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Abstract

In this paper we study the problem of decomposing a Hölder continuous
k-grade multivector field Fk on the boundary Γ of an open bounded subset
Ω in Euclidean space Rn into a sum Fk = F+

k + F−
k of harmonic k-grade

multivector fields F±
k in Ω+ = Ω and Ω− = Rn \ (Ω ∪ Γ) respectively. The

necessary and sufficient conditions upon Fk we thus obtain complement those
proved by Dyn’kin in [20,21] in the case where Fk is a continuous k-form on
Γ. Being obtained within the framework of Clifford analysis and hence being
of a pure function theoretic nature, they once more illustrate the importance
of the interplay between Clifford analysis and classical real harmonic analysis.

1 Introduction

As is well known, a k-vector in Rn can be interpreted as a directed k-dimensional
volume. Such entities were first considered by H. Grassmann in the second half of
the 19-th century. He thus created an algebraic structure which is now commonly
known as the exterior algebra (see [10]). At about the same time, Sir W. Hamilton
invented his quaternion algebra which a. o. enabled him to represent rotations in
three dimensional space. In his 1878-paper, W. K. Clifford united both systems into
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a single geometric algebra named after him (see [11]).
Clifford analysis, a function theory associated with the Dirac operator, has be-
come an autonomous mathematical discipline since the 1980’s. It comprehends
several other analytic theories that have been developed for solving problems in
higher dimensional space. For more detailed information, we refer the reader to
[7,23,24,26,29,30] and the many references therein.
For a survey on recent research in Clifford analysis and its applications, we refer to
[6,31,33,37]. In a series of papers (see e.g. [13,18,19,32,36]) one can find historical
notes on Clifford analysis.
It was shown in [34] how Clifford analysis can be used to describe boundary values
of harmonic fields which are in one-to-one correspondence with a subclass of Clifford
algebra valued functions. In [21] E. Dyn’kin studied the following problem: Given
an open bounded domain Ω of Rn with C1-boundary Γ and a continuous k-form ω
on Γ, under which conditions can one represent ω as a sum ω = ω+ + ω−, where
the forms ω± are harmonic inside Ω and outside Ω, respectively? The proof of the
necessary and sufficient conditions given in [21] Theorem 2, is essentially based on
an asymptotically harmonic extension of ω to the whole of Rn. In [20], the case of
harmonic vector fields, i.e. the case k = 1, was already dealt with.
As harmonic k-forms and monogenic k-grade multivector fields are intimately re-
lated to each other (see §2.2), the previous problem formulated by Dyn’kin for
k-forms may as well be outlined for k-grade multivector fields. This idea suggests
the problem to be posed within the framework of Clifford analysis. It is exactly this
view-point which underlies the writing out of the present paper.

2 Preliminaries

We thought it to be helpful to recall some well known, though not necessarily fa-
miliar, basic properties in Clifford algebras and Clifford analysis such as: geometric
properties resulting from multiplication in Clifford algebras (§2.1); the equivalence
between the (d, d∗) Hodge-de Rham system for k-forms and the monogenicity of
k-grade multivector fields (§2.2); results about the Cauchy transform in Clifford
analysis (§2.3).

2.1 Clifford algebras and multivectors

Let R0,n (n ∈ N) be the real vector space Rn endowed with a non-degenerate
quadratic form of signature (0, n) and let (ej)

n
j=1 be a corresponding orthogonal

basis for R0,n. Then R0,n, the universal Clifford algebra over R0,n, is a real linear
associative algebra with identity such that the elements ej, j = 1, . . . , n, satisfy the
basic multiplication rules

e2
j = −1, j = 1, . . . , n;

eiej + ejei = 0, i 6= j.

For A = {i1, . . . , ik} ⊂ {1, . . . , n} with 1 ≤ i1 < i2 < · · · < ik ≤ n, put eA =
ei1ei2 · · · eik , while for A = ∅, e∅ = 1 (the identity element in R0,n). Then (eA : A ⊂
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{1, . . . , n}) is a basis for R0,n. For 1 ≤ k ≤ n fixed, the space R(k)
0,n of k vectors or

k-grade multivectors in R0,n, is defined by

R(k)
0,n = spanR(eA : |A| = k).

Clearly

R0,n =
n∑

k=0

⊕R(k)
0,n.

Any element a ∈ R0,n may thus be written in a unique way as

a = [a]0 + [a]1 + · · ·+ [a]n

where [ ]k : R0,n −→ R(k)
0,n denotes the projection of R0,n onto Rk

0,n.

