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Abstract

First some properties are recalled of the Hilbert transform introduced in
the 1990’s within the framework of Clifford analysis. Furthermore algebraic
and geometric characterizations are given for this operator to be unitary.
Special attention is paid to the Hilbert transform on the unit sphere Sm and
the hyperplane Rm in Rm+1 and classical results in the plane are revisited.

1 Introduction

Although named after David Hilbert, The Hilbert transform on the real line and its
properties were developed mainly by Titchmarsch and Hardy. The Hilbert transform
appears naturally when studying the boundary behaviour of the Cauchy transform
Cf of a function f ∈ L2(

∑
),
∑

being either the boundary of a bounded Lipschitz do-
main in C or the graph of a Lipschitz continuous function in R. The most elaborated
examples are the cases of the unit circle and the real line, leading to deep results
in harmonic analysis (see e.g. [12]). The central formula establishing the relation
between the boundary value of the Cauchy transform and the Hilbert transform is
the so-called Plemelj-Sokhotzki formula.
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A higher dimensional analogue of the Hilbert transform appeared in the study
of Hp-spaces of harmonic functions of several variables, more precisely when the
relationship was established between the boundary values of solutions of the Riesz
system in the upper half space Rm+1

+ of Rm+1 and the Riesz transforms Rj on
Rm , j = 1, ...,m (see [15]).

In the mid-1980’s, it became clear that Clifford analysis provided a natural frame-
work for generalizing a lot of results from harmonic analysis in the plane to the higher
dimensional case. The main tool used was the Cauchy transform which, by taking
boundary values, led to a Plemelj-Sokhotzki type formula. In such a way, proper-
ties of the singular integral operator appearing in this formula could be studied by
means of function theoretic methods (see e.g. [10] and [13]).

In 1978, Kerzman and Stein (see [11]) proved a fundamental property of the
Cauchy transform Cf of f ∈ L2(

∑
),
∑

being the boundary of a bounded open do-
main Ω in C with C∞-boundary. They discovered that the operator A = C − C∗ is
a compact infinitely smoothing operator on L2(

∑
) and that the Hardy projection

C and the Szegö-projection P of L2(
∑

) onto the Hardy space H2(
∑

) are related by
the formula P(1 + A) = C. Moreover, they showed that the disc is the only plane
region for which the Szegö and Cauchy kernels coincide. Implicitly, this result also
tells us that the Hilbert transform H on L2(

∑
) is unitary if and only if Ω is a disc.

In the mid-1990’s, the Kerzman-Stein formula P(1+A) = C has been generalized
to domains Ω in Rm+1 by Calderbank (see [6]) and Cnops (see [7]). Their results are
even valid in a much more general context, namely within the study of boundary
value problems for Dirac operators on manifolds (see also [3]).

In the underlying paper we give some characterizations for the unitariness of the
Hilbert transform (§2). In the following sections (§§3-4) we pay special attention to
the cases of the unit sphere Sm and the hyperplane Rm in Rm+1. Finally, in section
5 we show how classical results in the plane are included in our approach.
We dedicate this paper to Fred Brackx and Frank Sommen and this on the occasion
of our retirement: they were our first two Ph.D-students in Clifford analysis. During
the thirty five years, respectively the twenty five years, of intensive collaboration,
strong ties of friendship were forged.

2 The Hilbert transform in Euclidean space

Throughout this paper we suppose that Ω is either an open bounded subset of Rm+1

with C∞-boundary
∑

, or Ω = Rm+1
+ = {x = (x0, x1, ..., xm) : xm > 0}, the upper

half space in Rm+1 with boundary
∑

= Rm. The outward pointing unit normal at
y ∈ ∑ will be denoted by ν(y).

The space Rm+1 will be identified with the space of vectors R0,m+1 in the uni-
versal Clifford algebra constructed over the real vector space Rm+1 equipped with a
quadratic form of signature (0, m + 1), and this in the following way.
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Let e = (e0, e1, ..., em) be an orthonormal basis of R0,m+1. Then the non-
commutative multiplication in R0,m+1 is governed by the rules

e2
i = −1, i = 0, 1, ...,m

and
eiej + ejei = 0, i 6= j.

