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Abstract

Ordinary differential equations are considered consisting of two equations
with nonlinear coupling where the linear parts of the two equations have
equilibria which are, respectively, a saddle and a center. Perturbation terms
are added which correspond to damping and forcing. A reduced equation is
obtained from the hyperbolic equation by setting to zero the variable from the
center equation. Melnikov theory is used to obtain a transverse homoclinic
solution, and hence chaos, in the reduced equation. Conditions are then
established such that the chaos for the reduced equation is shadowed by chaos
for the full equation. The resonant case is also studied when the chaos of the
full system is not detected from the reduced equation. The techniques make
use of exponential dichotomies.

1 Introduction

To illustrate the ideas of this work consider the equations

ẍ = x− 2x(x2 + y2)− 2µ2ẋ + µ1 cos ωt, (1a)

ÿ = (1− k)y − 2y(x2 + yθ)− 2µ2ẏ + µ1 cos pωt (1b)
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where θ ∈ N \ {1}, p ∈ N. This system consists of a (radially symmetric for θ = 2)
Duffing oscillator with an additional spring of stiffness k in the y equation along
with damping and external forces added as perturbation terms.

Let us assume k > 1 in (1b). Then, for the unperturbed equation i.e., when
µ1 = µ2 = 0, the linear part of (1a) has a hyperbolic equilibrium and the linear part
of (1b) has a center. Furthermore, for small µ2, the eigenvalues of ÿ = (1−k)y−2µ2ẏ
are complex functions, λ(µ2), with <(λ(µ2)) = −µ2 so that we have <(λ(0)) = 0 and
<(λ′(0)) = −1. Thus, for small µ2 6= 0, the equilibrium of (1b) is weakly hyperbolic.

If we set y = 0 in (1a) we get the standard forced, damped Duffing equation.
Using Melnikov theory one can show that for small µ1 6= 0 and for µ2 6= 0, within
an appropriate range, this equation has a transverse homoclinic orbit and hence
exhibits chaos. (These ideas are explained in detail below.) The first purpose of the
present work is to show that if µ1 6= 0, µ2 6= 0 are chosen to produce chaos in (1a)
when y = 0 and if pω 6=

√
k − 1 then, as a consequence of the weak hyperbolicity

in the y equation, there exists chaos in the full equation (1) which, in some sense,
shadows the chaos obtained in (1a) with y = 0. Condition pω 6=

√
k − 1 means

non-resonance in (1b). We also study (1) when pω =
√

k − 1 for θ ≥ 3, but we do
not start from the reduced equation.

As an abstract version of (1) we consider differential equations of the form

ẋ = f(x, y, µ, t) = f0(x, y) + µ1f1(x, y, µ, t) + µ2f2(x, y, µ, t), (2a)

ẏ = g(x, y, µ, t) = g0(x, y) + µ1g1(x, y, µ, t) + µ2g2(x, y, µ) (2b)

with x ∈ Rn, y ∈ Rm, µ = (µ1, µ2) ∈ R2.
We make the following assumptions about (2):

(i) Each fi, gi is C4 in all arguments.

(ii) f1, f2 and g1 are periodic in t with period T .

(iii) D2f0(x, 0) = 0.

(iv) The eigenvalues of D1f0(0, 0) lie off the imaginary axis.

(v) The equation ẋ = f0(x, 0) has a homoclinic solution γ.

(vi) g0(x, 0) = g2(x, 0, µ) = 0, D21g0(0, 0) = 0 and D22g0(0, 0) = 0.

(vii) The eigenvalues of D2g0(0, 0) lie on the imaginary axis.

(viii) If µ2 → λ(µ2) is a function such that λ(µ2) is an eigenvalue of the matrix
D2g0(0, 0) + µ2D2g2(0, 0, 0) then <(λ′(0)) < 0.

(ix) D2g1(0, 0, 0, t) = 0.

(x) D222g0(0, 0) = 0.

Hypothesis (viii) is based on the examples for which the µ2 perturbation rep-
resents damping which cases all the eigenvalues of (2b) to move to the left of the
imaginary axis. In fact, it is sufficient to assume that <(λ′(0)) 6= 0. In other words,
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(2b) is weakly hyperbolic. This more general assumption requires a little more work
since it is necessary to include a nontrivial projection in Lemma 3 below.

In our analysis we shall encounter the phenomenon of resonance. Hypotheses
(i)-(ix) are sufficient for the nonresonant case but (ix) is required to be replaced by
(x) in order to deal with resonance.

2 Chaotic Dynamics on the Hyperbolic Subspace

In this section we consider the equation

ẋ = f(x, 0, µ, t) = f0(x, 0) + µ1f1(x, 0, µ, t) + µ2f2(x, 0, µ, t) (3)

obtained by setting y = 0 in (2a). Equation (3) will be called the reduced equation
obtained from (2). We apply to this equation some Melnikov theory from [3]-[6]
which we summarize here.

By hypothesis, the equation ẋ = f0(x, 0) has a hyperbolic equilibrium and a
homoclinic solution γ. Then (3) has a unique small hyperbolic T -periodic solution
pµ(t) for |µ| small [1]. Let {u1, . . . , ud} denote a basis for the vector space of bounded
solutions to the variational equation u̇ = D1f0(γ, 0)u with ud = γ̇ and let {v1, . . . , vd}
denote a basis for the vector space of bounded solutions to the adjoint equation
v̇ = −D1f0(γ, 0)tv.