It is customary to identify R with R(0)
0,n = R1, the so-called set of scalars in R0,n,

and Rn with R(1)
0,n

∼= R0,n, the so-called set of vectors in R0,n. The elements of R(2)
0,n

are also called bivectors.
Notice that for any two vectors x and y, their product is given by

xy = x • y + x ∧ y

where

x • y =
1

2
(xy + yx) = −

n∑
j=1

xjyj

is -up to a minus sign- the standard inner product between x and y, while

x ∧ y =
1

2
(xy − yx) =

∑
i<j

eiej(xiyj − xjyi)

represents the standard outer product between them.
More generally, for a 1-vector x and a k-vector Yk, their product xYk splits into a
(k − 1)-vector and a (k + 1)-vector, namely:

xYk = [xYk]k−1 + [xYk]k+1,

where

[xYk]k−1 =
1

2
(xYk − (−1)kYkx)

and

[xYk]k+1 =
1

2
(xYk + (−1)kYkx).

The inner and outer products between x and Yk are then defined by

x • Yk = [xYk]k−1 and x ∧ Yk = [xYk]k+1. (1)

For further properties concerning inner and outer products between multivectors,
we refer to [25].
Finally we recall the definition of the conjugation a → a and the norm |.| on R0,n.
For each j = 1, . . . , n,

ej = −ej
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while for a, b ∈ R0,n,
(ab) = b a.

Notice that for any basic element eA with |A| = k,

eA = (−1)
k(k+1)

2 eA.

For a, b ∈ R0,n, we put
(a, b) = [ab]0 =

∑
A

aAbA.

An inner product is thus obtained, leading to the norm |.| given by

|a|2 = [aa]0 =
∑
A

a2
A.

2.2 Clifford analysis and harmonic multivector fields

Let Ω ⊂ Rn be open and let f be an R0,n-valued function in Ω, say

f(x) =
∑
A

fA(x)eA, x ∈ Ω,

all fA thus being real valued .
Such a function is said to belong to some classical class of functions on Ω if each of
its components belongs to that class.
Furthermore, let D be the Dirac operator in Rn:

D =
n∑

j=1

ej∂xj
.

Then
D2 = −∆,

∆ being the Laplacian in Rn.
For f ∈ C1(Ω), we define the left and right action of D on f by

Df =
∑
j,A

ejeA
∂fA

∂xj

and

fD =
∑
j,A

eAej
∂fA

∂xj

.

We say that f is left (resp. right) monogenic in Ω if Df = 0 (resp. fD = 0) in Ω.
Notice in particular that if f = F is scalar valued, then DF is the vector valued
function

DF =
n∑

j=1

ej
∂F

∂xj

.

The action of D on F may thus be identified with the action of the gradient ∇ on
F , i.e. DF may be identified with the classical vector field

∇F = (
∂F

∂x1

, . . . ,
∂F

∂xn

).
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If f = F is vector valued, i.e.

F =
n∑

i=1

eiFi,

then the action of D on F is given by

DF = −
n∑

i=1

∂Fi

∂xi

+
∑
i<j

eiej(
∂Fj

∂xi

− ∂Fi

∂xj

),

i.e., using inner and outer products,

DF = D • F + D ∧ F.

Clearly, identifying F with the vector field F ′ = (F1, . . . , Fn), we obtain that

D • F = −divF ′

and
D ∧ F = curlF ′.

Consequently, a vector valued function F is left monogenic if and only if F ′ satisfies
the system divF ′ = 0

curlF ′ = 0,
(2)

known as the Riesz system in Rn (see [38]).
Notice that a vector field F ′ satisfying (2) in Ω was called by Stein-Weiss a system
of conjugate harmonic functions in Ω. As is well known, if Ω is simply connected, a
vector field F ′ satisfies (2) if and only if F ′ is the gradient of a real valued harmonic
function H in Ω, i.e. F ′ = ∇H.
Finally, if f = Fk is k-vector valued, i.e.

Fk =
∑
|A|=k

eAFk,A ,

then, by using the inner and outer products (1), the action of D on Fk is given by

DFk = D • Fk + D ∧ Fk, (3)

where

D • Fk =
1

2
(DFk − (−1)kFkD) = [DFk]k−1

and

D ∧ Fk =
1

2
(DFk + (−1)kFkD) = [DFk]k+1.