A basis of R0,m+1 is given by the set (eA : A ⊂ {0, 1, ...,m}), where for A = {i1, i2, ...,
ih}, 0 ≤ i1 < i2 < ... < ih ≤ m, eA = ei1ei2 ...eih . Putting e∅ = 1, the identity el-
ement of R0,m+1, we may embed R and Rm+1 in R0,m+1 by identifying R with R1
and Rm+1 with spanR(ei : i = 0, 1, ...,m), i.e. a ∈ R and x = (x0, x1, ..., xm) ∈ Rm+1

correspond to a1 and x =
∑m

i=0 xiei.

The conjugation a −→ ā in R0,m+1 is the anti-involution defined by ei = −ei,
i = 0, 1, ...,m, and ab = b̄ ā for a, b ∈ R0,m+1.

In the complex Clifford algebra Cm+1 = R0,m+1 ⊗R C, the conjugation a −→ ā
may be introduced by taking the tensor product of the conjugation in R0,m+1 and
the complex conjugation in C.

A basis in Cm+1 is given by the elements eA ⊗ 1, denoted by eA for the sake of
simplicity.

Denoting by A the algebra R0,m+1 or Cm+1, an element a ∈ A may thus be
written as

a =
m+1∑
k=0

[a]k

where for k ∈ {0, 1, ...,m + 1}, [ ]k stands for the projection of A onto the subspace
A(k) of k-vectors, with A(k) = span (eA : |A| = k).

Notice that for x, y ∈ Rm+1,

xy = x · y + x ∧ y

with

x · y = −
m∑

i=0

xiyi

and
x ∧ y =

∑
i<y

eiej(xiyj − xjyi),

i.e. xy ∈ A(0) ⊕A(2).

In particular
x2 = −|x|2.

Define the Dirac operator ∂x in Rm+1 by

∂x =
m∑

i=0

ei∂xi
.
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Then ∂2
x = −4x,4x being the Laplacian in Rm+1.

The operator ∂x is strongly elliptic and its fundamental solution is given by

E(x) =
1

Am+1

x̄

|x|m+1
,

where Am+1 is the area of the unit sphere Sm in Rm+1.

In what follows, functions f will be considered which are defined in some sub-
set G ⊂ Rm+1 and which are A-valued. We say that f =

∑
A fAeA belongs to

C1(G), L2(G), etc..., if all of its components fA belong the classical function spaces
C1(G), L2(G), etc... of R-or C-valued functions in G.

A function f ∈ C1(Ω) is said to be (left) monogenic in Ω if ∂xf = 0 in Ω, where

∂xf =
∑
i,A

eieA
∂fA

∂xi

.

On L2(
∑

), the inner product is defined by

(f, g)∑ =
∫∑ f(y)g(y)dS(y).

Notice that (f, g)∑ is A-valued and that if we put

[f, g]∑ =
[
(f, g)∑]

0
,

the scalar part of (f, g)∑, then [ , ]∑ is a classical inner product on L2(
∑

) with

‖ f‖2∑ =
∫∑[f̄f ]0 dS

=
∑
A

∫∑ |fA|2 dS.

The Cauchy kernel Cx(y) in Ω is defined by

Cx(y) = ν(y)E(y − x), x ∈ Ω, y ∈ Σ, (2.1)

and the associated Cauchy transform Cf in L2(
∑

) is given by

Cf(x) = (Cx, f)∑
=

1

Am+1

∫∑ x− y

|x− y|m+1
ν(y)f(y)dS(y). (2.2)

Clearly, Cf is monogenic in Rm+1\∑.
Let H2(Ω) be the Hardy space of A-valued monogenic functions in Ω having non-
tangential L2(

∑
)-boundary values and let H2(

∑
) be the Hardy space on

∑
consist-

ing of the boundary values of elements in H2(Ω). Then H2(
∑

) is a closed subspace
of L2(

∑
).
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We have:

(i) C maps L2(
∑

) onto H2(Ω) and for f ∈ L2(
∑

), the boundary value Cf satisfies

the Plemelj-Sokhotzki formula

Cf =
1

2
(f + Hf) (2.3)

where for a.e. x ∈ ∑,

Hf(x) =
2

Am+1

P.V.
∫∑ x− y

|x− y|m+1
ν(y)f(y)dS(y). (2.4)

Hereby H, called the Hilbert transform on L2(
∑

), is a bounded linear operator
satisfying H2 = 1.
Straightforward computations show that the adjoint H∗ of H is given by

H∗ = νHν. (2.5)

Moreover, for f ∈ L2(
∑

), we have that Hf = f if and only if f ∈ H2(
∑

).

