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Abstract

We study some partial differential equations with infinite delay which ap-
pear, for example, in models of population dynamics. Using the semigroup
theory, we prove the existence of classical solutions of such equations.

1 Introduction

In [6] S. Brendle and R. Nagel introduced the equations

∂

∂t
u(t, s) =

∂

∂s
u(t, s) + A(s)u(t, s), s ≤ 0, t ≥ 0, (1.1)

∂

∂t
u(t, 0) = Bu(t, 0) + Φu(t, ·), t ≥ 0, (1.2)

where A(s) are (unbounded) operators on a Banach space X for which the associated
nonautonomous Cauchy problem

(NCP )

u̇(t) = −A(t)u(t), t ≤ s ≤ 0,

u(s) = x ∈ X
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is well-posed, B is the generator of a strongly continuous semigroup (S(t))t≥0 on X,
and Φ, the delay operator, is a linear operator from a space of X−valued functions
on R− into X (see also [12], [13], [14] or [15]). They found mild solutions of the above
equations by constructing a suitable semigroup (TB,Φ(t))t≥0 on C0(R−, X), while we
proved in [11] that, under suitable assumptions, their semigroup also yields classical
solutions of (1.1) and (1.2), i.e., u(t, s) is continuously differentiable and satisfies the
two equations.

In this paper we study the above equations in Lp(R−, X), since there are many
applications in which such spaces are considered. For example, in some biological
models u is the population density and so the natural space is L1 (see [15], [21], [23],
[24]). Moreover, in control theory one generally considers the space L2 (see, e.g.,
[2]).

The steps to prove the main theorem are the same as [11, Theorem 4.4], but we
need some different techniques to prove some lemmas and preliminary results useful
for the proof of Theorem 4.6 (because, for example, bounded functions in C0(R−, X)
may not be bounded in Lp(R−, X)).

In order to treat the Lp−case, we associate to (1.1) and (1.2) a delay equation
with nonautonomous past

(NDE)


u̇(t) = Bu(t) + Φũt

u(0) = x ∈ X

ũ0 = f ∈ Lp(R−, X),

(see [12] and [13]), where ũt is the modified history function defined as

ũt(τ) : =

U(τ, 0)u(t + τ) for t + τ ≥ 0 ≥ τ,

U(τ, t + τ)f(t + τ) for 0 ≥ t + τ ≥ τ.

Here U :=(U(t, s))t≤s≤0 is the evolution family solving (NCP ) on regularity sub-
spaces Ys, i.e. there are dense subspaces Ys of X such that the function t 7→ u(t) =
U(t, s)x is a classical solution of (NCP ) for s ∈ R− and x ∈ Ys (see [20, Proposition
2.5]). A particular form of (NDE) has been studied by A. Bátkai and S. Piazzera
(see, e.g., [3], [4] and [5]).

The basic idea in this paper is to consider a product space E := X × Lp(R−, X)
and to define an operator matrix which is related to (1.1) and (1.2). Using the
Miyadera-Voigt perturbation theorem (see [10, Theorem III.3.14], [19] or [26]) we
find a semigroup whose second coordinate gives, under suitable assumptions, clas-
sical solutions of (1.1) and (1.2). It must be noted that the Lp−case leads to an
additional technical assumption on the delay operator Φ (see Assumption 3.9), which
guarantees the existence of such a semigroup.

2 Motivations

Partial functional differential equations with autonomous past can be written in
abstract form as

(DE)


u̇(t) = Bu(t) + Φut, t ≥ 0,

u(0) = x ∈ X,

u0 = f ∈ Lp(R−, X),
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where the function u takes values in a Banach space X and the history function
ut : R− → X is defined by

ut(s) := u(t + s).

