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José Bonet∗ Reinhold Meise Sergej N. Melikhov

Abstract

Let Q be a bounded, convex and locally closed subset of C
N , let H(Q) be

the space of all functions which are holomorphic on an open neighborhood of
Q. We endow H(Q) with its projective topology. We show that the topology
of the weighted inductive limit of Fréchet spaces of entire functions which is
obtained as the Laplace transform of the strong dual to H(Q) can be described
be means of canonical weighted seminorms if and only if the intersection
of Q with each supporting hyperplane to the closure of Q is compact. We
also find conditions under which this (LF)-space of entire functions coincides
algebraically with its projective hull.

Introduction

More that 30 years ago, Martineau investigated in [15] the spaces H(Q) of analytic
functions on a convex nonpluripolar set Q in CN , in the case that Q admits a
countable fundamental system of compact sets. This setup covers nonpluripolar
compact convex sets and convex open sets in CN and convex open sets in RN . In
the latter case H(Q) coincides with the space of all real analytic functions on Q.
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The strong dual H(Q)′b of one of these spaces can be canonically identified, via
the Laplace transform, with a weighted (LF)-space of entire functions on CN , i.e.
H(Q)′b is isomorphic to a Hausdorff countable inductive limit of Fréchet spaces of
entire functions defined by weighted sup-seminorms. See the details below. The
description of the topology of this type of weighted inductive limits of spaces of
holomorphic functions has been investigated thoroughly in recent years, since the
work of Ehrenpreis [12] on analytically uniform spaces.

The problem of the projective description of the topology of weighted inductive
limits of spaces of holomorphic or continuous functions was investigated systemat-
ically in several articles by Bierstedt, Bonet, Meise and Summers; see e.g. [3, 4, 5].
For weighted inductive limits in which the steps are defined by means of weighted
sup-seminorms, the aim is to find a projective description of the topology of the
inductive limit by weighted sup-seminorms which allow direct computations and
estimates as required in the applications. In the theory of Ehrenpreis [12] of analyt-
ically uniform spaces, the topology of certain weighted inductive limits of spaces of
entire functions which appear as the Fourier Laplace transform of spaces of test func-
tions or ultradistributions was required to have a fundamental system of weighted
sup-seminorms. Berenstein and Dostal [1] later used the term “complex representa-
tion”. This term corresponds with the projective description of such inductive limits
in [5] which is the one used and explained below in this article. In [5] it is proved
that the projective description holds for weighted inductive limits of Banach spaces
of holomorphic functions defined on an arbitrary open subset of CN whenever the
linking maps between the generating Banach spaces are compact. In general the
problem of projective description for weighted inductive limits of Banach spaces of
holomorphic functions has a negative answer as was recently shown in the examples
to be found in [9, 8, 10].

The case of (LF)-spaces of holomorphic functions is more complicated. Ehren-
preis [11, p. 557-558] showed that the space of real analytic functions A(RN) on
RN is not analytically uniform. This implies that the topology of the weighted
(LF)-space of entire functions which is isomorphic to the strong dual of the space
of real analytic functions cannot be described by means of the canonical weighted
sup-seminorms; see also [1]. This result is related to our present research. Bonet and
Meise [6] show that the topological projective description also fails for the natural
weighted inductive limits of spaces of entire functions which appear as the Fourier
Laplace transform of spaces of ultradistributions of compact support in the non-
quasianalytic case. We refer to the recent survey article by K.D. Bierstedt [2] for
further details, motivations and open problems.

In this article we continue the investigations on the projective description of
weighted (LF)-spaces of entire functions. In the context of the Laplace transform
of the spaces H(Q)′b, several necessary and sufficient conditions to ensure that the
projective description holds algebraically or topologically are presented when Q is
bounded. Our main results are the Theorems 6 and 8 and the Corollary 7. They
are based on a new description of the topology of the projective hull in the present
case which is given in Lemma 4. The present research will be continued in [7] with a
study of the algebraic projective description of the weighted inductive limits which
appear as the Fourier Laplace transform of spaces of quasi analytic and real analytic
functions on an open convex set in RN .
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Notation and Preliminaries

A subset Q of CN is called locally closed if for each z ∈ Q there is a closed
neighborhood U of z in CN such that Q∩U is closed. Every open subset and every
compact subset of CN is locally closed. If D is a subset of CN , we denote by D and
intD the closure and the interior of D. For a convex set Q ⊂ CN the symbols intrQ
and ∂rQ denote the relative interior and the relative boundary of Q with respect to
the affine hull of Q. Let B(µ, r) := {z ∈ C

N | |z − µ| ≤ r}, µ ∈ C
N , r ≥ 0.