(ii) C is a bounded skew projection operator on L2(
∑

), called the Hardy

projection. It maps L2(
∑

) onto H2(
∑

).

(iii) L2(
∑

) admits the orthogonal decomposition

L2 (Σ) = H2 (Σ)⊕ νH2 (Σ) . (2.6)

The orthogonal projection operator P of L2(
∑

) onto H2(
∑

) - also called the Szegö
projection - may be monogenically extended to H2(Ω) by

Sf(x) = (Sx(y), f)∑
where Sx(y), (x, y) ∈ Ω×∑, is the Szegö kernel for H2(

∑
).

Sx(y) is symmetric, i.e. Sx(y) = Sy(x) and it is the reproducing kernel for H2(
∑

).

(iv) The projection operators P and C are related by the Kerzman-Stein formula

P(1 + A) = C, (2.7)

or equivalently by
P = C − A + AP.

Hereby A = C − C∗ is the Kerzman-Stein operator in L2(
∑

).

Notice that, as A =
1

2
(H − νHν), its kernel A(x, y) is given by

A(x, y) =
1

Am+1

(
ν(y)

x− y

|x− y|m+1
+

x− y

|x− y|m+1
ν(x)

)
. (2.8)

For the properties (i) - (iv) we refer to [6], [7] and [2].
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(v) If Ω is the ball
◦
B(a, R) with center a and radius R, then its Szegö kernel is

given by

Sx(y) =
1

Am+1

y − a

R

x− y

|x− y|m+1
, (2.9)

while for the upper half space Rm+1
+ ,

Sx(y) =
1

Am+1

−emx− yem

|xem + emy|m+1
. (2.10)

For these results we refer e.g. to [6].
It is easily seen that in both cases

(v.1) Sx(y) = Cx(y), i.e. the Szegö and Cauchy kernels coincide;

(v.2) P = C, i.e. the Szegö and Hardy projections coincide; (2.11)

(v.3) H = H∗, i.e. the Hilbert transform H is unitary.

(vi) An algebraic decomposition of L2(
∑

) may be obtained as follows.

Call α and β the functions defined on
∑

by

α(x) =
1

2
(1 + iν(x))

and

β(x) =
1

2
(1− iν(x)) .

Then clearly for each x ∈ ∑
, α(x) and β(x) are hermitian orthogonal primitive

idempotents in Cm+1, i.e.
α2 = α , β2 = β;

αβ = 0;

ᾱ = α ; β̄ = β.

Moreover
α + β = 1.

Consequently, for any f, g ∈ L2(
∑

),

(αf, βg)∑ = 0,

whence the following orthogonal decomposition is obtained:

L2(Σ) = αL2(Σ)⊕ βL2(Σ). (2.12)

The following theorem gives characterizations for the Hilbert transform H to be
unitary.
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Theorem 2.1. Let Ω be a bounded open domain in Rm+1 with C∞-boundary∑
. Then the following are equivalent:

(i) αH(αf) = 0 and βH(βf) = 0 for all f ∈ L2(
∑

).

(ii) H(αf) = βf for all f ∈ H2(
∑

).

(iii) H(βf) = αf for all f ∈ H2(
∑

).

(iv) H(νf) = −νf for all f ∈ H2(
∑

).

(v) H is unitary.

(vi) A = 0.

(vii) Ω is a ball.

(viii) Sx(y) = Cx(y), i.e. the Szegö and Cauchy kernels coincide.

Proof. Straightforward arguments lead to the equivalences (i) ⇔ (ii) ⇔ ... ⇔ (vi).

(vi) ⇒ (vii).
¿From A = 0 and the expression (2.8) of A(x, y), it follows that for any elements
x, y ∈ ∑ with x 6= y, ν(y)(y − x) = (x− y)ν(x).
In view of [16] Lemma 12, Ω is a ball.

