on $\mathcal{Q}_{p,0}$) is 1.

b) Suppose $\{\psi_t\} \in \Psi_0$ and *n* is a natural number. Then, as in [Si3, Corollary 2], the semigroup $S_t(f) = (\psi_t)^n C_{\psi_t}(f)$ is strongly continuous on $\mathcal{Q}_{p,0}$ with generator

$$\Gamma_n(f)(z) = -c[h(z)/h'(z)]f'(z) - cn[h(z)/(zh'(z))]f(z).$$

Acknowledgment. J. Xiao is grateful to S. Axler, M. Essén and A. Siskakis for interesting discussions.

References

- [An] J. M. Anderson, *Bloch functions: the basic theory*, S.C. Power(ed.), Operators and Function Theory, 1-17.
- [ArFi] J. Arazy and S. Fisher, *The uniqueness of the Dirichlet space among Möbius invariant Hilbert spaces*, Illi. J. Math. **29**(1985), 449-462.
- [ArFiPe] J. Arazy, S. Fisher and J. Peetre, *Möbius invariant function spaces*, J. reine angew. Math. **363**(1985), 110-145.
- [AuLa] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications, Pitman Research Notes in Math. 305, Longman Scientific& Technical Harlow (1994), 136-146.
- [AuXiZh] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis, 15(1995), 101-121.
- [AxSha] S. Axler and J. H. Shapiro, Putnam's theorem, Alexander's spectral area estimate, and VMO, Math. Ann. 271(1985), 161-183.
- [AxShi] S. Axler and A. Shields, *Extreme points in VMO and BMO*, Indiana Univ. Math. J. **31**(1982), 1-6.
- [CaCu] J. J. Carmona and J. Cufi, On the distance of an analytic function to VMO, J. London Math. Soc.(2) 34(1986), 52-66.
- [CiWo] J. Cima and W. Wogen, *Extreme points of the unit ball of the Bloch space* \mathcal{B}_0 , Michigan Math. J. **25**(1978), 213-222.
- [G] J. Garnett, *Bounded analytic functions*, Academic Press 1981.
- [EsXi] M. Essén and J. Xiao, Some results on Q_p spaces, 0 , J. reine angew. Math., 485(1997), 173-195.
- [NiXi] A. Nicolau and J. Xiao, Bounded functions in Möbius invariant Dirichlet spaces, J. Funct. Anal., 150(1997), 383-425.
- [Si1] A. Siskakis, Composition semigroups and the Cesàro operator on H^p , J. London. Math. Soc.(2) **36**(1987), 153-164.
- [Si2] A. Siskakis, The Cesàro operator is bounded on H^1 , Proc. Amer. Math. **110**(1990), 461-462.
- [Si3] A. Siskakis, Semigroups of composition operators on the Dirichlet space, Results Math. 30(1996), 165-173.

- [Si4] A. Siskakis, Semigroups of composition operators on spaces of analytic functions, a review, Contemp. Math. **213**(1998), 229-252.
- [SmZh] W. Smith and R. Zhao, Composition operators mapping into the Q_p spaces, Analysis, **17**(1997), 239-263.
- [StSt] D. A. Stegenga and K. Stephenson, Sharp geometric estimates of the distance to VMOA, Contemp. Math. 137(1992), 421-432.

K. J. Wirths Institute of Analysis TU-Braunschweig D-38106 Braunschweig,Germany E-mail : kjwirths@ws.rz.tu-bs.de

J. Xiao Department of Mathematics and Statistics Concordia University 1455 de Maisonneuve Blvd. West H3G 1M8 Montreal, Qc Canada E-mail : jxiao@discrete.concordia.CA