Lemma 1. The following assertions are equivalent for a convex subset Q of CN :

(i) The set Q is locally closed.

(ii) Q admits a countable fundamental system of compact subsets.

(iii) Q is the union of the relative interior intrQ of Q and an open (in ∂rQ) subset ω
of ∂rQ. In this case, if (Kn)n and (ωn)n are fundamental sequences of compact
sets of intrQ and ω respectively, the convex hulls Qn of Kn ∪ωn, n ∈ N, define
a fundamental system of compact subsets of Q.

Proof. The equivalence of (ii) and (iii) was proved in [17, 1.2].
(i)⇒(iii): If the set ω := Q ∩ ∂rQ is not open in ∂rQ, then there is a z0 ∈ ω

such that for each n there exists zn ∈ (∂rQ ∩ B(z0, 1/n))\Q. Since for any n the
point zn+1 is an adherent point of Q ∩ B(z0, 1/n) and does not belong to Q the set
Q ∩ B(z0, 1/n) is not closed. Hence Q is not locally closed.

(iii)⇒(i): Assume that Q is not locally closed. There is a point z0 ∈ ω such that
for any n the set Q ∩ B(z0, 1/n) is not closed. Consequently for each n there is an
adherent point zn of Q∩B(z0, 1/n) such that zn /∈ Q∩B(z0, 1/n)). Since B(z0, 1/n)
is closed, zn /∈ Q and zn ∈ ∂rQ. Thus zn ∈ (∂rQ ∩ B(z0, 1/n))\Q. Hence for any n
the neighborhood B(z0, 1/n) ∩ ∂rQ of the point z0 ∈ ω (in ∂rQ) is not contained in
ω. Therefore the set ω = ∂rQ ∩ Q is not open in ∂rQ.

General Assumption: In the rest of this article Q denotes a locally closed
convex set and (Qn)n is a fixed increasing fundamental sequence of compact convex
sets in Q. Without loss of generality we assume that the origin belongs to Q, and
we select the first convex compact set Q1 so that 0 ∈ Q1. We write ω := Q ∩ ∂rQ.
By ∂rω we denote the relative boundary of ω with respect to ∂rQ.

According to [17, 1.3], a locally closed convex set Q is called (C-)strictly convex
at ∂rω if the intersection of Q with each supporting (complex) hyperplane to Q is
compact. If the interior of Q is empty, the set Q is strictly convex at ∂rω if and only
if Q is compact. If the interior of Q is not empty, Q is (C-)strictly convex at ∂rω
if and only if each line segment (of which the C-linear affine hull belongs to some
supporting hyperplane of Q) of ω = Q ∩ ∂rQ is relatively compact in ω. By [15,
Lemme 3 of the proof of Thme 1.2] (see also the proof of [17, 1.16]) if Q is C-strictly
convex at ∂rω, then Q has a neighbourhood basis of linearly convex open sets, hence
a basis of domains of holomorphy.

Proposition 2. A convex locally closed set Q is strictly convex at ∂rω if and only
if the collection of all convex open neighborhoods of Q is a neighborhood basis of Q.
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Proof. It was shown in the proof of [17, 1.15] that if Q is strictly convex at
∂rω, then the collection of all convex open neighborhoods of Q is a neighborhood
basis of Q. Conversely, suppose that Q is not strictly convex at ∂rω. There exists
a supporting hyperplane P to Q such that the intersection of P with Q contains a
line interval I which is not relatively compact in P ∩Q. After a translation and an
orthogonal transformation of R

2N = C
N we can suppose that P is the hyperplane

{x ∈ R2N | x1 = 0}, the interval I is contained in the line {x ∈ R2N | x1 = x3 =
... = x2N = 0}, and Q is contained in the half-space {x ∈ R2N | x1 ≤ 0}. We put
I1 := Q ∩ (RI). The interval I1 is not compact in the line RI.