Now define the functions aij : R → R, constants bijk and function

M : R2 × R× Rd−1 → Rd

by

aij(α) =
∫ ∞

−∞
〈vi(t), fj(γ(t), 0, 0, t + α)〉 dt,

{
1 ≤ i ≤ d
1 ≤ j ≤ 2;

bijk =
∫ ∞

−∞
〈vi, D11f0(γ, 0)ujuk〉 dt,

{
1 ≤ i ≤ d

1 ≤ j, k ≤ d− 1;

Mi(µ, α, β) =
2∑

j=1

aij(α)µj +
1

2

d−1∑
j,k=1

bijkβjβk, 1 ≤ i ≤ d. (4)

The function M is our bifurcation function and is used in Theorem 2 below. The
integer d has a geometric interpretation. Let P = γ(0) and let W s, W u denote the
stable, unstable manifolds respectively of the origin for the unperturbed equation
from (3). Then the entire orbit of γ lies in W s ∩ W u so that P ∈ W s ∩ W u and
γ̇(0) ∈ TP W s∩TP W u. The vectors {u1(0), . . . , ud(0)} are a basis for TP W s∩TP W u

and d = dim(TP W s ∩ TP W u).
Suppose that W s∩W u has a connected component which is a manifold of dimen-

sion d and which contains the orbit of γ. Then in (4), all bijk = 0, the hypotheses
of Theorem 2 below cannot be satisfied and an alternate bifurcation function is
required.

Let W h denote a homoclinic d-manifold containing γ, let U0 be an open neigh-
borhood of the origin in Rd−1, let η : U0 → W h be a differentiable function denoted
β → η(β) with η(0) = P , let t → γβ(t) be the solution to the unperturbed equa-
tion (3) satisfying γβ(0) = η(β), and assume η is constructed so that (β, t) → γβ(t)
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establishes local coordinates on W h. In other words, the original orbit γ is embedded
in a (d− 1)-parameter family of homoclinic orbits.

For each fixed β we let {vβ1, . . . , vβd} denote a basis for the vector space of
bounded solutions to the adjoint equation v̇ = −D1f0(γβ, 0)tv. Without loss of
generality we can assume that each vβi depends differentially on β. Now define
functions aij : R× U0 → R and M : R2 × R× U0 → Rd by

aij(α, β) =
∫ ∞

−∞
〈vβi(t), fj(γβ(t), 0, 0, t + α)〉 dt,

{
1 ≤ i ≤ d
1 ≤ j ≤ 2;

Mi(µ, α, β) =
2∑

j=1

aij(α, β)µj, 1 ≤ i ≤ d. (5)

This is our bifurcation function for the homoclinic manifold case.
In this paper, the concept of exponential dichotomy is important so we state the

definition for easy reference. For details see Coppel [2].

1. Definition. We say that (U, P ) is an exponential dichotomy with constants
(K, a) on the interval [t1, t2] for the linear differential equation ẋ = A(t)x if U is the
fundamental solution for the differential equation with U(0) = I; P is a projection;
and K, a are two positive constants such that the following hold:

i) |U(t)PU(s)−1| ≤ Kea(s−t) for t1 ≤ s ≤ t ≤ t2,

ii) |U(t)(I − P )U(s)−1| ≤ Kea(t−s) for t1 ≤ t ≤ s ≤ t2.

In this definition we allow for the possibilities t1 = −∞ and/or t2 = +∞ in
which case the interval is open at the corresponding end(s). If both of these hold
we say the differential equation has an exponential dichotomy on the whole line.

By combining results from [3]-[6] we now get the following result.

2. Theorem. Let M be as in (4) or (5) and suppose (µ0, α0, β0) are such that
M(µ0, α0, β0) = 0 and D(α,β)M(µ0, α0, β0) is nonsingular. Then there exists ξ0 > 0
such that if 0 < ξ < ξ0 the equation ẋ = f(x, 0, ξµ0, t) has a homoclinic solution γξ

to pξµ0 .
Furthermore, γξ(t) → pξµ0 at an exponential rate as t → ±∞, γξ depends

continuously on ξ, limξ→0 γξ(t) = γ(t) uniformly in t and the variational equation
along γξ has an exponential dichotomy for the whole line when ξ 6= 0.

We can use the preceding result to obtain chaos for (3). We make this notion
precise. Let ΣN denote the space of doubly infinite sequences of N symbols with the
usual topology and let ϕ : ΣN → ΣN be the Bernoulli shift map. The topological
space ΣN is compact, perfect and totally disconnected (a Cantor set) and ϕ is
continuous with periodic orbits of every period and a dense orbit. These ideas were
popularized by the work of Smale [9] and can be found in Wiggins [10]. Following
Palmer [8], Theorem 2 establishes a topological conjugacy between ϕ and some
multiple of the period map of the flow for the differential equation ẋ = f(x, 0, ξµ0, t).

We remark that the constant Kξ of the exponential dichotomy for the variational
equation u̇ = D1f(γξ, 0, ξµ0, t)u along γξ(t) tends to infinity as ξ → 0. Indeed, let
aξ, Pξ, Uξ be the corresponding constant, projection and fundamental solution from
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Definition 1, respectively. The roughness theorem for exponential dichotomies [2]
implies that we can take aξ = a0 > 0 for some constant a0. If supξ>0 Kξ < ∞, then
there is a sequence {ξi}∞i=1 such that ξi → 0, Kξi

→ K0, Pξi
→ P0 and Uξi

(t) → U0(t)
point-wise. Clearly, P0 is a projection and U0(t) is the fundamental solution of
u̇ = D1f0(γ, 0)u creating an exponential dichotomy for this equation on the whole
line R with constants (K0, a0). This contradicts the existence of a bounded solution
γ̇ for this equation. Consequently, Kξ →∞ as ξ → 0.