In [10, Section VI.6], it is shown that if Φ ∈ L(C0(R−, X), X), then a solution of
(DE) is given by

u(t) :=

f(t), t ≤ 0,

(TB,Φ(t)f)(0), t ≥ 0,
(2.1)

where (TB,Φ(t))t≥0 is a suitable strongly continuous semigroup on C0(R−, X), which
satisfies the following translation property

(TB,Φ(t)f)(s) :=

f(s + t), s + t ≤ 0,

(TB,Φ(s + t)f)(0), s + t ≥ 0.
(2.2)

If, however, we define
u(t, s) := (TB,Φ(t)f)(s) (2.3)

for t ≥ 0 and s ≤ 0, we obtain that u satisfies a two-variable version of (DE) of the
form

∂

∂t
u(t, s) =

∂

∂s
u(t, s), s ≤ 0, t ≥ 0, (2.4)

∂

∂t
u(t, 0) = Bu(t, 0) + Φu(t, ·), t ≥ 0. (2.5)

The first equation says that the history function is shifted to left by−t, without being
modified, while the second shows that, for values greater than −t, the function is
due to the delay operator. In some cases the history function is not only shifted into
the past, but it is also modified. For example, this occurs for population equations
with diffusion (see, e.g., [15], [23] or [24]) and for genetic repression (see, e.g., [14]
or [18]). Assume that this modification is governed by a backward evolution family
(U(t, s))t≤s≤0(cf. [8]), i.e., a family of bounded linear operators on X satisfying

U(r, s)U(s, t) = U(r, s), r ≤ s ≤ t ≤ 0, (2.6)

U(t, t) = Id, t ≤ 0, (2.7)

and such that the mapping (r, s) 7→ U(r, s) is strongly continuous, and (TB,Φ(t))t≥0

satisfies a modified translation property

(TB,Φ(t)f)(s) :=

U(s + t, s)f(s + t), s + t ≤ 0,

U(0, s)(TB,Φ(s + t)f)(0), s + t ≥ 0,
(2.8)

for each f ∈ C0(R−, X). If we differentiate formally

u(t, s) := (TB,Φ(t)f)(s), (2.9)

then u satisfies
∂

∂t
u(t, s) =

∂

∂s
u(t, s) + A(s)u(t, s), s ≤ 0, t ≥ 0, (2.10)

for linear operators

A(s) := − ∂

∂r
U(r, s)|r=s

on X. For this reasons, in [6], S. Brendle and R. Nagel replaced (2.4) with (2.10),
and studied the combination of (1.1) and (1.2).
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3 The Coordinates of the Semigroup

As a first step we fix the assumptions and review, following [12], the definitions and
the results that will be used in the rest of the paper.

General assumptions 3.1. 1. The generator (B, D(B)) satisfies D(B) ↪→ Y0, where
Y0 is a regularity subspace as in the Introduction.

2. The (linear) delay operator Φ : C0(R−, X) ∩ Lp(R−, X) ⊆ D(Φ) → X is
bounded with respect to ‖ · ‖p or ‖ · ‖∞.

3. The operators (A(t), D(A(t)))t∈R− are such that the function s 7→ A(s)(ελx)(s)
belongs to E := Lp(R−, X) for x ∈ D(B), and the bounded linear operators
ελ : X → E are defined, for all λ ∈ C with <λ > ω0(U), by

(ελx)(s) := eλsU(s, 0)x, s ≤ 0, x ∈ X. (3.1)

Here ω0(U) denotes the growth bound of U , i.e.

ω0(U) := inf{ω ∈ R : ∃ Mω ≥ 1 with ‖U(t, s)‖ ≤ Mωeω(s−t) for t ≤ s ≤ 0}.

To use semigroup techniques we extend the evolution family (U(t, s))t≤s≤0 solv-
ing (NCP ) to an evolution family (Ũ(t, s))t≤s on R in a trivial way (see [12,
Definition 2.2.1]). On the space Ẽ := Lp(R, X), we then define the corresponding
evolution semigroup (T̃ (t))t≥0 by

(T̃ (t)f̃)(s) := Ũ(s, s + t)f̃(s + t)

for all f̃ ∈ Ẽ, s ∈ R, t ≥ 0 (see also [7]).
We denote its generator by (G̃, D(G̃)). Remark that we did not assume any

differentiability for (Ũ(t, s))t≤s and hence the precise description of the domain D(G̃)
is difficult. However, in [22, Proposition 2.1], the following important property of
D(G̃) is proved.

Lemma 3.2. The domain D(G̃) of the generator G̃ of the evolution semigroup
(T̃ (t))t≥0 on Ẽ is a dense subspace of C0(R, X).

Since (G̃, D(G̃)) is a local operator (see [10, Proposition 2.3 ] and [22, Theorem
2.4]), we can restrict it to the space E := Lp(R−, X) by the following definition.