As DFk = Fk D with D = −D and Fk = (−1)
k(k+1)

2 Fk, it follows that if Fk is left
monogenic, then it is right monogenic as well.
Furthermore, in view of (3), Fk is left monogenic in Ω if and only if Fk satisfies in
Ω the system of equations D • Fk = 0

D ∧ Fk = 0
(4)
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A k-vector valued function Fk satisfying (4) in Ω is called a harmonic k-grade
multivector field in Ω.
Now identify the k-grade multivector field Fk in Ω, where

Fk =
∑
|A|=k

Fk,A eA,

with the k-form ωk in Ω, where

ωk =
∑
|A|=k

Fk,A dxA.

Hereby, as usual, for A = {i1, . . . , ik},

dxA = dxi1 ∧ · · · ∧ dxik .

Furthermore, consider the Hodge-de Rham (d, d∗)-operators, where

d =
n∑

k=1

µk
∂

∂xk

, d∗ =
n∑

k=1

µ∗k
∂

∂xk

with
µk(1) = dxk , µk(dxi) = dxk ∧ dxi , i = 1, . . . , n

and
µ∗k(dxi) = δki , µ∗k(dxi ∧ dxj) = δkidxj − δkjdxi.

Then a straightforward calculation shows that for the k-vector field Fk and its cor-
responding k-form ωk, DFk = 0 in Ω if and only if (d − d∗)ωk = 0 in Ω, i.e. the
k-grade multivector field Fk is harmonic in Ω if and only if ωk satisfies in Ω the
Hodge-de Rham system dωk = 0

d∗ωk = 0
(5)

In other words, after the identification between Fk and ωk, the systems (4) and (5)
are equivalent.
As is well known, k-forms ωk satisfying (5) in Ω are called harmonic in Ω.
Obviously, the systems (4) or (5) reduce to the Riesz system (2) in the case k = 1.
Solutions to one of these three equivalent systems are called harmonic vector fields.
For a more detailed discussion concerning the Hodge-de Rham (d, d∗)-opera-
tors and the standard Dirac operator D in Rn, we refer to [23].
The following lemma will be much useful in the proof of our main result in section
4.

Lemma 2.1. Let u be an R0,n-valued C1-function in Ω admitting the decomposition

u =
n∑

k=0

[u]k.

Then u is both left and right monogenic in Ω if and only if for each k = 0, 1, . . . , n,
[u]k is a harmonic k-grade multivector field in Ω.
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An important example of a function which is both left and right monogenic is
the fundamental solution of the Dirac operator, given by

e(x) =
1

An

x

|x|n
, x ∈ Rn \ {0}.

Hereby An stands for the surface area of the unit sphere in Rn.
In the sense of distributions we have:

De(x− y) = e(x− y)D = δx(y),

δx(y) being the generalized function in Rn such that for all ϕ ∈ D(Rn),

< δx(y), ϕ(y) >= ϕ(x).

The function e(x− y) plays the same role in Clifford analysis as the Cauchy kernel
does in complex analysis. For this reason it is called the Cauchy kernel in Rn.
For a more general notion of the Cauchy kernel related to the Dirac operator on a
manifold, we refer to [12].

2.3 Cauchy’s Integral Formula

Throughout this paper, surface integration will be with respect to the (n − 1)-
dimensional Hausdorff measure Hn−1 in Rn. This measure is defined in terms of
the diameters of various efficient coverings and it agrees with ordinary “(n − 1)-
dimensional surface area” on nice surfaces (see [22,27]).
It is well known that some basic results in Clifford analysis rely heavily on Stokes’
formula, which is usually stated on domains with a sufficiently smooth boundary.
The validity of this formula when the boundary is geometrically very complicated
is not at all obvious. Research on the problem of finding the most general form
of Stokes’ formula has much contributed to the development of Geometric Measure
Theory. The concept of the exterior normal ν as defined in [22] was crucial in
establishing the following version of Stokes’ formula:∫

Γ

ϕ(x) • ν(x)dHn−1(x) =
∫
Ω

divϕ(x)dLn(x).

Hereby Ω is an open subset of Rn with boundary Γ such that Hn−1(Γ) < ∞,
ϕ ∈ C1(Ω ∪ Γ) and Ln denotes Lebesgue measure in Rn.
Using Stokes’ formula, basic integral formulae in Clifford analysis may thus be ob-
tained (see e.g. [7]). For the sake of completeness, we here recall Cauchy’s Integral
Formula.
In what follows we suppose that:

(i) Ω is a bounded open domain in Rn with boundary Γ such that
Hn−1(Γ) < ∞;

(ii) Ω+ = Ω, Ω− = Rn \ (Ω ∪ Γ)

(iii) u is an R0,n-valued function
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(iv) ν(x) is the vector valued exterior normal at x ∈ Γ.