We finish this section with the next result.

3. Lemma. There exist constants b > 0, B > 0 independent of ξ such that given
µ0,2 > 0 the variational equation

v̇ = [D2g0(γ(t), 0) + ξµ0,2D2g2(γ(t), 0, 0)] v

has an exponential dichotomy (Vξ, I) on R with constants (B, bξµ0,2).

Proof. Write the given equation in the form v̇ = Rv + S(t)v where

R = D2g0(0, 0) + ξµ0,2D2g2(0, 0, 0),

S(t) = D2g0(γ(t), 0)−D2g0(0, 0) + ξµ0,2 [D2g2(γ(t), 0, 0)−D2g2(0, 0, 0)] .

Let Vξ be the fundamental solution for v̇ = Rv + S(t)v with Vξ(0) = I. Then for
s ≤ t we have

Vξ(t) = e(t−s)RVξ(s) +
∫ t

s
e(t−τ)RS(τ)Vξ(τ) dτ.

Using (vii) and (viii) for (2) we can, for ξ0 sufficiently small, find K1, b > 0 so
that |e(t−s)R| ≤ K1e

bξµ0,2(s−t) when 0 < ξ ≤ ξ0 and s ≤ t. Now define

x(t) = |Vξ(t)Vξ(s)
−1|ebξµ0,2(t−s).

Then from the preceding equation for Vξ we get

x(t) ≤ K1 +
∫ t

s
K1|S(τ)|x(τ) dτ.

Hence, from Gronwall’s inequality,

x(t) ≤ K1e
K1

∫ t

s
|S(τ)| dτ ≤ B

for a constant B > 0. �

3 Chaos in the Full Equation

We construct the bifurcation function M from (4) or (5), as in the preceding section,
from the reduced equation (3). If M satisfies the hypotheses for Theorem 2 we have
a transverse homoclinic solution and hence chaos for (3) when µ = ξµ0, 0 < ξ < ξ0.
We now establish a condition for chaos to exist in the full equation (2). Since the
exponential constant Kξ of u̇ = D1f(γξ, 0, ξµ0, t)u tends to infinity as ξ → 0, as we
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showed in previous section, we have to deal with the full system (2). For this we
consider the modification of (2) in the form

ẋ = f(x, λy, µ, t) ,

ẏ = g0(x, y) + λµ1g1(x, y, µ, t) + µ2g2(x, y, µ)

0 ≤ λ ≤ 1 .

(6)

To solve (6), we follow [3], [4] and substitute

x = γ +
d−1∑
i=1

ξβiui + ξ2u, y = ξ2v, µ = ξ2µ0, |µ0| = 1 ,

where {u1, . . . , ud} is a basis for the vector space of bounded solutions for u̇ =
D1f0(γ(t), 0)u with ud = γ̇ and µ0 is to be determined. Introducing this change of
variables into (6) yields

u̇ = D1f0(γ, 0)u +
1

2

d−1∑
i,j=1

D11f0(γ, 0)βiβjuiuj

+ µ0,1f1(γ, 0, 0, t + α) + µ0,2f2(γ, 0, 0, t + α) + O(ξ)

(7a)

and

v̇ = [D2g0(γ, 0) + ξ2µ0,2D2g2(γ, 0, 0)]v

+
[
D2g0

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, 0

)
−D2g0(γ, 0)

+ D22g0

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, 0

)
ξ2v + O(ξ4v2)

]
v + λµ0,1g1(0, 0, 0, t + α)

+ λµ0,1

{
g1

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, ξ2v, ξ2µ0, t + α

)
− g1(0, 0, 0, t + α)

}

+ ξ2µ0,2

{
D2g2

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, 0, ξ2µ0

)
−D2g2(γ, 0, 0) + O(ξ2v)

}
v .

(7b)

We consider the Banach spaces

Xn =
{
x ∈ C(R, Rn)

∣∣∣∣∣ sup
t∈R

|x| < ∞
}
,

Yn =
{
y ∈ Xn

∣∣∣∣∣
∫ ∞

−∞
〈y(t), v(t)〉 dt

for every bounded solution v to v̇ = −Df0(γ, 0)tv
}

with the supremum norm ||x|| = sup
t∈R

|x(t)|. To solve (7a), we need the following

results from [5].

4. Lemma. Given h ∈ Yn, the equation u̇ = D1f0(γ(t), 0)u + h has a unique
solution u ∈ Xn satisfying 〈u(0), v(0))〉 = 0 for every bounded solution, v, to the
adjoint equation v̇ = −D1f0(γ, 0)tv.
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5. Lemma. There exists a projection Π : Xn → Xn such that Im (I − Π) = Yn .

We define the linear map K : Yn → Xn by Kh = u where h, u are as in Lemma 4.
Using the projection Π and the exponential dichotomy Vξ from Lemma 3, where we
suppose µ0,2 > 0, we can rewrite (7) as the fixed point problem

u = K(I − Π)
(

1

2

d−1∑
i,j=1

D11f0(γ, 0)βiβjuiuj

+ µ0,1f1(γ, 0, 0, , t + α) + µ0,2f2(γ, 0, 0, t + α) + O(ξ)
)
,

(8a)

v(t) =

t∫
−∞

Vξ(t)Vξ(s)
−1
{[

D2g0

(
γ(s) + ξ

d−1∑
i=1

βiui(s) + ξ2u(s), 0

)

+ D22g0

(
γ(s) + ξ

d−1∑
i=1

βiui(s) + ξ2u(s), 0

)
ξ2v(s)