Now, Q ∩ C1 has no neighborhood basis of convex domains in the plane C1 :=
{x ∈ R2N | x3 = ... = x2N = 0}. Indeed, with the canonical identification, suppose
for example that I1 is the interval (a, b), where −∞ < a < b ≤ +∞. The domain
Ω := {z ∈ C | Imz < (Rez − a)2} is a neighborhood of Q ∩ C1. Since for each point
t ∈ Ω with Imt > 0 there is a point w ∈ I1 which is sufficiently close to a such that
the segment [w, t] is not contained in Ω, no convex neighborhood of Q ∩ C1 can be
contained in Ω.

Now, we choose an open neighborhood D of Q ∩ C1 in C1 such that no open
convex neighborhood U of Q∩C1 in C1 exists with U ⊂ D. There is a neighborhood
Ω of Q in R2N such that Ω ∩ C1 = D. By the choice of D, no convex open domain
G containing Q can be contained in Ω. The proof is complete.

For an open set D ⊂ CN , we denote by H(D) the space of all holomorphic
functions on D with its standard Fréchet topology. For a compact subset K of CN ,
the space of all functions which are holomorphic on some open neighborhood of K
is denoted by H(K) and it is endowed with its natural inductive limit topology. We
denote by H(Q) the vector space of all functions which are holomorphic on some
open neighborhood of Q. Since the algebraic equality H(Q) = ∩n∈NH(Qn) holds, we
endow H(Q) with the projective topology of H(Q) := projnH(Qn). This topology
does not depend of the choice of the fundamental system (Qn)n. See more details
in [17, pp. 296-299]. In the case that Q is a convex locally closed subset of RN ,
the space H(Q) is a space of real analytic functions. In particular, if Q is an open
convex subset of RN , then H(Q) = A(Q), where A(Q) denotes the space of all the
real analytic functions on Q.

Next, we recall the necessary notation for weighted inductive limits; see [5, 6],
and we state the problem of projective description. For notation concerning locally
convex spaces we refer the reader to [16].

We denote by V = (vn,k) a double sequence of strictly positive upper semicon-
tinuous weights on CN , N ∈ N, such that

vn+1,k(z) ≤ vn,k(z) ≤ vn,k+1(z), z ∈ C
N

for each n, k ∈ N. The weighted inductive limit of Fréchet spaces V H(CN) of entire
functions associated with V is defined by

V H(CN) := indnprojkH(vn,k, C
N),

where the steps H(v, CN) are defined, for a positive weight v on C
N , as the Banach

space of entire functions

H(v, CN) := {f ∈ H(CN)| ||f ||v := supz∈CN v(z)|f(z)| < ∞}.
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The space V H(CN) is a Hausdorff (LF)-space. In order to describe its topology by
means of weighted sup-seminorms, Bierstedt, Meise and Summers [5] associated with
V the system V of all those weights v : CN → [0,∞[ which are upper semicontinuous
and have the property that for each n there are αn > 0 and k = k(n) such that
v ≤ αnvn,k on CN . The projective hull of the weighted inductive limit is defined by

HV (CN) := {f ∈ H(CN) | ||f ||v := supz∈CN v(z)|f(z)| < ∞ for all v ∈ V },

endowed with the Hausdorff locally convex topology defined by the system of semi-
norms {||.||v | v ∈ V }. The projective hull is a complete locally convex space and
V H(CN) is contained in its projective hull with continuous inclusion.

The problem of projective description is to determine conditions under which
(1) the spaces V H(CN) and HV (CN) coincide algebraically, or
(2) the space V H(CN) is a topological subspace of its projective hull HV (CN).