Notice that multiplications appearing in the formulae below are performed in R0,n.

Theorem 2.1 (Cauchy’s Integral Formula). (i) Let u belong to C1(Ω) ∩ C(Ω).
If u is left monogenic in Ω, then for x ∈ Ω,

u(x) =
∫
Γ

e(y − x)ν(y)u(y)dHn−1(y)

(ii) Let u belong to C1(Ω−) with u(∞) = 0 and suppose that u is continuously
extendable to Γ. If u is left monogenic in Ω, then for x ∈ Ω−,

u(x) = −
∫
Γ

e(y − x)ν(y)u(y)dHn−1(y)

Cauchy’s Integral Formula applied to a k-grade harmonic multivector field Fk in
Ω which is continuously extendable to Γ implies that

0 =
∫
Γ

e(y − x) • (ν(y) • Fk(y))dHn−1(y);

Fk(x) =
∫
Γ

{e(y − x) ∧ (ν(y) • Fk(y)) + e(y − x) • (ν(y) ∧ Fk(y))}dHn−1(y);

0 =
∫
Γ

e(y − x) ∧ (ν(y) ∧ Fk(y))dHn−1(y). (6)

Of course, the application of the Cauchy Integral Formula to the case of a k-grade
harmonic multivector field Fk in Ω−, which is continuously extendable to Γ and is
such that Fk(∞) = 0, leads to relations similar to those in (6).
We end up this subsection with the following results.

Theorem 2.2 (Painlevé). Let u, left monogenic in Ω+ ∪ Ω−, be continuously
extendable to Γ. Then u is left monogenic in Rn.

Theorem 2.3 (Liouville). Let u, left monogenic in Rn, be bounded in Rn. Then
u is a constant function.

3 Cauchy transforms on AD-regular surfaces

In this section we state some important results related to the Cauchy transform C
on Γ:

(Cu)(x) =
∫
Γ

e(y − x)ν(y)u(y)dHn−1(y) , x /∈ Γ,

and its singular version, the singular Cauchy transform S (also called the Hilbert
transform) on Γ:

(Su)(x) = 2
∫
Γ

e(y − x)ν(y)(u(y)− u(x))dHn−1(y) + u(x) , x ∈ Γ,

the integral being taken in the sense of the principal value.
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3.1 Ahlfors-David regular surfaces

We will say that the set E in Rn is an (n−1)-set if Hn−1(E) < +∞, where as above
Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.
The geometric condition Hn−1(E) < +∞ represents a natural condition without any
quantitative estimates on the size of the set E. Among (n−1)-sets, the rectifiable sets
of H. Federer (see [22]) form essentially the largest class where many basic properties
of smooth surfaces have reasonable analogues such as, for example, the existence of
tangent planes (defined in a measure-theoretic approximate way); parametrization
by Lipschitz maps, and an analogue of Lebesgue’s density point theorem. All these
properties are qualitative, without any estimates.
A curve γ in the complex plane such that H1(γ) < +∞ can be parametrized nicely
by a Lipschitz function. For (n − 1)-dimensional surfaces (n > 2) one can not, in
general, find such a nice parametrization.

Definition 3.1. A closed set E in Rn is said to be Ahlfors-David regular (AD-
regular) with dimension n− 1 if there exists a constant c > 0 such that

c−1rn−1 ≤ Hn−1(E ∩B(x, r)) ≤ c rn−1, (7)

for all x ∈ E and r > 0, where B(x, r) stands for the closed ball with center x and
radius r

The requirement that the set E is AD-regular can be viewed as a quantitative
version of the property of having positive and finite upper and lower densities with
respect to Hn−1. For further information concerning AD-regular sets, the reader is
referred to [15,16,17,28].
The AD-regular curves in the plane are closely related with the boundedness of the
singular integral operator