−D2g0(γ(s), 0) + O(ξ4v(s)2)
]
v(s)

+ λµ0,1g1(0, 0, 0, s + α)

+ λµ0,1

{
g1

(
γ(s) + ξ

d−1∑
i=1

βiui(s) + ξ2u(s), ξ2v(s), ξ2µ0, s + α

)

− g1(0, 0, 0, s + α)
}

+ ξ2µ0,2

{
D2g2

(
γ(s) + ξ

d−1∑
i=1

βiui(s) + ξ2u(s), 0, ξ2µ0

)

−D2g2(γ(s), 0, 0) + O(ξ2v)
}
v(s)

}
ds

(8b)

along with the system of bifurcation equations

∫ ∞

−∞

〈
vi(t),

1

2

d−1∑
i,j=1

D11f0(γ(t), 0)βiβjui(t)uj(t) + µ0,1f1(γ(t), 0, 0, t + α)

+ µ0,2f2(γ(t), 0, 0, t + α) + O(ξ)
〉

dt = 0, i = 1, 2, · · · , d

(9)

where {v1, . . . , vd} is a basis for the space of bounded solutions to the adjoint equa-
tion.
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Using (ix) we have

D2g0

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, 0

)
−D2g0(γ, 0) + D22g0

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, 0

)
ξ2v

= O(ξ2|γ||v|) + O(ξ4|u||v|) + O(ξ2|γ||u|) + O

(
ξ

d−1∑
i=1

βi|ui|
)

,

g1

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, ξ2v, ξ2µ0, t + α

)
− g1(0, 0, 0, t + α)

= O(ξ2|γ||v|) + O(ξ4|u||v|) + O(ξ2) + O(ξ4|v|2)

+ O(ξ2|u|) + O(|γ|) + O

(
ξ

d−1∑
i=1

βi|ui|
)

,

D2g2

(
γ + ξ

d−1∑
i=1

βiui + ξ2u, 0, ξ2µ0

)
−D2g2(γ, 0, 0)

= O(ξ2) + O(ξ2|u|) + O

(
ξ

d−1∑
i=1

βi|ui|
)

.

We note that |γ(t)| ≤ ce−a|t| and |ui(t)| ≤ ce−a|t|, i = 1, 2, · · · , d for constants
c > 0, a > 0. Moreover, it holds that

t∫
−∞

e−bξ2µ0,2(t−s) ds =
1

bξ2µ0,2

,

t∫
−∞

e−bξ2µ0,2(t−s)−a|s| ds ≤
∫ ∞

−∞
e−a|s|ds = 2/a .

Consequently, if we assume that

sup
0≤α≤T

sup
ξ>0

t∫
−∞

∣∣∣∣Vξ(t)Vξ(s)
−1g1(0, 0, 0, s + α) ds

∣∣∣∣ < ∞ ,

sup
0≤α≤T

sup
ξ>0

t∫
−∞

∣∣∣∣Vξ(t)Vξ(s)
−1D4g1(0, 0, 0, s + α)ds

∣∣∣∣ < ∞

(H)

then we can apply the Banach fixed point theorem on a ball centered at 0 in the
space Xn×Xm to solve (8a-b) for ξ > 0 sufficiently small. Substituting this solution
into (9) yields a system of bifurcation equations of the form

M(µ, α, β) + O(ξ) = 0 (10)

where M is as in (4) or (5). The case for (5) can be handled like above.
The assumptions of Theorem 2 imply the solvability of (10). This gives a trans-

verse homoclinic orbit Γ(λ, ξ2µ0)(t) =
(
Γ1(λ, ξ2µ0)(t), Γ2(λ, ξ2µ0)(t)

)
of (6) near γ

such that Γ1(λ, ξ2µ0)(t) = γ(t) + O(ξ). The transversality follows exactly as in [3],
[4], so we omit its proof. Moreover, we have Γ(0, ξ2µ0) = (γξ, 0) for γξ from Theorem
2, and Γ(1, ξ2µ0) is a homoclinic solution for (2). The dichotomy constants of the
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linearized system of (6) along Γ(λ, ξ2µ0)(t) are uniform for 0 ≤ λ ≤ 1 and fixed ξ.
This follows from the roughness result of exponential dichotomies from [2]. Now we
can follow directly Palmer’s construction [8] of a Smale horseshoe along Γ(λ, ξ2µ0)(t)
for fixed small ξ. Thus we have a continuous family Σλ of Smale horseshoes for (6).
This gives us the lifting of the Smale horseshoe of the reduced system to the full
one.

The conditions (H) are, in fact, ones of nonresonance. To see this consider the
equations

v̇ = [D2g0(γ, 0) + ξ2µ0,2D2g2(γ, 0, 0)]v + h,

ẇ = [D2g0(0, 0) + ξ2µ0,2D2g2(0, 0, 0)]w + h

where v, w, h ∈ Xm. Then we get

d

dt
(v − w) = [D2g0(0, 0) + ξ2µ0,2D2g2(0, 0, 0)](v − w)

+
[
D2g0(γ, 0)−D2g0(0, 0) + ξ2µ0,2(D2g2(γ, 0, 0)−D2g2(γ, 0, 0))

]
v .

This gives

|v(t)− w(t)| ≤ ||v||K1

t∫
−∞

e−bξ2µ0,2(t−s)−a|s| ds ≤ 2||v||K1/a

for constants K1 > 0, a > 0. Hence there is a constant K2 > 0 such that

||w − v|| ≤ K2||v||, ||w − v|| ≤ K2||w|| .