Definition 3.3. Take

D(G) := {f̃|R− : f̃ ∈ D(G̃)}

and define

Gf := (G̃f̃)|R− for f = f̃|R− ∈ D(G̃).

This operator G is not a generator on E. However, if we identify E with the
subspace {f ∈ Ẽ : f(s) = 0 ∀s ≥ 0}, then E remains invariant under (T̃ (t))t≥0. As
a consequence, we obtain the following lemma.
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Lemma 3.4 ([12], Lemma 2.4). The semigroup (T0(t))t≥0 induced by (T̃ (t))t≥0

on E is

(T0(t)f)(s) =

U(s, s + t)f(t + s), s + t ≤ 0,

0, s + t > 0,

for f ∈ E.

The following lemma characterizes the generator of this semigroup.

Lemma 3.5 ([12], Lemma 2.5). The generator (G0, D(G0)) of (T0(t))t≥0 is given
by

D(G0) = {f ∈ D(G̃) ∩ E : f(0) = 0}, G0f = Gf.

We thus end up with operators (G0, D(G0)) ⊂ (G, D(G)) ⊂ (G̃, D(G̃)), where
only the first and the third are generators on E and Ẽ, respectively.
Using the operators (G, D(G)) and (B, D(B)), we can define a new operator on the
product space E .

Definition 3.6. On the product space E = X × Lp(R−, X), define the operator C
as

C := C0 + F :=

(
B 0
0 G

)
+

(
0 Φ
0 0

)
with domain

D(C) = D(C0) :=
{(

x
f

)
∈ D(B)×D(G) : f(0) = x

}
and F ∈ L(D(C0), E).

Since D(G) ⊆ C0(R−, X) ∩ Lp(R,X) ⊆ D(Φ), then Φf is well-defined. Recall
that the last inclusion holds by General assumptions 3.1.

Now we want to recall two important results from [12] that will be used in this
paper.

Proposition 3.7 ([12], Proposition 4.2). The operator (C0, D(C0)) generates a
strongly continuous semigroup (T0(t))t≥0 on E given by

T0(t) :=

(
S(t) 0
St T0(t)

)
,

where (T0(t))t≥0is as in Lemma 3.4, (S(t))t≥0 is the semigroup generated by (B, D(B))
and St : X → E is defined as

(Stx)(τ) :=

U(τ, 0)S(t + τ)x, t + τ > 0,

0, t + τ ≤ 0.
(3.2)

Theorem 3.8 ([12], Theorem 4.5). Assume that the delay operator Φ satisfies
the Miyadera-Voigt condition, i.e.∫ t0

0
‖Φ(Srx + T0(r)f)‖dr ≤ q

∥∥∥∥∥
(

x
f

)∥∥∥∥∥ (M)
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for all

(
x
f

)
∈ D(C0) and some t0 > 0 and 0 ≤ q < 1.

Then the operator (C, D(C)) generates a strongly continuous semigroup (T (t))t≥0

on E satisfying

T (t)

(
x
f

)
= T0(t)

(
x
f

)
+
∫ t

0
T (t− s)FT0(s)

(
x
f

)
ds

for all

(
x
f

)
∈ D(C0), t ≥ 0, with (T0(t))t≥0 as in Proposition 3.7.

From now on we always make the following additional assumption.

Assumption 3.9. The delay operator Φ satisfies condition (M).

The proof of the following proposition is an immediate consequence of Theorem
3.8 and of the definitions of (T0(t))t≥0 and of the function t 7→ St (see Lemma 3.4
and (3.2)).

Proposition 3.10. The projections of (T (t))t≥0 onto the first and the second com-
ponent on E satisfy the following identities

π1(T (t)
(

x
f

)
) = etBx +

∫ t

0
e(t−τ)BΦπ2(T (τ)

(
x
f

)
) dτ, (3.3)

π2(T (t)
(

x
f

)
)(s) = U(s, s + t)f(s + t) (3.4)

if s + t ≤ 0, and

π2(T (t)
(

x
f

)
)(s) = U(s, 0)e(s+t)Bx +

∫ s+t

0
U(s, 0)e(s+t−τ)BΦπ2(T (τ)

(
x
f

)
) dτ (3.5)

if s + t ≥ 0 for all
(

x
f

)
∈ D(C).