(vii) ⇒ (vi).
In the case of a ball, H is unitary (see (2.11),(v.3)), whence H = νHν and so A = 0.

(vii) ⇒ (viii).
For a ball, Sx(y) = Cx(y) (see (2.11),(v.1)).

(viii) ⇒ (vii).
If Sx(y) = Cx(y), then P = C whence C = C∗ and so A = 0. Consequently in view
of (vi) ⇔ (vii), Ω is a ball. �

Notice in particular that Theorem 2.1 tells us that a ball is the only bounded
open domain Ω in Rm+1 with smooth boundary

∑
such that the Hilbert transform

H is unitary in L2(
∑

). Clearly, by virtue of the Plemelj-Sokhotzki formula (2.3), H
is unitary if and only if the Cauchy transform C is self-adjoint. For a simular result
in an even more general context, we refer to [16]. See also [11] for the case of the
plane.
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3 The Hilbert transform on Sm

In this section, we take Ω =
◦
B(1) the unit ball in Rm+1. In this case

∑
= Sm and

at each point ω ∈ Sm, ν(ω) = ω.
The Hilbert transform on Sm thus reads:

Hf(ξ) =
2

Am+1

P.V.
∫

Sm

ξ − ω

|ξ − ω|m+1
ωf(ω)dS(ω), f ∈ L2(S

m). (3.1)

It is a unitary operator with eigenspaces H2(Sm) and ωH2(Sm) corresponding to
the eigenvalues +1 and −1.
In [9] it was shown that H2(Sm) admits the orthogonal decomposition

H2(Sm) =
∞∑

k=0

⊕ M+(k)

whence, in view of (2.6), L2(S
m) is orthogonally decomposed into

L2(S
m) =

∞∑
k=0

⊕ M+(k)⊕ ω
∞∑

k=0

⊕ M+(k).

Hereby the elements of M+(k) and M−(k) = ωM+(k), k ∈ N, are called spherical
monogenics of degree k.
As a right module over A, M+(k) has dimension K(m; k) with

K(m; k) =
(k + m− 1)!

k!(m− 1)!
.

Choosing an orthonormal basis
(
Pk,i(k)

)K(m;k)

i(k)=1
of M+(k) (see e.g. [9]) we obtain that

if u ∈ L2(S
m) has the decomposition

u(ω) = f1(ω) + ωf2(ω) , f1, f2 ∈ H2(Sm), (3.2)

then for j = 1, 2,

fj(ω) =
∞∑

k=0

K(m;k)∑
i(k)=1

Pk,i(k)(ω)a
(j)
k,i(k), (3.3)

where for k ∈ N,

a
(1)
k,i(k) =

(
Pk,i(k), u

)
Sm

and

a
(2)
k,i(k) =

(
ωPk,i(k), u

)
Sm

.

Furthermore, as H is unitary,

Hu = f1 − ωf2. (3.4)
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Remarks.

(1) In [9], the orthogonal projections of L2(S
m) onto H2(Sm) and H2(Sm)⊥ were

denoted by Π+ and Π− and the operator Hξ = Π− − Π+, called the Hilbert-Riesz
transform on L2(S

m), was introduced. It is clear that Hξ = −H, thus showing that
Hξ is in fact a singular integral operator.
Let us also recall that if 4ξ and Γξ denote, respectively, the Laplace-Beltrami op-
erator and the spherical Dirac operator on L2(S

m), then√(
m− 1

2

)2

1−4ξ = Hξ

(
Γξ −

m− 1

2
1
)

.

(2) From (3.2) and (3.3) we get straightforwardly - and this by replacing ω ∈ Sm by

x = rω ∈
◦
B(1) (0 ≤ r < 1) - that the unique solution to the Dirichlet problem 4U = 0 in

◦
B(1)

U |Sm = u, u ∈ L2(S
m)

is given by

U(x) = F1(x) + xF2(x). (3.5)

Hereby F1 and F2, both belonging to H2(
◦
B(1)), extend monogenically f1 and f2 to

◦
B(1).

For the sake of completeness, let us recall that H2(
◦
B(1)) may be characterized as

being the space of those elements F monogenic in
◦
B(1) for which

sup
r<1

∫
Sm

∣∣∣F (rω)|2dS(ω) < +∞ .