These inequalities imply that assumption (H) is equivalent to the condition that
when ξ > 0 the only bounded solution, vα,ξ, of

v̇ = [D2g0(0, 0) + ξ2µ0,2D2g2(0, 0, 0)]v + g1(0, 0, 0, t + α) (11)

satisfies sup0≤α≤T supξ>0 ||vα,ξ|| < ∞. Then also sup0≤α≤T supξ>0 ||v̇α,ξ|| < ∞.
Hence by the Arzela-Ascoli theorem, there is a sequence {ξi}∞i=1, ξi > 0, ξi → 0
such that vα,ξi

→ v0 and v̇α,ξi
→ v̇0 uniformly on compact intervals. Consequently,

we get
v̇0 = D2g0(0, 0)v0 + g1(0, 0, 0, t + α) . (12)

We note that vα,ξ, v0 are T -periodic. We know [1] that (12) has a T -periodic solution
if and only if

T∫
0

〈wi(t), g1(0, 0, 0, t)〉 dt = 0, i = 1, 2, · · · , d1, (13)

where {w1, · · · , wd1} is a basis of T -periodic solutions of the adjoint variational
equation ẇ = −D2g0(0, 0)tw. Hence assumption (H) implies the validity of (13).

Conversely, let (13) hold. Then (12) has a T -periodic solution and we put v =
v0 + w in (11) to get

ẇ = [D2g0(0, 0) + ξ2µ0,2D2g2(0, 0, 0)]w + ξ2µ0,2D2g2(0, 0, 0)v0 . (14)
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The above arguments and Lemma 3 give that the unique solution wα,ξ ∈ Xm of (14)
satisfies sup0≤α≤T supξ>0 ||wα,ξ|| < ∞. Summarizing, we see that assumption (H) is
equivalent to condition (13).

To illustrate these ideas consider the example

ẍ = x− 2x3 + y2 + µ1 cos t + µ2ẋ,

ÿ = −y + µ1 cos t− µ2ẏ.

For this example, (12) becomes v̈ + v = cos t which lacks a periodic solution due to
resonance. Thus, (H) does not hold.

We might try to proceed anyway. The second equation for µ2 6= 0 has the unique
bounded solution (µ1/µ2) sin t. If we substitute this solution into the first equation,
then for µi = ξ2µi,0 with ξ → 0, we do not get the original unperturbed problem.
In the case of resonance (where (H) or equivalently (13) fails to hold) and where
µ0,1 = 0 for the reduced equation we are able to utilize an alternate scaling. This is
illustrated in Theorem 7 below.

Now we can state our results in the form of the next two theorems.

6. Theorem. Let (i)-(ix) hold. Let M be as in (4) or (5) and suppose (µ0, α0, β0)
are such that M(µ0, α0, β0) = 0 and D(α,β)M(µ0, α0, β0) is nonsingular. If condition
(13) holds then there exist ξ̄0 > 0, K > 0 such that if 0 < ξ ≤ ξ̄0 and if the
parameters in (2) are given by µ = ξµ0, then there exists a continuous map φ :
ΣN × [0, 1] → Rn+m and m0 ∈ N such that:

(i) φλ = φ(·, λ) : ΣN → Rn+m is a homeomorphism of ΣN onto a compact subset of
Rn+m on which the m0th iterate, Fm0

λ , of the period map Fλ of (6) is invariant
and satisfies F 2m0

λ ◦ φλ = φλ ◦ ϕ where ϕ is the Bernoulli shift on ΣN .

(ii) φ0 = φ(·, 0) : ΣN → Rn × {0} and F0 = (G0, 0) for the period map G0 of the
reduced equation (3).

(iii) F1 is the period map of the full system (2).

(iv) |φ(x, λ)− φ(x, 0)| ≤ K
√

ξ for any (x, λ) ∈ ΣN × [0, 1].

In the case where (H) does not hold we can get a result analogous to the preceding
if we have µ0,1 = 0 for the reduced equation. In this case we use the scaling µ1 =
ξ4µ0,1 and µ2 = ξ2µ0,2 and proceed as before. This yields the following result.

7. Theorem. Let (i)-(ix) hold. Let M be as in (4) or (5) and suppose (µ0, α0, β0)
with µ0 = (0, µ0,2) are such that M(µ0, α0, β0) = 0 and D(α,β)M(µ0, α0, β0) is nonsin-
gular. Then there exist ξ̄0 > 0, K > 0 such that if 0 < ξ ≤ ξ̄0 and if the parameters
in (2) are given by µ1 = ξ2µ0,1, µ0,1 ∈ R and µ2 = ξµ0,2, then the statement of
Theorem 6 holds.

Theorems 6 and 7 roughly state that the Smale horseshoe of the reduced equation
(3) can be shadowed and continued to the full system (2).

Referring back to our previous example (1) we see that resonance holds when
pω =

√
k − 1 so Theorem 6 does not apply in that case. Further, µ0,1 6= 0 (see

Example 1 below) and so Theorem 7 also does not apply in this case.
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We now develop a result for (2) when (H) fails where we now use assumption (x)
for (2) instead of (ix). We modify the preceding approach by putting

x = γ +
d−1∑
i=1

ξβiui + ξ2u, y = ξv, µ1 = ξ3µ0,1, µ2 = ξ2µ0,2 ,

in (2) to get

u̇ = D1f0(γ, 0)u +
1

2

d−1∑
i,j=1

D11f0(γ, 0)βiβjuiuj

+ µ0,2f2(γ, 0, 0, t + α) +
1

2
D22f0(γ, 0)vv + O(ξ)

(15a)

and
v̇ = [D2g0(γ, 0) + ξ2µ0,2D2g2(γ, 0, 0)]v

+ ξ2µ0,1g1(0, 0, 0, t + α) + O(ξ2|γ||u||v|)

+ O

(
ξ

d−1∑
i=1

βi|ui|
)

+ O(ξ2|γ|) + O(ξ3) + O(ξγ|v|3) .