Remark 3.11. 1. Observe that π2(T (t)
(

x
f

)
) ∈ D(Φ) since π2(T (t)

(
x
f

)
) = ũt a.e.

(see Corollary 3.14) and ũt ∈ D(Φ) (see Remark 3.13).

2. It is interesting to compare these relations and the equality satisfied by the
semigroup (TB,Φ(t))t≥0 introduced by S. Brendle and R. Nagel. In particular
they prove the following proposition.

Proposition 3.12 ([6], Proposition 2.14). The semigroup (TB,Φ(t))t≥0 satisfies

(TB,Φ(t)f)(s) = U(s, s + t)f(s + t)

if s + t ≤ 0, and

(TB,Φ(t)f)(s) = U(s, 0)e(s+t)Bf(0) +
∫ s+t

0
U(s, 0)e(s+t−τ)BΦTB,Φ(τ)f dτ

if s + t ≥ 0.
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Remark 3.13. In [12, Theorem 3.5] it is proved that if u(t) is given by

u(t) :=

π1

(
T (t)

(
x
f

))
, t ≥ 0,

f(t), a.e. t ≤ 0,
(3.6)

then u is a classical solution of (NDE) for every
(

x
f

)
∈ D(C), i.e. the function

u : R → X satisfies the following properties:

(i) u ∈ C(R, X) ∩ C1(R+, X),

(ii) u(t) ∈ D(B), ũt ∈ D(Φ), t ≥ 0,

(iii) u satisfies (NDE) for all t ≥ 0.

If
(

x
f

)
∈ E , then u can be considered as a mild solution of (NDE).

The reason for this last terminology is the following corollary.

Corollary 3.14. The function u : R → X defined in (3.6) for every
(

x
f

)
∈ E

satisfies the integral equation

u(t) =

x + B
∫ t
0 u(s)ds + Φ

∫ t
0 ũsds, t ≥ 0,

f(t), a.e. t ∈ R−,

where ũs is as in Introduction.

Proof. Let π2 be the projection onto the second component of E , i.e., π2

(
x
f

)
:= f

for all
(

x
f

)
∈ E .

First Step. We prove that

ũt = π2(T (t)
(

x
f

)
) a.e.. (3.7)

Indeed, (3.7) holds by [12, Proposition 3.6] for
(

xn
fn

)
∈ D(C). Take now

(
x
f

)
∈ E

and a sequence
(

xn
fn

)
∈ D(C) converging to

(
x
f

)
. Since the semigroup (T (t))t≥0 is

strongly continuous, the sequence T (t)
(

xn
fn

)
converges to T (t)

(
x
f

)
in E .

Let

un(t) :=

π1(T (t)
(

xn
fn

)
), t ≥ 0,

fn(t), a.e. t ≤ 0.

Since
(

xn
fn

)
∈ D(C), we have (ũn)t = π2(T (t)

(
xn
fn

)
).

Moreover, if −t ≤ s ≤ 0,

(ũn)t(s) = Ũ(s, s + t)un(s + t) = Ũ(s, s + t)π1(T (t + s)
(

xn
fn

)
).

By our assumptions, it follows that ‖(ũn)t − ũt‖p → 0 as n → +∞. Thus, there
exists a subsequence (ũnk

)t of (ũn)t such that (ũnk
)t(s) → (ũt)(s) a.e..

Since
(ũnk

)t(s) = π2(T (t)
( xnk

fnk

)
)(s) → π2(T (t)

(
x
f

)
)(s),
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we can conclude that
ũt = π2(T (t)

(
x
f

)
) a.e..

If s ≤ −t, one has

(ũn)t(s) = Ũ(s, s + t)un(s + t) = Ũ(s, s + t)fn(s + t).

Since ‖fn − f‖p → 0, there exists a subsequence fnk
of fn such that fnk

(s) → f(s)
a.e.. Thus

(ũnk
)t(s) = Ũ(s, s + t)unk

(s + t) = Ũ(s, s + t)fnk
(s + t)

→ Ũ(s, s + t)f(s + t) = (ũt)(s) a.e. for s ≤ −t.

Proceeding as above, we have

ũt = π2(T (t)
(

x
f

)
) a.e..