Notice too that (3.5) was already obtained in [8] and this by using the decomposition

of the Poisson kernel Px(ω) for
◦
B(1) in terms of the Szegö kernel, namely

Px(ω) = Sx(ω) + ωSx(ω)x̄ , (x, ω) ∈
◦
B(1))× Sm.

For a similar result, see also [2].

4 The Hilbert transform on Rm

Take Ω = Rm+1
+ = {x = (x0, · · · , xm) = (x, xm) : x ∈ Rm, xm > 0}, its boundary

being Rm = {x ∈ Rm+1 : xm = 0}.
At each point y ∈ Rm, ν(y) = ēm and so the Hilbert transform on Rm is given for
a.e. x ∈ Rm by

Hf(x) =
2

Am+1

P.V.
∫

Rm

x− y

|x− y|m+1
ēmf(y)dy. (4.1)
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It is a unitary operator with eigenspaces H2(Rm) and ēmH2(Rm), corresponding
to the eigenvalues +1 and −1.
In [10] the operator H̃ was introduced with

H̃ =
m−1∑
j=0

ej Rj, (4.2)

Rj, j = 0, · · · , m− 1, being the j-th Riesz transform:

Rjf(x) =
2

Am+1

P.V.
∫

Rm

xj − yj

|x− y|m+1
f(y)dy.

From (4.1) and (4.2) it follows that

H = em H̃. (4.3)

Introducing spherical coordinates x = rω in Rm where r = |x| and ω ∈ Sm−1,
we have that on S(Rm)

H̃ϕ(x) =
(
− P.V.

ω̄

rm
∗ ϕ

)
(x)

= limε→0+

∫
Rm\B(ε)

x− y

|x− y|
ϕ(y)

|x− y|m
dy.

Hereby P.V.
ω̄

rm
is the principal value kernel in Rm which generalizes in a natural

way to Euclidean space the principal value kernel P.V.
1

x
defined on R.

For more generalized principal value distributions and associated convolution oper-
ators in Clifford analysis, we refer to [4] and [5].

Remarks.

(1) (See also [10]). The Clifford algebra R0,m+1 admits the splitting

R0,m+1 = R0,m ⊕ emR0,m (4.4)

where R0,m is the universal Clifford algebra constructed over the quadratic vector
space R0,m with orthogonal basis (e0, e1, ..., em−1).
If f ∈ L2(Rm; R0,m), then it follows from (4.2) that H̃ f is also R0,m-valued. Conse-
quently, if for f ∈ L2(Rm; R0,m+1), its splitting in terms of (4.4) reads

f = U + em V

with U, V ∈ L2(Rm; R0,m), we have in view of (4.3) that

f ∈ H2(Rm) ⇐⇒ Hf = f ⇐⇒
{
H̃ U = V

H̃ V = U
. (4.5)
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But, as H̃2 = 1, the condition (4.5) reduces to

f ∈ H2(Rm) ⇐⇒ H̃U = V.

(2) The Poisson kernel Px(y) on Rm+1
+ splits into

Px(y) = Sx(y) + ēmSx(y)em (4.6)

where Sx(y) is the Szegö kernel for Rm+1
+ (see also (2.10)).

Using the orthogonal decomposition

L2(Rm) = H2(Rm)⊕ ēmH2(Rm),

it readily follows from (4.6) that a function f ∈ L2(Rm) may be written as

f = Pf + ēmP(emf),

where P is the Szegö projection from L2(Rm) onto H2(Rm).
Call H2(Rm+1

+ ) (resp. H2(Rm+1
+ )) the space of harmonic (resp. monogenic) functions

in Rm+1
+ having non-tangential boundary values in L2(Rm). Then (see [15] and [10]),

F belongs to either of these spaces iff

supym>0

∫
Rm

|F (y, ym)|2dy < +∞.

As the Szegö integral operator S associated with the Szegö kernel Sx(y) maps
H2(Rm) onto H2(Rm+1

+ ) and the Poisson integral operator P maps L2(Rm) onto
H2(Rm+1

+ ), we obtain the decomposition

H2(Rm+1
+ ) = H2(Rm+1

+ )⊕ ēmH2(Rm+1
+ ).