f(x) → 2
∫
γ

e(y − x)ν(y)f(y)dH1(y),

acting on Lp(γ).
Based on the works of Calderón [9], Coifman, McIntosh and Meyer [14], David [15]
proved that the Lp(γ) - boundedness of this singular integral operator holds if and
only if γ is an AD-regular curve (in fact, only the inequality H1(γ ∩ B(x, r)) ≤ c r
is essential, since in this case the lower bound is clear). For (n − 1)-dimensional
surfaces, n > 2, such a simple characterization seems impossible.
In [17] the authors studied singular integral operators on general finite dimensional
AD-regular sets. They showed that a large class of Calderón-Zygmund singular
integral operators are bounded on Lp(E), 1 < p < +∞, if and only if E is uniformly
rectifiable.
For the sake of completeness, we now recall some recently obtained results concerning
the boundedness of the Cauchy transform and its singular version on spaces of Hölder
continuous functions on AD-regular surfaces. For their proofs, we refer the reader
to [1,2,3,4,5]
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3.2 Boundary values of Cauchy integrals on H ölder spaces

Let K be a compact set in Rn and let u(x) be a continuous R0,n-valued function
defined on K. The modulus of continuity of the function u is the non-negative
function w(u, t), t > 0, defined by the formula

w(u, t) = sup
|x−y|≤t

{|u(x)− u(y)| : x, y ∈ K}.

The Hölder space C0,α(K), 0 < α < 1, consists of those functions u ∈ C(K) for
which

‖u‖α = ‖u‖C(K) + sup
0<t≤σ

w(u, t)

tα
< ∞.

Hereby σ = maxx,y∈K |x− y|.
Provided with the norm ‖.‖α, the space C0,α(K) becomes a real Banach space.
In what follows, Ω is a bounded open subset of Rn such that its boundary Γ is an
AD-regular surface.

Theorem 3.1. The singular Cauchy transform S is bounded on C0,α(Γ). Moreover
S2 = I, where I is the identity operator.

Theorem 3.2. Let u ∈ C0,α(Γ), 0 < α < 1. Then

(i) Cu ∈ C0,α(Ω± ∪ Γ) with Cu(∞) = 0.

(ii) Cu is left monogenic in Rn \ Γ.

(iii) (Plemelj-Sokhotzki Formula) For all z ∈ Γ,

(C±u)(z) = lim
Ω±3x→z

(Cu)(x) =
1

2
(Su(z)± u(z)).

Theorem 3.2 implies that u ∈ C0,α(Γ) can be represented as

u(z) = u+(z) + u−(z), z ∈ Γ, (8)

where u+(z) = (C+u)(z) and u−(z) = −(C−u)(z).
Moreover, the functions u± have left monogenic extensions in Ω±, respectively, such
that

u± ∈ C0,α(Ω± ∪ Γ), u−(∞) = 0.

Finally notice that by means of the Painlevé Theorem (see Theorem 2.2), the de-
composition (8) is unique. It may thus be considered as a natural multidimensional
analogue of the well known Cauchy integral decomposition for a Hölder continuous
complex valued function on a closed curve in the plane.
Let us now consider the Cauchy transform acting on a k-grade multivector field Fk.
It is easy to see that CFk splits into

CFk = [CFk]k−2 + [CFk]k + [CFk]k+2, (9)
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where
[CFk(x)]k−2 =

∫
Γ

e(y − x) • (ν(y) • Fk(y))dHn−1(y);

[CFk(x)]k =
∫
Γ

{e(y − x) ∧ (ν(y) • Fk(y)) + e(y − x) • (ν(y) ∧ Fk(y))}dHn−1(y);

[CFk(x)]k+2 =
∫
Γ

e(y − x) ∧ (ν(y) ∧ Fk(y))dHn−1(y).

In view of (9) and the expression of S, we thus obtain by Theorem 3.2:

Theorem 3.3. Let Fk be a Hölder continuous k-grade multivector field on Γ. Then
for all z ∈ Γ:

[C±Fk(z)]k−2 =
1

2

∫
Γ

e(y − z) • (ν(y) • (Fk(y)− Fk(z)))dHn−1(y);

[C±Fk(z)]k =
1

2

∫
Γ

e(y − z) ∧ (ν(y) • (Fk(y)− Fk(z)))dHn−1(y) +

+
1

2

∫
Γ

e(y − z) • (ν(y) ∧ (Fk(y)− Fk(z)))dHn−1(y) +
1

2
(Fk(z)± Fk(z));

[C±Fk(z)]k+2 =
1

2

∫
Γ

e(y − z) ∧ (ν(y) ∧ (Fk(y)− Fk(z)))dHn−1(y).