Second step. Taking the first component of the identity

T (t)

(
x
f

)
−
(

x
f

)
= C

∫ t

0
T (s)

(
x
f

)
ds,

one has

u(t)− x = π1

C
∫ t

0 π1(T (s)
(

x
f

)
)ds∫ t

0 π2(T (s)
(

x
f

)
)ds


= π1

[(
B Φ
0 G

)(∫ t
0 u(s)ds∫ t
0 ũsds

)]
= B

∫ t

0
u(s)ds + Φ

∫ t

0
ũsds

for all t ≥ 0. �

In the next section we discuss properties of the projection of (T (t))t≥0 onto the
second component of E .

4 Classical Solutions for PDEs on Lp(R−, X)

In this section we want to exhibit classical solutions of (1.1) and (1.2) on Lp(R−, X).
As in [11], the basic idea is to find a core of C, i.e., a dense set D in the domain D(C),
endowed with the graph norm, which is invariant under the semigroup (T (t))t≥0 .
Since

D(C) =
{(

x
f

)
∈ D(B)×D(G) : f(0) = x

}
(see Definition 3.6), the basic idea is to find a core of the operator G given in
Definition 3.3. To this purpose we put

D0 := {f ∈ W 1,p(R−, X) : f(0) = 0, f(s) ∈ Ys, s 7→ A(s)f(s) ∈ E}. (4.1)

As in [25, Proposition 1.13] one can prove that the set D0 is a core of G0 in
Lp(R−, X), where G0 is as in Lemma 3.5. The next result allows us to obtain a
core of G.

Let (U(t, s))t≤s≤0 be as in Introduction and ω0(U) its growth bound.
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Proposition 4.1. For λ ∈ C with <λ > ω0(U), the set

D := D0 ⊕ {ελy : y ∈ D(B)} (4.2)

is a core of G. Moreover,

Gf = f ′ + A(·)f a.e.

for every f ∈ D.

The proof of this proposition is based on the following two lemmas.

Lemma 4.2 (see [12], Lemma 4.1). Let λ ∈ C with <λ > ω0(U). Then ελx is
an eigenvector of G with eigenvalue λ for every x ∈ X.

Lemma 4.3. Let u ∈ E and λ ∈ C with <λ > ω0(U). Then u ∈ D(G) and
λu−Gu = 0 if and only if u(t) = (ελu(0))(t), t ≤ 0.

The previous lemma can be proved as in [17, Lemma 2.5].

Proof of Proposition 4.1. We first prove that D is dense in D(G) with respect to
the graph-norm, i.e.,

∀ f ∈ D(G) and ∀ ε > 0 there exists g ∈ D such that ‖f − g‖G < ε.

Let λ be such that <λ > ω0(T0(·)), hence λ ∈ ρ(G0). Since G0 = G|KerL
, where

L : D(G) → X is given by Lf := f(0), we can apply a result proved by G. Greiner
(see [16, Lemma 1.2]), obtaining that

D(G) = D(G0)⊕Ker(λ−G).

Thus, using Lemma 4.2 and Lemma 4.3, for every f ∈ D(G) there exists f0 ∈
D(G0) and x ∈ X such that f = f0 + µελx, for some constant µ.

Since ελ is bounded, there exists M ∈ R+ such that ‖ελ‖L(X,E) ≤ M . Let
kλ := 1 + M(1 + |λ|) and ε′ := ε

kλ
.

Since D(B) and D0 are dense in X and D(G0), respectively, there exist x0 ∈
D(B) and g0 ∈ D0 such that

‖x− x0‖X < ε′

and
‖f0 − g0‖G0 < ε′.

Let g := g0 + µελx0. Then g ∈ D and

‖f − g‖G = ‖f0 − g0‖G + ‖ελx− ελx0‖G = ‖f0 − g0‖G0 + ‖ελx− ελx0‖G

≤ ε′ + ‖ελx− ελx0‖E + ‖Gελx−Gελx0‖E

≤ ε′ + ‖ελ‖L(X,E)‖x− x0‖X + |λ|‖ελ‖L(X,E)‖x− x0‖X

≤ ε′ + M(1 + |λ|)ε′ = kλε
′ = ε.
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Moreover, Gf = f ′+A(·)f for every f ∈ D. In fact, if f ∈ D, write f = f0+µελx0

where f0 ∈ D0 and x0 ∈ D(B).
Then

Gf = G(f0 + µελx0) = f ′0 + A(·)f0 + µGελx0 = f ′0 + A(·)f0 + µλελx0

and

f ′ + A(·)f = f ′0 + (µελx0)
′ + A(·)f0 + µA(·)ελx0.