Hence, for any U ∈ H2(Rm+1
+ ), there exists a pair of functions (F1, F2) in H2(Rm+1

+ )
such that

U = F1 + ēmF2.

For a similar result, see also [2].

5 Classical results in the plane revisited

In this section it is shown how the Clifford analysis approach, as set up in the
foregoing sections, includes classical results when considering the case R2, i.e. when
taking m = 1. For a standard approach to the Cauchy and Hilbert transforms in
the plane, we refer to [1].
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5.1 Decompositions of H2(Ω) and L2(
∑

)

Let Ω ⊂ R2 be open and bounded with C∞-boundary
∑

or let Ω be R2
+ = {x =

(x0, x1) : x1 > 0} with boundary R = {x ∈ R2 : x1 = 0}.
Put ε1 = ē0e1. Then the even subalgebra R+

0,2 of R0,2 is given by

R+
0,2 = R⊕ ε1R.

It gives rise to the decomposition

R0,2 = R+
0,2 ⊕ R+

0,2ē0. (5.1)

Notice that by identifying ε1 = ē0e1 with the imaginary unit i in C, R+
0,2 is isomorphic

to C.
In what follows, only R0,2-valued functions will be considered.
In view of (5.1), if F is defined on some subset G of R2, then F may be written as

F (x) = U(x) + V (x)ē0, x ∈ G, (5.2)

where U and V are R+
0,2-valued on G.

If F is a monogenic function in Ω, i.e. ∂xF = 0 in Ω, then as

∂xF = 0 ⇐⇒ ē0∂xF = 0
⇐⇒ DxF = 0

where Dx = ∂x0 + ε1∂x1 is the Weyl or Cauchy-Riemann operator in R2, we obtain
by virtue of (5.1) that

∂xF = 0 ⇐⇒
{

DxU = 0
DxV = 0

in Ω.

Notice hereby that for g = u + ε1v, R+
0,2-valued in Ω, Dxg = 0 in Ω is equivalent to

saying that the C-valued function g∗ = u + iv is holomorphic in Ω.
We may thus conclude that a monogenic R0,2-valued function F in Ω may be iden-
tified with a pair (g1, g2) of holomorphic functions in Ω and vice-versa.
Notice too that

H2(Ω) = H2(Ω; R+
0,2)⊕H2(Ω; R+

0,2)ē0

and that the space of boundary values of elements in H2(Ω; R+
0,2) is H2(

∑
; R+

0,2).
Now let f = u + vē0 ∈ L2(

∑
), i.e. u, v ∈ L2(

∑
; R+

0,2).
Taking the Cauchy and Hilbert transforms of f we find that, as (x− y)ν(y) is R+

0,2-
valued, Cu, Cv, Hu and Hv are R+

0,2-valued too.
Consequently, in terms of the decomposition (5.1),

Cf(x) = Cu(x) + Cv(x)ē0, x ∈ Ω,
and (5.3)

Hf(x) = Hu(x) + Hv(x)ē0, x ∈ Σ.
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Notice hereby that on L2(
∑

; R+
0,2), the inner product

(f, g)∑ =
∫∑ f̄gds

is also R+
0,2-valued.

Let us now have a closer look at the Kerzman-Stein decomposition

L2(Σ) = H2(Σ)⊕ νH2(Σ). (5.4)

Then it is easily verified that, by mixing up (5.1) and (5.4), we obtain:

L2(Σ) = H2(Σ; R+
0,2)⊕ νH2(Σ; R+

0,2)ē0

⊕
(
H2(Σ; R+

0,2)⊕ νH2(Σ; R+
0,2)ē0

)
ē0. (5.5)

In particular, L2(
∑

; R+
0,2) is orthogonally decomposed into

L2(Σ; R+
0,2) = H2(Σ; R+

0,2)⊕ νH2(Σ; R+
0,2)ē0. (5.6)

So, in order to describe L2(
∑

), it suffices to determine H2(
∑

; R+
0,2).

Remark. Let Ω ⊂ R2 be open and bounded with C∞-boundary
∑

.
By virtue of (2.2), the Cauchy transform on L2(

∑
; R+

0,2) is given by

Cf(x) = (Cx, f)∑

=
1

2π

∫∑ x− y

|x− y|2
ν(y)f(y)ds(y). (5.7)

As we have already observed, Cf is R+
0,2-valued and monogenic in Ω and, more-

over, monogenic R+
0,2-valued functions in Ω may be identified with holomorphic

functions in Ω.

