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Abstract

For a nonlinear differential equation x′′ + a(t)f(x) = 0, we obtain limit-
point criteria by proving first stronger results which guarantee nonexistence
of nontrivial bounded (uniformly continuous) L2-solutions under milder re-
strictions on the coefficient a(t) and nonlinearity f(x).

Introduction

The limit-circle/limit-point classification originates from the celebrated paper by
Weyl [18] and is related to the problem of existence of square integrable solutions
of the second order linear differential equation

Lx
def
= −(p(t)x′)′ + q(t)x = λx, λ ∈ C, (1)

on the interval I = [t0,∞). The operator L is of the limit-circle type at infinity if
for a particular complex number λ0 every solution ϕ(t) of Eq. (1) satisfies∫ ∞

t0
|ϕ(t)|2 dt < +∞,
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otherwise, L is said to be of the limit-point type at infinity. Later on, this definition
has been extended to second order nonlinear differential equations and higher order
nonlinear equations (see, for instance, Atkinson [1], Bartušek et al [2, 3, 4], Graef
[8], Graef and Spikes [9], and the references cited there).

As it has been mentioned by Atkinson [1], if a(t) is suitably small for large t,
then the solutions of Eq. (5) “will be approximately linear, or constant, so that
the equation will not merely be in the limit-point condition, but will have no non-
trivial solution in L2(T, +∞); this situation is related to the theory of the essential
spectrum.” In fact, efforts of numerous researchers have been aimed at proving
stronger results establishing nonexistence of square integrable solutions.

In 1950, Aurel Wintner [19] established that the linear differential equation

x′′ + a(t)x = 0, (2)

where a(t) is a continuous function, cannot have nontrivial solutions of class
L2((0,∞), R) provided that ∫ ∞

0
t3 |a(t)|2 dt < +∞. (3)

Other limit-point criteria for Eq. (2) have been given by Levinson [13] and the
present authors [15], and for linear differential equation

(p(t)x′)
′
+ q(t)x = 0

by Kauffman et al [12], Patula and Waltman [16], Wong [21], Wong and Zettl [22].
An analogue of Wintner’s result for the nonlinear differential equation

x′′ + a(t)xp = 0, p ≥ 1, (4)

has been derived by Suyemoto and Waltman [17], who proved that if condition (3)
is satisfied, Eq. (4) cannot have solutions of class L2p((0,∞), R). Further extensions
of these results to nonlinear differential equations

x′′ + a(t)f(x) = 0 (5)

and
x′′ + f(t, x) = 0, (6)

under assumption (3) and some additional conditions on nonlinear functions f(x)
and f(t, x) have been obtained by Burlak [5], Detki [6], Elias [7], Grammatikopoulos
and Kulenovic [10], Hallam [11], and Wong [20, 21]. We mention also the recent
paper by the present authors [14], where nonexistence of nontrivial square integrable
solutions of the n-th order nonlinear differential equation

u(n) + f(t, u) = 0

has been established as a by-product of the estimate for the rate of decay of the L2

norm of solutions of the perturbed equation

u(n) + f(t, u) = b(t).

For the convenience of the reader, we adapt here the main result of Gram-
matikopoulos and Kulenovic [10].
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Theorem 1 (Grammatikopoulos and Kulenovic, 1981). Let conditions∫ ∞

τ
t2 |a(t)|2 dt < +∞ (7)

and ∫ ∞

τ

(∫ ∞

t

(∫ ∞

s
|a(τ)|2 dτ

)1/2

ds

)2

dt < +∞ (8)

be satisfied. Then Eq. (2) cannot have nontrivial L2-solutions.

The following criterion has been established for the nonlinear differential equation
(5) by Wong [20, Theorem 1].

Theorem 2 (Wong, 1967). Suppose that the function f(u) is continuous on R
and such that

(i) u 6= 0 implies that f(u) 6= 0;
(ii) lim inf

|u|→+∞
f(u) > 0;

(iii) for every L2-solution x(t) of Eq. (5)

lim sup
t→+∞

(∫ ∞

t
|f(x(s))|2 ds

)−1 (∫ ∞

t
|x(s)|2 ds

)
> 0.