(15b)

Analogous to our preceding work, we rewrite (15) as the fixed point problem

u = K(I − Π)
{
D1f0(γ, 0)u +

1

2

d−1∑
i,j=1

D11f0(γ, 0)βiβjuiuj (16a)

+ µ0,2f2(γ, 0, 0, t + α) +
1

2
D22f0(γ, 0)vv + O(ξ)

}
,

v(t) =

t∫
−∞

Vξ(t)Vξ(s)
−1
{
ξ2µ0,1g1(0, 0, 0, s + α) (16b)

+ O
(
ξ2|γ(s)||u(s)|v(s)|

)
+ O

(
ξ

d−1∑
i=1

βi|ui(s)|
)

+ O
(
ξ|γ(s)||v(s)|3

)
+ O

(
ξ2|γ(s)|

)
+ O(ξ3)

}
ds ,

and the system of bifurcation equations∫ ∞

−∞

〈
vi(t),

1

2

d−1∑
i,j=1

D11f0(γ(t), 0)βiβjui(t)uj(t) + µ0,2f2(γ(t), 0, 0, t + α)

+
1

2
D22f0(γ(t), 0)v(t)v(t) + O(ξ)

〉
dt = 0, i = 1, 2, · · · , d .

(17)

By using the Banach fixed point theorem on a ball in Xn × Xm centered at 0,
(16) has a solution (u, v) ∈ Xn ×Xm for any sufficiently small ξ such that

v(t) = ξ2µ0,1

t∫
−∞

Vξ(t)Vξ(s)
−1g1(0, 0, 0, s + α) ds + O(ξ) .

We remark that the function vξ(t) = ξ2µ0,1

t∫
−∞

Vξ(t)Vξ(s)
−1g1(0, 0, 0, s+α) ds satisfies

sup0≤α≤T supξ>0 |vξ(t)| < ∞ along with the equation

v̇ξ = [D2g0(γ, 0) + ξ2µ0,2D2g2(γ, 0, 0)]vξ + ξ2µ0,1g1(0, 0, 0, t + α) . (18)
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To solve (18), we take vξ,1, vξ,2 ∈ Xm satisfying

v̇ξ,1 = [D2g0(0, 0) + ξ2µ0,2D2g2(0, 0, 0)]vξ,1 (19)

+ ξ2µ0,1g1(0, 0, 0, t + α) ,

v̇ξ,2 = [D2g0(γ, 0) + ξ2µ0,2D2g2(γ, 0, 0)]vξ,2 (20)

+ [D2g0(γ, 0)−D2g0(0, 0)]vξ,1 .

Then vξ = vξ,1 + vξ,2 + O(ξ2). We note that

vξ,1 ∈ XT
m =

{
v ∈ Xm | v is T -periodic

}
.

Let

Y T
m =

{
v ∈ XT

m

∣∣∣ ẇ = D2g0(0, 0)w + v for a C1-smooth function w ∈ XT
m

}
,

ZT
m =

{
v ∈ XT

m ∩ C1(R)
∣∣∣ v̇ = D2g0(0, 0)v

}
.

There is a projection ΠT : Xm → Xm such that Im ΠT = Y T
m . Moreover, we can

split Xm = ZT
m ⊕ UT

m. Applying the Lyapunov-Schmidt method to (19), we split
vξ,1 = zξ + uξ, zξ ∈ ZT

m, uξ ∈ UT
m to get

u̇ξ = D2g0(0, 0)uξ (21)

+ ξ2ΠT

(
µ0,2D2g2(0, 0, 0)(zξ + uξ) + µ0,1g1(0, 0, 0, t + α)

)
,

0 = (I − ΠT )
(
µ0,2D2g2(0, 0, 0)(zξ + uξ) + µ0,1g1(0, 0, 0, t + α)

)
. (22)

Equation (21) can be solved and gives uξ = O(ξ2) which we substitute into (22) to
obtain

µ0,2(I − ΠT )D2g2(0, 0, 0)zξ + µ0,1(I − ΠT )g1(0, 0, 0, ·+ α) = O(ξ2) . (23)

If the linear map

(I − ΠT )D2g2(0, 0, 0) : ZT
m → Im (I − ΠT ) (24)

is invertible then we can solve (23) to get vξ,1 = µ0,1

µ0,2
zα + O(ξ2) for

zα(t) = −
(
(I − ΠT )D2g2(0, 0, 0)

)−1
(I − ΠT )g1(0, 0, 0, ·+ α) .

Equation (20) gives

vξ,2(t) =

t∫
−∞

Vξ(t)Vξ(s)
[
D2g0(γ(s), 0)−D2g0(0, 0)

]
vξ,1(s) ds .

Since D2g0(γ(s), 0)−D2g0(0, 0) = O(|γ(s)|) and Vξ(s) → V0(s), vξ,1(s) → µ0,1

µ0,2
zα(s)

point-wise as ξ → 0, the Lebesgue dominated convergence theorem gives

vξ,2(t) →
µ0,1

µ0,2

wα(t)
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point-wise as ξ → 0 where

wα(t) =

t∫
−∞

V0(t)V0(s)
[
D2g0(γ(s), 0)−D2g0(0, 0)

]
zα(s) ds.