Since

(µελx0)
′(s) = µλ(ελx0)(s) + µeλs ∂

∂s
U(s, 0)x0 = µλ(ελx0)(s)− µA(s)(ελx0)(s),

it follows that Gf = f ′ + A(·)f for every f ∈ D. �

The following lemma gives another expression for D.

Lemma 4.4. The core D of D(G), defined in (4.2), coincides with

C := {f ∈ W 1,p(R−, X) : f(0) ∈ D(B), f(s) ∈ Ys, s 7→ A(s)f(s) ∈ Lp(R−, X)}.

Proof. “ ⊇ ” Let f ∈ C and put

g := f − ελf(0).

Using General Assumptions 3.1.3 on the operators A(s), it is easy to prove that
g ∈ D0. In fact, g(0) = 0, g ∈ W 1,p(R−, X) and the function s 7→ A(s)g(s) =
A(s)f(s) + A(s)(ελf(0))(s) ∈ Lp(R−, X). Since U(s, 0)Y0 ⊆ Ys, then g(s) ∈ Ys.
Thus f = g + ελf(0) ∈ D.
“ ⊆ ” Let f ∈ D. Then ∃ f0 ∈ D0 and x ∈ D(B) such that f = f0 + µελx.

One has f(0) = µx ∈ D(B), and since U(s, 0)Y0 ⊆ Ys, it follows that f(s) ∈ Ys.
Moreover, by the General Assumptions 3.1.3 on the operators A(s), we have that
the function s 7→ A(s)f(s) belongs to Lp(R−, X). �

We are now ready to answer the problem posed at the end of the previous section.
We have seen that the projection of (T (t))t≥0 onto the first component of E can be
considered as a classical or a mild solutions of (NDE) (see Remark 3.13). The
projection of (T (t))t≥0 onto the second component of E gives, instead, classical

solutions of (1.1) and (1.2), i.e. v(t, s) := π2(T (t)
(

x
f

)
)(s), for appropriate

(
x
f

)
,

belongs to the domain D(G) of the operator G, is continuously differentiable, and
satisfies (1.1) and (1.2).

To prove this result we consider

D := {
(

x
f

)
∈ D(B)×D : f(0) = x}

as a subspace of D(C). With a technique similar to the one used in [11] we can prove
the following lemma.
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Lemma 4.5. Take Φ ∈ L(C0(R−, X)∩Lp(R−, X), X), where C0(R−, X)∩Lp(R−, X)
is endowed with the norm ‖ · ‖∞ + ‖ · ‖p, and assume that Φ is bounded with respect
to the Lp−norm, 1 ≤ p < +∞. If the functions

s 7→ A(s)U(s, s + t)f(s + t)

and
s 7→ A(s)U(s, 0)g(s)

belong to Lp([−t, 0], X) for all f(·) ∈ Lp(R−, X) and g(·) ∈ C([−t, 0], D(B)), then
the space D defined above is a T −invariant subspace of D(C).

Proof. Let
(

x
f

)
∈ D, then T (t)

(
x
f

)
∈ D(C). Thus π1(T (t)

(
x
f

)
) ∈ D(B),

π2(T (t)
(

x
f

)
) ∈ D(G) and π2(T (t)

(
x
f

)
)(0) = π1(T (t)

(
x
f

)
). It remains to prove

that π2(T (t)
(

x
f

)
) ∈ D. To this aim, we consider two cases.

First case. For s ≥ −t, by Proposition 3.10, we can write π2(T (t)
(

x
f

)
)(s) as

π2(T (t)
(

x
f

)
)(s) = U(s, 0)gt(s),

where gt(s) := e(s+t)Bx +
∫ s+t
0 e(s+t−τ)BΦπ2(T (τ)

(
x
f

)
) dτ . Since

(
x
f

)
∈ D(C), then

π2(T (t)
(

x
f

)
)(0) ∈ D(B) and the function

R+ 3 τ 7→ Φπ2(T (τ)
(

x
f

)
) ∈ X (4.3)

is continuous.
It follows that gt(·) ∈ C([−t, 0], D(B)).