Then Eq. (5) cannot have a nontrivial solution x(t) for which∫ ∞

τ
|f(x(t))|2 dt < +∞.

An essential feature of the proofs of these and related results is the following
property:

(P) any nontrivial L2-solution x(t) of Eq. (2) should satisfy

lim
t→+∞

x(t) = lim
t→+∞

x′(t) = 0.

This implies, in particular, that x(t) must be eventually bounded, as well as its
derivative x′(t). This type of asymptotic behavior of solutions of Eq. (2) is a direct
consequence of condition (7).

In this paper, we establish nonexistence of square integrable solutions for Eq. (5)
by eliminating condition (7) from the hypotheses of Theorem 1 and using only as-
sumption (8). Furthermore, in contrast to conditions specifically tailored to exclude
existence of L2-solutions (see, for instance, Theorem 2 and other results reported in
Wong [20, 21]), our restriction on f(x) is just a growth assumption. Consequently,
we obtain two limit-point criteria for Eq. (5) as corollaries to stronger nonexistence
results.
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1 Auxiliary results

In what follows, we always assume that
(A1) x(t), a(t), and f(x) are real-valued functions;
(A2) f is continuous on R;
(A3) for all x ∈ R, f satisfies

|f(x)| ≤ M |x|p ,

where M > 0 and p ≥ 1 are constants.
Before stating and proving main results of this paper, we would like to comment

on several important aspects of the problem. First, we note that a milder version of
condition (7), that is,

a(t) ∈ L2((T, +∞); R), (9)

has been used by Grammatikopoulos and Kulenovic [10] to show that an L2-solution
x(t) of Eq. (2) satisfies

lim
t→+∞

x′(t) = 0.

Since condition (8) yields (9), it is natural to expect boundedness of any L2-solution
x(t) of Eq. (5) provided its derivative x′(t) is bounded. The following proposition
confirms our conjecture.

Lemma 3. Let x(t) be a continuously differentiable function that belongs to the class
Lp((T, +∞), R) for some p > 0, and assume that its derivative x′(t) is bounded.
Then x(t) is also bounded.

Proof. Suppose, contrary to our claim, that x(t) is unbounded. Since x(t) is contin-
uous, there exists an increasing sequence of real numbers {tn}n≥1 such that tn →∞
as n →∞ and

|x(tn)| = n.

Furthermore, there exists another sequence of real numbers {pn}n≥1 such that pn →
∞ as n →∞, tn < pn for all n ≥ 1,

|x(pn)| = n/2, |x(t)| ≥ n/2,

and
sgn x(t) = sgn x(tn)

for all t ∈ [tn, pn].
It is not difficult to see that for n ≥ 1 one has

(n/2)p (pn − tn) ≤
∫ pn

tn
|x(t)|p dt ≤ ‖x‖p

Lp < +∞,

which yields
lim

n→+∞
(pn − tn) = 0. (10)

By the Mean Value Theorem, we conclude that

n/2 = |x(pn)− x(tn)| = |x′(ξn)| (pn − tn), ξn ∈ (tn, pn),

for all n ≥ 1. If N > 0 is an upper bound for |x′(t)| , then

1 ≤ n ≤ 2N(pn − tn),

which contradicts (10). Therefore, our assumption is wrong and x(t) is bounded. �
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Remark 4. Dealing with L2-solutions of Eq. (5), we may restrict ourselves only to
those satisfying condition

lim
t→+∞

x′(t) = 0.

Then, by Lemma 3, an L2-solution x(t) must be bounded. Lemma 3 and the proof
of Theorem 8 prompt how property (P) can be “recovered” from its second part, that
is, from the boundedness of the derivative x′(t).

Remark 5. We note that Lemma 3 can be enhanced by replacing continuous dif-
ferentiability of x(t) and boundedness of x′(t) with the uniform continuity of the
function x(t). The proof of this fact is very similar to that of Lemma 3 and thus
is omitted. As a consequence, we can obtain corollary to our main result (Theo-
rem 8) by replacing expression “bounded L2-solutions” with “uniformly continuous
L2-solutions”. This is another way of recovering property (P) since any continuous
function x(t) such that lim

t→+∞
x(t) exists in R is a fortiori uniformly continuous.