Summarizing, we obtain that the solution (u, v) ∈ Xn × Xm of (16) satisfies

v(t) → µ0,1

µ0,2

(
zα(t) + wα(t)

)
point-wise. By using this for ξ → 0, our bifurcation

equation takes the form

Mi(µ, α, β) + o(1) = 0, i = 1, 2, . . . , d

where

Mi(µ, α, β) =
1

2

d−1∑
j,k=1

bijkβjβk + ai2(α)µ2

+
µ2

1

2µ2
2

∞∫
−∞

〈
vi(t), D22f0(γ(t), 0)(zα(t) + wα(t))2

〉
dt .

(25)

Let {zi}∞i=1 be a basis of T -periodic solutions of v̇ = D2g0(0, 0)v. Then the invert-
ibility of the map (24) is equivalent to the condition

det

 T∫
0

〈
wj(t), D2g2(0, 0, 0)zi(t)

〉
dt

 6= 0 . (26)

If for the map M in (25), there exists (µ0, α0, β0) such that M(µ0, α0, β0) = 0
and D(α,β)M(µ0, α0, β0) is nonsingular, then (17) can be solved when (α, β) is near
(α0, β0) for ξ > 0 small. We get in this way a transversal homoclinic orbit of (2).
The above results are summarized in the next theorem.

8. Theorem. Let (i)-(viii), (x) and condition (26) hold. Let M be as in (25)
and suppose (µ0, α0, β0), µ0,2 6= 0 are such that M(µ0, α0, β0) = 0 and such that
D(α,β)M(µ0, α0, β0) is nonsingular. Then there exists ξ̄0 > 0, such that if 0 < ξ ≤ ξ̄0

and if the parameters in (2) are given by µ1 = ξ3/2µ0,1, µ2 = ξµ0,2 then (2) has a
transverse homoclinic orbit near (γ, 0).

We note that wα(t) satisfies

wα(t) =

t∫
−∞

eD2g0(0,0)(t−s)
(
D2g0(γ(s), 0)−D2g0(0, 0)

)
(wα(s) + zα(s)

)
ds (27)

which gives an iteration method for finding wα(t).
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4 Examples

We now illustrate the above theory with two examples. For convenience in our
calculations let us denote r(t) = sech t. Note that r̈ = r − 2r3 and

...
r = (1− 6r2)ṙ.

4.1 Example 1

As our first example consider the equations from the introduction which we repeat
here:

ẍ = x− 2x(x2 + y2)− 2µ2ẋ + µ1 cos ωt,

ÿ = (1− k)y − 2y(x2 + yθ)− 2µ2ẏ + µ1 cos pωt

where θ ∈ N \ {1}, p ∈ N. The reduced equation is

ẍ = x− 2x3 − 2µ2ẋ + µ1 cos ωt

which we consider as a first order system in the phase space (x, ẋ). Since this system
is in R2 we necessarily have d = 1. A bounded solution to the adjoint equation is
v = (−r̈, ṙ) and from this we compute

a11(α) =
∫ ∞

−∞
ṙ cos ω(t + α) dt = πω sech πω

2
sin ωα,

a12 =
∫ ∞

−∞
−2ṙ2 dt = −4

3
.

The bifurcation equation obtained from (4) is

M(α, µ) =
(
πω sech πω

2
sin ωα

)
µ1 − 4

3
µ2 = 0.

We can satisfy this equation by choosing α0 ∈ [0, π/2] and then taking

µ0,2

µ0,1

=
3πω

4
sech πω

2
sin ωα0.

Since in (4), d = 1 the transversality condition is

DαM(µ0, α0) =
3πω2

4
sech πω

2
cos ωα0 6= 0

which is satisfied for α0 ∈ [0, π/2). Let m0 = (3πω/4) sech πω/2. By varying α0 we
see that the reduced equation exhibits chaos for all sufficiently small |µ0| satisfying
−m0 < µ0,2/µ0,1 < m0. Theorem 6 gives the next result.

9. Theorem. If pω 6=
√

k − 1 then the full equation (1) exhibits chaos for all
sufficiently small |µ0| satisfying |µ0,2/µ0,1| < m0.
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Now we consider the case pω =
√

k − 1 = η > 0 for θ ≥ 3. Then (18) has the
form

ẅξ,α = −(η2 + 2r2)wξ,α − 2ξ2µ0,2ẇξ,α + ξ2µ0,1 cos η(t + α) .

Clearly zα(t) = (1/2η) sin η(t + α) and wα(t) satisfies

ẅα = −(η2 + 2r2)wα −
1

η
r2 sin η(t + α) .

Since sin η(t+α) = sin ηt cos ηα+cos ηt sin ηα, we get wα = (cos ηα)wo +(sin ηα)we

for wo odd and we even. Now the map (25) has the form

M(α, µ) = −4

3
µ2 −

2µ2
1

µ2
2

∞∫
−∞

ṙ(t)r(t)
(
zα(t) + wα(t)

)2
dt .

Since r(t) is even and ṙ(t) is odd, we obtain

M(α, µ) = −4

3
µ2 −

2µ2
1

µ2
2

sin 2ηα

×
∫ ∞

−∞
ṙ(t)r(t)

(
1

2η
cos ηt +

w̄e(t)

η

)(
1

2η
sin ηt + wo(t)

)
dt

while

w̄e(t) = −2

t∫
−∞

sin η(t− s)r2(s)
[
w̄e(s) +

1

2
cos ηs

]
ds,

wo(t) = −2

t∫
−∞

sin η(t− s)r2(s)

[
wo(s) +

1

2η
sin ηs

]
ds .