A positive answer to question (2), i.e. whether V H(CN) is a topological subspace
of its projective hull, is of particular importance, because when the answer is posi-
tive it permits to describe the topology of the weighted (LF)-space of holomorphic
functions by means of weighted sup-seminorms.

In case vn,k = vn,k+1 =: vn holds for each n, k, the space V H(CN) is in fact an
(LB)-space. As a consequence of the main result of Bierstedt, Meise, Summers [5,
1.6], in this case the projective description holds algebraically and topologically if
the sequence V = (vn)n satisfies the following condition

(S): for each n there is m > n such that vm/vn vanishes at infinity on CN .

This positive result will be used later in this article.

For each convex set D ⊂ CN we denote by HD : CN → R ∪ {∞} the support

function of D, HD(z) := sup
w∈D

Re〈z, w〉, z ∈ CN . Here 〈z, w〉 :=
N
∑

j=1
zjwj. For each

n ∈ N, let Hn := HQn
be the support functions of the convex compact sets Qn, n ∈ N,

which constitute a fundamental sequence of convex compact subsets of Q.
In this article we are interested in the weight functions

vn,k(z) := exp(−Hn(z) − |z|/k), n, k ∈ N, z ∈ C
N .

By [17, 1.10], the Laplace transform

F(ϕ)(z) := ϕ(exp〈·, z〉), z ∈ C
N ,

is a linear topological isomorphism from the strong dual H(Q)′b of H(Q) onto
V H(CN).

We denote by V 0 the set of all weights v such that there are unbounded increasing
sequences k(n) ∈ N and αn ≥ 0 with

v(z) = inf
n∈N

exp(−Hn(z) − |z|/k(n) + αn) for all z ∈ C
N .
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It is easy to see that every weight in V 0 is contained in V and that every element
in V is estimated by a weight in V 0.

Let G ⊂ CN be open and convex and let (Gn)n∈N be a fundamental sequence of
(convex) compact subsets Gn of G with Gn ⊂ intGn+1 for all n. A good description
of the Laplace transform of the strong dual H(G)′b of H(G) is needed. We put

VG := (vG,n)n, vG,n(z) := exp(−HGn
(z)), z ∈ C

N , n ∈ N.

Again by [17, 1.10], the Laplace transform

F(ϕ)(z) := ϕ(exp〈·, z〉), z ∈ C
N ,

is a linear topological isomorphism from H(G)′b onto the weighted (LB)-space
VGH(CN). Moreover, as a consequence of [5, 1.6], the space VGH(CN) and its
projective hull HVG(CN) coincide algebraically and topologically. In the case that
G is bounded another description of the topology of VGH(CN) can be given. To
define the family of weights we use, we denote by V (G) the collection of all upper
semicontinuous functions u(z) = exp(−HG(z) + γ(z)), z ∈ CN , where γ : CN → R

satisfies γ(z) = o(|z|) as |z| → ∞. This type of weights was used by Napalkov [18].
The next lemma will be very useful in our Lemma 4 below and its consequences.

Lemma 3. If G is a bounded convex open subset of CN , then the space VGH(CN)
coincides algebraically and topologically with the weighted space H(V (G))(CN) =
proju∈V (G)H(u, CN).

Proof. We assume without loss of generality that 0 ∈ G. Since G is bounded
and open, there are M > 0, m > 0 such that m|z| ≤ HG(z) ≤ M |z| for all z ∈ CN .
We select an > 0 increasing and tending to 1, and we take Gn := anG, n ∈ N, as
a fundamental sequence of convex compact subsets of G. In this case vG,n(z) :=
exp(−HGn

(z)) = exp(−anHG(z)), z ∈ CN , n ∈ N. To complete the proof it is
enough to show that V (G) and VG are equivalent.

Let u be a function in V (G), u(z) = exp(−HG(z)+γ(z)), z ∈ CN . We fix n ∈ N.
For z ∈ C

N we have

−HG(z) + γ(z) ≤ −HGn
(z) + γ(z) − (1 − an)m|z|.