Now we restrict our attention to L2-solutions x(t) of Eq.(5) satisfying lim
t→+∞

x(t) =

0 and such that x′(t) is uniformly continuous. The following proposition prompts
one more way to recover the property (P).

Lemma 6. Assume that a function x(t) is of class C1([T, +∞), R) and satisfies
lim

t→+∞
x(t) = l, where l ∈ R. Then, lim

t→+∞
x′(t) = 0 if and only if the derivative x′(t)

is uniformly continuous.

Proof. The direct implication is obvious. To prove the converse implication, assume,
for the sake of contradiction, that there exist a real number ε0 > 0 and an increasing
sequence of real numbers {tn}n≥1 such that tn → +∞ as n → +∞ and |x′(tn)| ≥ ε0.
We can pick a subsequence of the sequence {tn}n≥1, also denoted by {tn}n≥1, such
that tn+1 − tn > 1 for all n ≥ 1. Since x′(t) is uniformly continuous, one can choose
an η = η(ε0) > 0 such that

|x′(t)− x′(s)| < ε0/2

for all t, s ≥ T satisfying |t− s| < η. Select now a real number ε so that 0 < ε <
min{1/2, η}, and define a sequence of open intervals Vn = (tn − ε, tn + ε), n ≥ 1. It
follows from the choice of {tn}n≥1 and ε that Vn ∩ Vm = ∅ for all m 6= n.

Let t ∈ Vn, and s = tn, then one has |x′(t)− x′(tn)| < ε0/2, which yields

|x′(t)| > ε0/2, t ∈ Vn, n ≥ 1. (11)

Applying the Mean Value Theorem, we conclude that

x′(tn + ε/2)− x′(tn − ε/2) = εx′(sn), (12)

where sn ∈ (tn − ε/2, tn + ε/2) for all n ≥ 1. Since the left-hand member of (12)
vanishes as n → +∞, this contradicts (11). The proof is complete. �
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Example 7. To show that the uniform continuity is essential for Lemma 6, consider
the function x : [0, +∞) → [0, +∞) defined by

x(t) =

{
n3/4

[
exp

(
(t− n)2 (α(n)− t)2

)
− 1

]
, if t ∈ [n, α(n)],

0, otherwise,

where α(n) = n + 2n−1/4 and n ≥ 17. A straightforward computation gives

lim
t→+∞

x(t) = 0,

but since x′(t) is not uniformly continuous,

lim
n→+∞

x′(n + 2−1n−1/4) = 3/2 6= 0.

2 Nonexistence of L2 solutions

Define the function ϕ(t) by

ϕ(t)
def
=
∫ ∞

t

(∫ ∞

τ
|a(s)|2 ds

)1/2

dτ, t ≥ T.

Theorem 8. Assume that the function ϕ(t) is of class L2((T, +∞), R). Then Eq.
(5) cannot have nontrivial bounded square integrable solutions.

Proof. Assume that x(t) is a bounded L2-solution of Eq. (5), that is, there exists a
positive constant N such that

|x(t)| ≤ N, t ≥ T.

Integrating Eq. (5) from t1 to t2, where t2 ≥ t1 ≥ T , and applying the Cauchy-
Schwarz inequality, we obtain

|x′(t2)− x′(t1)| ≤ M
∫ t2

t1
|a(t)| |x(t)|p dt

≤ MNp−1
(∫ t2

t1
|a(s)|2 ds

)1/2 (∫ ∞

t1
|x(s)|2 ds

)1/2

≤ MNp−1 ‖x‖L2

(∫ t2

t1
|a(s)|2 ds

)1/2

.

It follows from the latter inequality that

lim
t→+∞

x′(t) exists in R.

Furthermore, using the l’Hôpital’s rule, we conclude that

lim
t→+∞

x′(t) = lim
t→+∞

x(t)

t
= 0.
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Thus, we have

x′(t) =
∫ ∞

t
a(s)f(x(s))ds, t ≥ T. (13)

Integration of (13) from t1 to t2, where t2 ≥ t1 ≥ T, and application of the Cauchy-
Schwarz inequality yield

|x(t2)− x(t1)| ≤ MNp−1
∫ t2

t1

(∫ ∞

t
|a(s)| |x(s)| ds

)
dt

≤ MNp−1 ‖x‖L2

∫ ∞

t1

(∫ ∞

t
|a(s)|2 ds

)1/2

dt.