Hence gt(s) ∈ Y0 for s ∈ [−t, 0], since D(B) ⊆ Y0. By assumption, we have that

U(s, 0)Y0 ⊆ Ys, so π2(T (t)
(

x
f

)
)(s) ∈ Ys and

∂s(π2(T (t)
(

x
f

)
)(s) =− A(s)U(s, 0)gt(s) + U(s, 0)Bgt(s) (4.4)

+ U(s, 0)Φπ2(T (t + s)
(

x
f

)
).

Hence the map s 7→ (π2(T (t)
(

x
f

)
))(s) is differentiable. In order to prove the thesis,

it remains to show that the functions

1. [−t, 0] 3 s 7→ (π2(T (t)
(

x
f

)
)′(s),

2. [−t, 0] 3 s 7→ (A(·)π2(T (t)
(

x
f

)
)(s)

are in Lp(R−, X).
First, we prove (2).

It is obvious that (A(·)π2(T (t)
(

x
f

)
))(s) ∈ X, since

(A(·)π2(T (t)
(

x
f

)
))(s) = A(s)(π2(T (t)

(
x
f

)
)(s)

and (π2(T (t)
(

x
f

)
)(s) ∈ Ys ⊆ D(A(s)) ∈ X. Since (π2(T (t)

(
x
f

)
)(s) = U(s, 0)gt(s),

it follows by the assumption in the theorem that s 7→ A(s)(π2(T (t)
(

x
f

)
)(s) is in

Lp(R−, X).
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Now, since π2(T (t)
(

x
f

)
)(0) ∈ D(B) and the function in 2. is in Lp(R−, X), by

(4.4) it is an immediate consequence that the function in 1. is also in Lp(R−, X).

Second case. For s < −t, by Proposition 3.10, we can write π2(T (t)
(

x
f

)
)(s) as

π2(T (t)
(

x
f

)
)(s) = U(s, s + t)f(s + t)

and obtain

∂s(π2(T (t)
(

x
f

)
)(s) =− A(s)U(s, s + t)f(t + s) + U(s, s + t)A(s + t)f(s + t) (4.5)

+ U(s, s + t)f ′(s + t).

As before, using the assumption on A(s), we can show that the functions in 1. and
2. are in Lp(R−, X) for s < −t.

Combining the two cases we conclude that D is T −invariant. �

Using the previous proposition, we can prove our main result as in [11, Theorem
4.4].

Theorem 4.6. If the Assumption 3.9 and the assumptions of the previous lemma
hold, then the function

(t, s) 7→ v(t, s) := π2

(
T (t)

(
x
f

))
(s)

is the unique classical solution of (1.1) and (1.2) whenever
(

x
f

)
∈ D.

Here (T (t))t≥0 is the semigroup generated by the operator (C, D(C)) (see Defi-
nition 3.6 and Theorem 3.8).

Proof. Let R+ 3 t 7→ U(t) :=
(

z(t)
v(t)

)
∈ E a classical solution of the following Cauchy

problem

(CP )

U̇(t) = CU(t), t ≥ 0,

U(0) =
(

x
f

)
,

for
(

x
f

)
∈ D ⊆ D(C) (observe that the existence of this solution is guaranteed by

Theorem 3.8).
In particular

U(t) = T (t)
(

x
f

)
, (4.6)

for t ≥ 0. Now consider the function

(t, s) 7→ v(t, s) := π2(T (t)
(

x
f

)
)(s), (4.7)

i.e., using (4.7), v(t, s) = v(t)(s), where v(t) is the second component of U(t).

Since R+ 3 t 7→ U(t) :=
(

z(t)
v(t)

)
∈ E is a classical solution of (CP ) with initial

value
(

x
f

)
, we obtain that v(t, s) is continuously differentiable with respect to t and

s and

Gv(t, ·) =
d

dt
v(t, ·).
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Moreover, since
(

x
f

)
∈ D, and using Lemma 4.5 and Proposition 4.1, one has

G(v(t, ·))(0) = Bv(t, 0) + Φv(t, ·)

and

G(v(t, ·))(s) =
∂

∂s
v(t, s) + A(s)v(t, s).