Since γ(z) = o(|z|) as |z| → ∞, we conclude that there is Cn > 0 such that

exp(−HG(z) + γ(z)) ≤ Cn exp(−HGn
(z)) = CnvG,n(z),

and u belongs to VG.
Now suppose that u belongs to VG. By [5, Proposition 0.2], we may assume that

for each n there is cn > 1 such that, for all z ∈ C
N ,

−∞ < log u(z) ≤ −anHG(z) + log cn.

We set γ(z) = max{0, log u(z) + HG(z)}, z ∈ CN . It is enough to show that γ(z) =
o(|z|) as |z| → ∞. To see this, we observe that, if |z| ≥ Rn := log cn+1/((an+1 −
an)m), we have

log u(z) ≤ −an+1HG(z) + log cn+1 ≤ −anHG(z),

hence
log u(z) + HG(z) ≤ (1 − an)HG(z) ≤ (1 − an)M |z|,

from where the conclusion follows.
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Main results

Our next lemma is of technical character. However, it is essential in our results.
It gives a concrete description of the topology of the projective hull which is very
suitable for our purposes.

Lemma 4. Let Q be a bounded convex and locally closed subset of CN . The
following assertions hold:

(i) For every bounded convex open neighbourhood G of Q and every κ ∈ V (G)
there is v ∈ V 0 with κ ≤ v.

(ii) For any v ∈ V 0 there is a bounded convex open neighbourhood G of Q and
there is κ ∈ V (G) such that v ≤ κ.

In particular, the space HV (CN) coincides algebraically with the intersection of
the spaces VGH(CN) = H(V (G))(CN) as G varies in the set of all convex open
neighbourhoods of Q. Moreover

HV (CN) = projGprojv∈V (G)H(v, CN),

with G running as before.

Proof. (i) We fix a convex open bounded neighbourhood G of Q and a function
κ ∈ V (G) such that κ(z) = exp(−HG(z) + γ(z)), z ∈ C

N , with γ(z) = o(|z|) as
|z| → ∞. Since G is a neighbourhood of Q, for each n there exist k(n) and αn ≥ 0
with

Hn(z) + |z|/k(n) − αn ≤ HG(z) − γ(z) for all z ∈ C
N .

Moreover, the sequences (k(n))n∈N and (αn)n∈N can be taken increasing and un-
bounded. We define

v := inf
n∈N

exp(−Hn(z) − |z|/k(n) + αn) for all z ∈ C
N .

Then κ ≤ v holds obviously, so that we proved (i).
(ii) We fix a function v := inf

n∈N
exp(−Hn − | · |/k(n) + αn) ∈ V 0 and put

L(z) := sup
n∈N

(Hn(z)+ |z|/(k(n)+ 1)) for all z ∈ CN . We select inductively increasing

unbounded sequences r(s) > 0 and n(s), s ∈ N, as follows.
First observe that, since Q is bounded, Q is a convex compact subset whose

support functional coincides with HQ and it is continuous and convex. Moreover, the
sequence (Hn)n is increasing and converges pointwise to HQ. By Dini’s theorem, it
converges uniformly on the unit ball of CN . As the support functionals are positively
homogeneous, we conclude that for each ε > 0 there is n(0) such that for all n ≥ n(0)
and all z ∈ CN , we have Hn(z) ≤ Hn(0)(z) + ε|z|. This fact will be used several
times below.

For s = 1 we put r(s) := 1. Since αn → ∞ as n → ∞, there is n(1) > n(0) such
that

Hn(z) + |z|/k(n) − αn ≤ H1(z) + |z|/k(1) − α1, if |z| ≤ 1, n > n(1),
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and, on account of our remark above for ε = 1,

sup
1≤n≤n(1)

(Hn(z) + |z|/(k(n) + 1)) ≥ L(z) − |z| for all z ∈ C
N .

Now we put r(2) := 2 and choose n(2) > n(1) with

Hn(z) + |z|/k(n) − αn ≤ H1(z) + |z|/k(1) − α1, if |z| ≤ 2, n > n(2),

and, on account of our remark above for ε = 1/2,

sup
1≤n≤n(2)

(Hn(z) + |z|/(k(n) + 1)) ≥ L(z) − |z|/2 for all z ∈ C
N .