It follows from the latter inequality and assumption of the theorem that

lim
t→+∞

x(t) = 0

and, correspondingly,

x(t) = −
∫ ∞

t

(∫ ∞

τ
a(s)f(x(s))ds

)
dτ, t ≥ T. (14)

Finally, integrating Eq. (14) and applying again the Cauchy-Schwarz inequality, we
conclude that for t ≥ T∫ ∞

t
|x(s)|2 ds ≤ M2N2(p−1)

∫ ∞

t

(∫ ∞

τ

(∫ ∞

u
|a(s)|2 ds

)1/2

×
(∫ ∞

u
|x(s)|2 ds

)1/2

du

)2

dτ

≤ M2N2(p−1)
(∫ ∞

t
ϕ2(s)ds

)(∫ ∞

t
|x(s)|2 ds

)
.

It follows from the latter inequality and assumption on the function ϕ(t) that, for t
large enough, one has ∫ ∞

t
|x(s)|2 ds = 0.

This means that any bounded L2-solution of Eq. (5) vanishes eventually. Hence,
Eq. (5) cannot have nontrivial bounded L2-solutions, and thus is in the limit point
case. �

Corollary 9. Suppose that all solutions of Eq. (5) are bounded. Assume further
that the function ϕ(t) is of class L2((T, +∞), R). Then Eq. (5) is in the limit point
case.

We note that assumption of boundedness of solutions in the statement of Theo-
rem 8 can be omitted provided the hypothesis on a(t) is suitably modified.

Theorem 10. Let 1 ≤ p < 2, and assume that condition∫ ∞

τ

(∫ ∞

t

(∫ ∞

s
|a(τ)|q dτ

)1/q

ds

)2

dt < +∞

is satisfied, where q > 0 and p/2 + 1/q = 1.
Then Eq. (5) cannot have nontrivial L2-solutions.
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Proof. The proof follows the same lines as that of Theorem 8, but the Hölder inequal-
ity is applied instead of the Cauchy-Schwarz inequality. Assume that x(t) is an L2-
solution of Eq. (5). Then, obviously, |x(t)|p belongs to the class L2/p((T, +∞), R).
Integrating Eq. (5) from t1 to t2, where t2 ≥ t1 ≥ T , and applying the Hölder
inequality, we obtain

|x′(t2)− x′(t1)| ≤ M
∫ t2

t1
|a(t)| |x(t)|p dt

≤ M
(∫ t2

t1
|a(t)|q dt

)1/q (∫ ∞

t1
|x(t)|2 dt

)p/2

≤ M (‖x‖L2)
p/2
(∫ ∞

t1
|a(t)|q dt

)1/q

,

which implies that lim
t→+∞

x′(t) = 0. As in Theorem 8, we arrive at (14). Integrating

Eq. (14) and applying the Hölder inequality once again, we conclude that for t ≥ T

∫ ∞

t
|x(s)|2 ds ≤

∫ ∞

t

(∫ ∞

τ

(∫ ∞

u
|a(s)|q ds

)1/q

du

)2

dτ

×
(∫ ∞

t
|x(s)|2 ds

)p

.

Since p ≥ 1, we can consider t ≥ T sufficiently large to guarantee that(∫ ∞

t
|x(s)|2 ds

)p

≤
∫ ∞

t
|x(s)|2 ds.

The rest of the proof resembles that of Theorem 8 and is omitted. �

Corollary 11. Under assumptions of Theorem 10, Eq. (5) is in the limit point
case.

Remark 12. We conclude by noting that it is not difficult to obtain extensions of
the results reported in this paper to nonlinear differential equations (6) and

x′′ + f(t, x, x′) = 0

where the nonlinearity satisfies, correspondingly,

|f(t, x)| ≤ α(t) |x|p and |f(t, x, x′)| ≤ β(t) |x|p .
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