4 Harmonic decomposition for H ölder continuous multivector

fields

As we already pointed out in the introduction, E. Dyn’kin studied in [20,21] the
problem of generalizing to Euclidean space Rn the classical Cauchy integral decom-
position for continuous functions on the boundary γ of a bounded open domain in
the complex plane. The framework he used was the theory of harmonic differential
forms.
Now let Ω be a bounded open set in Rn such that its boundary Γ is an AD-regular
surface.
As we have seen in (8), any u ∈ C0,α(Γ), 0 < α < 1, admits a decomposition of the
form

u(z) = u+(z) + u−(z), z ∈ Γ,

where u± have left monogenic extensions to Ω±, respectively.
It therefore seems natural to study Dyn’kin’s problem directly within the framework
of Clifford analysis.
We are thus led to consider the following problem: Under which conditions does a
k-grade multivector field Fk belonging to C0,α(Γ) admit the decomposition

Fk(z) = F+
k (z) + F−

k (z), z ∈ Γ, (10)
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where F±
k are harmonic multivector fields in Ω±, respectively, such that

F±
k ∈ C0,α(Ω± ∪ Γ), F−

k (∞) = 0?

The main result of this paper (Theorem 4.1) gives necessary and sufficient conditions
upon Fk in terms of its Cauchy transform CFk. As such, these conditions are of a pure
function theoretic nature, thus illustrating once more the powerfulness and elegance
of Clifford analysis techniques in dealing with higher dimensional problems.

Theorem 4.1. Let Fk ∈ C0,α(Γ), 0 < α < 1. Then the following assertions are
equivalent:

i) The multivector field Fk admits on Γ a decomposition of the form (10)

ii) The Cauchy transform CFk(x) is both left and right monogenic in Rn \ Γ

iii) The k-grade multivector field [CFk(x)]k is harmonic in Rn \ Γ

iv) The multivector fields [CFk(x)]k−2 and [CFk(x)]k+2 vanish in Rn.

Proof: i) → ii)
Assume that

Fk(z) = F+
k (z) + F−

k (z), z ∈ Γ,

where the k-grade multivector fields F±
k are as in (10).

Then

CFk(x) = CF+
k (x) + CF−

k (x).

In view of the assumptions made on F±
k , we have that CF+

k = 0 in Ω−, CF−
k = 0 in

Ω+ and that CF±
k (x) = F±

k (x) for x ∈ Ω±.
Consequently

CFk(x) =

F+
k (x), x ∈ Ω+

F−
k (x), x ∈ Ω−

But, as F±
k is a harmonic k-grade multivector field in Ω±, CFk is as well left as right

monogenic in Rn \ Γ.
ii) → iii)
Let CFk(x) be left and right monogenic in Rn \Γ and consider its decomposition (9)
in multivector fields

CFk = [CFk]k−2 + [CFk]k + [CFk]k+2. (11)

Then, by Lemma 2.1, [CFk]l, l = k − 2, k, k + 2, are harmonic l-grade multivector
fields in Rn \ Γ and so is in particular [CFk]k.
iii) → iv)
Consider again the decomposition (11) of CFk.
As CFk itself and as moreover by assumption [CFk]k are left monogenic in Rn \ Γ,
we have that in Rn \ Γ, by letting act D from the left on (11):

D([CFk]k−2) + D([CFk]k+2) = 0.
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Furthermore, as D([CFk]k−2) and D([CFk]k+2) split into a (k − 3) and a (k − 1),
respectively, into a (k + 1) and a (k + 3) multivector, we obtain by the uniqueness
of the decomposition into multivectors, that in Rn \ Γ:

D([CFk]k−2) = 0 and D([CFk]k+2) = 0.

Consequently, the multivectors [CFk]k−2 and [CFk]k+2 are harmonic in Rn \ Γ.
Moreover, in view of Theorem 3.3, for all z ∈ Γ,

[C+Fk]k−2(z) = [C−Fk]k−2(z)

and
[C+Fk]k+2(z) = [C−Fk]k+2(z).

The Painlevé and Liouville Theorems 2.2 and 2.3 then imply that

[CFk]k−2 ≡ 0 and [CFk]k+2 ≡ 0 in Rn.

iv) → i)
First notice that, as Fk ∈ C0,α(Γ), then by means of the Plemelj-Sokhotzki formula,
for z ∈ Γ

Fk(z) = C+Fk(z)− C−Fk(z). (12)

In view of the assumption (iv) made, the functions F±
k defined in, respectively, Ω±

by F±
k = ±CFk are obviously k-grade harmonic multivector fields which satisfy all

required properties. �
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