Usually, if in the complex plane
∑

is parametrized by z(t), t ∈ [0, 1], and T (z) =
z′(t)

|z′(t)|
denotes the unit tangent vector at z(t) ∈ ∑

, the Cauchy transform Cf of f ∈
L2(

∑
; C) is defined by (see [1])

Cf(u) =
1

2πi

∫∑ 1

z − u
T (z)f(z)ds. (5.8)

But, as at z ∈ ∑, the outward pointing unit normal n(z) is given by

n(z) = −iT (z),

the expression (5.8) also reads:

Cf(u) =
1

2π

∫∑ z − u

|z − u|2
n(z)f(z)ds. (5.9)

Obviously, the expressions (5.7) and (5.9) are similar.
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5.2 The case of the unit disc

Let Ω =
◦
B(1) be the open unit disc in R2 with boundary

∑
= S1.

From (3.1) we obtain for a.e. ξ ∈ S1:

Hf(ξ) =
1

π
P.V.

∫
S1

ξ − ω

|ξ − ω|2
ωf(ω)ds(ω).

As has been observed in § 5.1, it suffices to characterize H2(S1; R+
0,2) in order to

describe L2(S
1; R+

0,2) and L2(S
1). Moreover, through the identifications R+

0,2
∼= C

and H2(Ω; R+
0,2) ∼= H2(Ω, C), H2(S1; R+

0,2) is nothing else but the classical Hardy
space H2(S1; C).

An orthonormal basis of H2(S1; R+
0,2) is thus given by(

1√
2π

eε1kθ : k ∈ N, θ ∈ [0, 2π[

)
, (5.10)

whence by means of (5.6)(
1√
2π

νeε1kθē0 : k ∈ N, θ ∈ [0, 2π[

)

is an orthonormal basis of νH2(
∑

; R+
0,2)ē0.

As for ω ∈ S1,
ν(ω) = ω = e0e

ε1θ,

we obtain that for each k ∈ N,

νeε1kθē0 = e−ε1(k+1)θ.

Consequently, the orthonormal basis(
1√
2π

e−ε1(k+1)θ : k ∈ N, θ ∈ [0, 2π[

)
(5.11)

of H2(S1; R+
0,2)

⊥ = ωH2(S1; R+
0,2)ē0 is obtained.

Furthermore, as for f ∈ H2(S1; R+
0,2), Hf = f and for f ∈ H2(S1; R+

0,2)
⊥, Hf = −f ,

we have in particular that for each k ∈ N,

H
(
eε1kθ

)
= eε1kθ

and (5.12)

H
(
e−ε1(k+1)θ

)
= −e−ε1(k+1)θ.
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Remarks.

(1) In [14] the periodic Hilbert transform H̃ on L2(S
1; C) was introduced as

follows:

H̃
(
einθ

)
=

sgn n

i
einθ, n ∈ Z\{0},

and

H̃(1) = 0.

It was extended by linearity to a bounded operator on L2 (S1; C).
Identifying i with ε1 = ē0e1 and denoting by P0 the orthogonal projection of L2

(S1; R+
0,2) onto its one dimensional subspace of constants, then clearly

H = ε1H̃ + P0.

(2) Putting z = x0 + ε1x1, then for each k ∈ N,

zk|S1 = eε1kθ and z̄k+1|S1 = e−ε1(k+1)θ = νeε1kθē0.

Consequently, the harmonic extensions of eε1kθ and νeε1kθē0 to
◦
B(1) are given by zk

and z̄k+1 = xzkē0. In its turn, this implies that the (unique) harmonic extension U

of u ∈ L2(S
1; R+

0,2) to
◦
B(1) may be written as U(x) = F1(x) + F2(x) where F1 and

F2 have series expansions into z and z̄ respectively. In terms of holomorphy, this

means that F1 is holomorphic and F2 is anti-holomorphic in
◦
B(1). Although this

result is standard, we wish to give some supplementary comments on it, in particular
concerning its interpretation in Clifford analysis terms.
Let u ∈ L2(S

1; R+
0,2) admit the decomposition (see (5.6)):

u = w0 + νw1ē0

where w0, w1 ∈ H2(S1; R+
0,2).