(28)

Summarizing we get the next result.

10. Theorem. If pω =
√

k − 1, θ ≥ 3 and

0 6= Aη =

∞∫
−∞

ṙ(t)r(t)
(

1

2η
cos ηt +

w̄e(t)

η

)(
1

2η
sin ηt + wo(t)

)
dt ,

then (1) has a chaos for parameters µ1 = ξ3µ0,1, µ2 = ξ2µ0,2, µ0,2 6= 0 with
|µ3

0,2/µ
2
0,1| < 3Aη/2.

From (28) for t ≤ 0 we get

|w̄e(t)| ≤ 2
(
||w̄e||+

1

2

)
η

t∫
−∞

(t− s)r2(s) ds ,

|wo(t)| ≤ 2

t∫
−∞

η(t− s)r2(s)
(
||w0|| −

s

2

)
ds .

Since
t∫

−∞
(t − s)r2(s) ds < ∞ and

t∫
−∞

η(t − s)r2(s)(−s) ds < ∞, we get ||w̄e|| → 0

and ||wo|| → 0 as η → 0. By using Lebesgue dominated convergence theorem, we
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get

lim
η→0

∞∫
−∞

ṙ(t)r(t)
(

1

2
cos ηt + w̄e(t)

)(
1

2η
sin ηt + wo(t)

)
dt

=

∞∫
−∞

ṙ(t)r(t)
1

4
t dt > 0 .

Hence Aη > 0 for η > 0 sufficiently small. Of course, for a concrete numerical value
of η, we can estimate the numerical value of Aη.

4.2 Example 2

As a generalization of the preceding example consider the equations

ẍ = x− 2x(x2 + y2 + z2)− µ2(ẋ + ẏ) + µ1 cos ωt,

ÿ = y − 2y(x2 + y2 + z2)− µ2(ẋ + ẏ),

z̈ = (1− k)z − 2z(x2 + y2 + zθ)− µ2ż + µ1 cos pωt

where, as before, we assume k > 1 and θ ∈ N \ {1}, p ∈ N. We consider these
equations as a first order system in the phase space (x, ẋ, y, ẏ, z, ż).

The reduced equations are

ẍ = x− 2x(x2 + y2)− µ2(ẋ + ẏ) + µ1 cos ωt,

ÿ = y − 2y(x2 + y2)− µ2(ẋ + ẏ).

The unperturbed motion of this system has a homoclinic 2-manifold with a family
of homoclinic orbits given by x = r(t) cos β, y = r(t) sin β. Writing out the adjoint
equation in R4 we obtain as a basis for the space of bounded solutions

vβ1 = (−r̈ cos β, ṙ cos β,−r̈ sin β, ṙ sin β),

vβ2 = (−ṙ sin β, r sin β, ṙ cos β,−r cos β).

Next we compute

a11(α, β) =
∫ ∞

−∞
ṙ cos β cos ω(t + α) dt = πω sech πω

2
sin ωα cos β,

a12(α, β) =
∫ ∞

−∞
−ṙ cos β(ṙ cos β + ṙ sin β)− ṙ sin β(ṙ cos β + ṙ sin β) dt

= −2
3
(cos β + sin β)2,

a21(α, β) =
∫ ∞

−∞
r sin β cos ω(t + α) dt = π sech πω

2
cos ωα sin β,

a22(α, β) =
∫ ∞

−∞
r sin β(ṙ cos β + ṙ sin β) + r cos β(ṙ cos β + ṙ sin β) dt = 0,
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In (5), d = 2, β is a scalar and the bifurcation equations take the form

a11(α, β)µ1 + a12(α, β)µ2 = 0

a21(α, β)µ1 = 0.

A sufficient condition for a nontrivial solution is a21 = 0 which is satisfied by taking
ωα0 = π/2. We then have

µ0,2

µ0,1

= −a11(α0, β0)

a12(α0, β0)
=

3πω sech πω
2

cos β0

2(cos β0 + sin β0)2
.

It is easy to see that by varying the parameter β0 we obtain bifurcation curves
through the origin in the µ1-µ2 plane of all slopes.

It remains to check the transversality condition which takes the form

det
(
D(α,β)M(α0, β0, µ0)

)

=

∣∣∣∣∣∣∣∣∣
∂a11

∂α
(α0, β0)µ0,1 +

∂a12

∂α
(α0, β0)µ0,2

∂a11

∂β
(α0, β0)µ0,1 +

∂a12

∂β
(α0, β0)µ0,2

∂a21

∂α
(α0, β0)µ0,1 +

∂a22

∂α
(α0, β0)µ0,2

∂a21

∂β
(α0, β0)µ0,1 +

∂a22

∂β
(α0, β0)µ0,2

∣∣∣∣∣∣∣∣∣
= −

(µ0,1)
2π2ω2(sin β0 + 2 cos3 β0) sin β0 sech2 πω

2

(cos β0 + sin β0)2
6= 0

We see that this condition is satisfied for β0 in the set{
β ∈ [0, 2π] | β /∈ {0, 3π

4
, π, 7π

4
, 2π}

}
.

Thus, the reduced equation exhibits chaos for all sufficiently small |µ0| in the µ1-
µ2 plane except along the lines of slope m = ±m0 where m0 = (3πω/2) sech(πω/2).
From Theorem 6, if pω 6=

√
k − 1 then the full equation exhibits chaos for all

sufficiently small |µ0| lying except along the lines of slope m = ±m0. The case
pω =

√
k − 1 can be studied like in Example 1 but computations are rather tedious,

so we omit them.
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