So, v(t, s) satisfies the two equations (1.1) and (1.2).
For the uniqueness, we assume that v(·, ·) is a solution of (1.1) and (1.2) for the

initial value v(0, ·) = f ∈ D. From (1.2) and using the fact that (U(t, s))t≤s≤0

solves a nonautonomous Cauchy problem, we obtain

∂

∂s
U(r, s)v(t, s) = U(r, s)

[
A(s)v(t, s) +

∂

∂s
v(t, s)

]

= U(r, s)
∂

∂t
v(t, s) =

∂

∂t
U(r, s)v(t, s)

(4.8)

for r ≤ s ≤ 0. Consequently, the expression

U(r, s)v(t, s)

can be written as a function of r and s + t. From this, it follows that

U(r, s)v(t, s) =

U(r, s + t)v(0, s + t), s + t ≤ 0,

U(r, 0)v(s + t, 0), s + t ≥ 0,
(4.9)

for r ≤ s ≤ 0. Putting r = s, we obtain

v(t, s) =

U(s, s + t)v(0, s + t), s + t ≤ 0,

U(s, 0)v(s + t, 0), s + t ≥ 0.
(4.10)

By equation (1.2) we have

d

dt
v(t, 0) = Bu(t, 0) + Φv(t, ·).

Therefore, using the fact that v(0, ·) = f , we obtain

v(t, 0) = etBf(0) +
∫ t

0
e(t−τ)BΦv(τ, ·)dτ. (4.11)

Thus, by (4.9) and (4.10), we have

v(t, s) =

U(s, s + t)f(s + t), s + t ≤ 0,

U(s, 0)e(t+s)Bf(0) +
∫ t+s
0 e(t+s−τ)BΦv(τ, ·)dτ, s + t ≥ 0.

(4.12)

Let now f ≡ 0. Using Gronwall’s inequality (see [9, Lemma 2.A]), we see that
v(t, s) ≡ 0. �
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As an immediate consequence of [12, Theorem 3.5], one obtains the following
corollary.

Corollary 4.7. Let R+ 3 t 7→ u(t) a classical solution of (NDE). If the Assumption
3.9 and the assumptions of Lemma 4.5 hold, then the function

(t, s) 7→ v(t, s) := ũt(s)

is the unique classical solution of (1.1) and (1.2) whenever ũt ∈ D. Here ũt is the
modified history function defined in Introduction.

Example 4.8. Take E := L2(R−, X) as the Hilbert space X. Take A(t) ≡ a(t)B,
where a(·) ∈ C(R−) with a(t) > 0 and (B, D(B)) a normal operator on X such

that s0(B) < 0. In this case, the evolution family is given by U(t, s) = e(
∫ s

t
a(τ)dτ)B

and the regularity subspaces Yt coincide with D(B) for all t ≤ 0 (see [11, Example
4]). Let 1 < p < ∞ and let η : R− → L(X) be of bounded variation such that
|η|(R−) < +∞, where |η| is the positive Borel measure in R− defined by the total
variation on η. Let Φ : C0(R−, X) ∩ Lp(R−, X) → X be the linear operator given
by the Riemann-Stieltjes integral

Φf :=
∫ 0

−∞
fdη for all f ∈ C0(R−, X) ∩ Lp(R−, X). (4.13)

By [1, Proposition 1.9.4], this integral is well-defined. As in [12, Example 4.6]
we can show that Φ fulfills the Miyadera-Voigt condition, i.e.,∫ t0

0
‖Φ(Srx + T0(r)f)‖dr ≤ q

∥∥∥∥∥
(

x
f

)∥∥∥∥∥
for all

(
x
f

)
∈ D(C0) and some 0 < t0 and 0 ≤ q < 1.

By Theorem 3.8 the operator (C, D(C)) is the generator of a strongly contin-
uous semigroup (T (t))t≥0 and by Theorem 4.6 the function (t, s) 7→ v(t, s) :=

π2

(
T (t)

(
x
f

))
(s) is a classical solutions of (1.1) and (1.2) for

(
x
f

)
∈ D := {

(
x
f

)
∈

D(B) × D : f(0) = x}, with D := {f ∈ W 1,p(R−, X) : f(s) ∈ D(B) ∀ s ≤ 0, s 7→
a(s)Bf(s) ∈ Lp(R−, X)}.
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Verlag, 2001.

[2] V. Barbu, M. Iannelli, M. Martcheva, On the controllability of the Lotka-
mckendrick model of population dynamics, J. Math. Anal. Appl. textbf253
(2001), 142–165.
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