The (unique) harmonic extension U ∈ H2

( ◦
B(1); R+

0,2

)
of u to

◦
B(1) then reads:

U(x) = W0(x) + xW1(x)ē0 (5.13)

where W0, W1 ∈ H2

( ◦
B(1); R+

0,2

)
.

As W1 is R+
0,2-valued and monogenic,

DxW1 = W1Dx = 0 in
◦
B(1)

whence

W1ē0∂x = W1Dx = 0 in
◦
B(1).

Moreover, as xW1Dx = 0, we finally obtain that(
x W1(x)ē0

)
∂x =

(
x W1(x)

)
Dx = 0 in

◦
B(1),
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i.e. xW1(x)ē0 is right monogenic in
◦
B(1)

Now observe that for any f ∈ C1(Ω; R+
0,2),

f∂x = 0 ⇐⇒ ∂xf̄ = 0 ⇐⇒ Dxf̄ = 0.

In terms of holomorphy, this means that f is anti-holomorphic in Ω.
Therefore, the expression (5.13) is similar to the one obtained in the complex plane
(see [1], Theorem 7.4). It represents the solution to the Dirichlet problem in the
unit disc as a sum of a holomorphic and an anti-holomorphic function, the latter
vanishing at x = 0.

5.3 The case of the upper half plane

Let Ω = R2
+ = {(x0, x1) : x1 > 0} be the upper half plane in R2 with boundary∑

= R.
¿From (4.1) we get that for f ∈ L2(R),

Hf(x0) =
1

π
P.V.

∫ +∞

−∞

x0 − y0

|x0 − y0|2
e0ē1f(y0)dy0

= ε1
1

π
P.V.

∫ +∞

−∞

1

x0 − y0

f(y0)dy0

= ε1Hf(x0) (5.14)

= ε1

(
P.V.

1

y0

∗ f

)
(x0)

where H is the standard Hilbert transform on L2(R).
It follows that if f is R-valued, then Hf is ε1R-valued.
Hence, for f ∈ L2(R; R+

0,2) with f = u + ε1v, u and v being R-valued, we have

Hf = f ⇐⇒
{

Hu = ε1v
H(ε1v) = u

. (5.15)

But, as H2 = 1, (5.15) reduces to

Hf = f ⇐⇒ Hu = ε1v. (5.16)

In view of (5.14), (5.16) is equivalent with Hu = v, thus reobtaining a classical
result for the Hilbert transform on the real line.

Remarks.

(1) Let u ∈ L2(R) be real valued and put

f = u + Hu. (5.17)

Then f ∈ L2(R; R+
0,2) and Hf = f , i.e. f ∈ H2(R; R+

0,2), whence by means of (5.17)
all R⊕ ε1R-valued ”analytic signals” are obtained.
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(2) Consider on R the C+
2 -valued functions

σ±(x0) =
1

2
(1± iε1 sgn x0)

where

C+
2 = R+

0,2 ⊕R C

is the even subalgebra of C2.
Then on R

σ2
± = σ±;

σ± = σ±;
σ±σ∓ = 0;
σ+ + σ− = 1,

i.e. σ+ and σ− are hermitian, mutually orthogonal primitive idempotents in C2.
Taking the Fourier transform F± in (5.14), we find that for f ∈ L2(R; R+

0,2),

F±Hf(x0) = ±iε1 sgnx0 F±f.

Hence for f ∈ L2(R; R+
0,2),

Hf = f ⇐⇒ σ±F±f = 0.

This result should be compared with the classical one obtained for C-valued func-
tions, stating that for f ∈ L2(R) are equivalent (see e.g. [10])

(i) f ∈ H2(R)

(ii) (1− iH)f = 0

(iii) [F−f ] ⊂ [0, +∞[.
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[9] R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued
Functions, Kluwer, Dordrecht, 1992.

[10] J. Gilbert and M. Murray, Clifford Algebras and Dirac Operators in Harmonic
Analysis, Cambridge Univ. Press, Cambridge, 1991.

[11] N. Kerzman and E. Stein, The Cauchy kernel, the Szegö kernel, and the Rie-
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