If for s > 1 we selected r(1), ..., r(s) and n(1), ..., n(s), we choose r(s + 1) >
max(s; r(s)) with

sup
1≤n≤n(s)

αn/r(s + 1) < 1/(s + 1),

Hn(z) + |z|/k(n) − αn ≤ H1(z) + |z|/k(1) − α1, if |z| ≤ r(s + 1), n > n(s + 1),

and, on account of our remark above for ε = 1/(s + 1),

sup
1≤n≤n(s+1)

(Hn(z) + |z|/(k(n) + 1)) ≥ L(z) − |z|/(s + 1) for all z ∈ C
N .

The function L is positive homogeneous of order 1 and convex. Hence there is a

convex compact set D in CN with HD = L. Since Qn+
1

k(n) + 1
B ⊂ D for all n ∈ N,

where B := {z ∈ CN | |z| ≤ 1}, the interior G of D is not empty and HG = L. In
addition, Qn ⊂ G for all n ∈ N and consequently G is an open convex neighborhood
of Q.

Clearly, v(z) = exp(−h(z)), z ∈ CN with h(z) := supn∈N(Hn(z)+ |z|/k(n)−αn).
We fix s ≥ 3 and z ∈ CN with r(s − 1) < |z| ≤ r(s). Then

h(z) = sup
1≤n≤n(s)

(Hn(z) + |z|/k(n) − αn).

We distinguish two cases.

Case 1. Suppose that

sup
1≤n≤n(s−2)

(Hn(z) + |z|/k(n) − αn) ≥ sup
n(s−2)<n≤n(s)

(Hn(z) + |z|/k(n) − αn).

Then

h(z) = sup
1≤n≤n(s)

(Hn(z) + |z|/k(n) − αn) = sup
1≤n≤n(s−2)

(Hn(z) + |z|/k(n) − αn) ≥

sup
1≤n≤n(s−2)

(Hn(z) + |z|/(k(n) + 1)) − sup
1≤n≤n(s−2)

(αn − |z|/(k(n)(k(n) + 1))) ≥

L(z) − |z|/(s − 2) − sup
1≤n≤n(s−2)

αn.
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For
γs(z) := |z|/(s − 2) + sup

1≤n≤n(s−2)
αn

we have

0 ≤ γs(z) ≤ |z|/(s − 2) + r(s − 1)/(s − 1) ≤ (1/(s − 2) + 1/(s − 1))|z|.

Case 2. Suppose that

sup
1≤n≤n(s−2)

(Hn(z) + |z|/k(n) − αn) ≤ sup
n(s−2)<n≤n(s)

(Hn(z) + |z|/k(n) − αn).

Then there is ñ with n(s − 2) < ñ ≤ n(s) and such that

h(z) = sup
1≤n≤n(s)

(Hn(z) + |z|/k(n) − αn) = Hñ(z) + |z|/k(ñ) − αñ =

Hñ(z) + |z|/(k(ñ) + 1) + |z|/((k(ñ) + 1)k(ñ)) − αñ.

We have for each n with 1 ≤ n ≤ n(s − 2)

Hñ(z) + |z|/(k(ñ) + 1) = Hñ(z) + |z|/k(ñ) − αñ−

|z|/((k(ñ) + 1)k(ñ)) + αñ ≥

Hn(z) + |z|/k(n) − αn + αñ − |z|/((k(ñ) + 1)k(ñ)) ≥ Hn(z) + |z|/(k(n) + 1)−

|z|/((k(ñ) + 1)k(ñ)).

Hence

Hñ(z) + |z|/(k(ñ) + 1) ≥ sup
1≤n≤n(s−2)

(Hn(z) + |z|/((k(n) + 1))−

|z|/(k(n(s − 2))(k(n(s − 2)) + 1))) ≥ L(z) − |z|/(s − 2) − εs|z|,

where
εs := 1/(k(n(s − 2))(k(n(s − 2)) + 1)) → 0 as s → ∞.

From the inequality

Hñ(z) + |z|/k(ñ) − αñ ≥ Hn(s−2)(z) + |z|/k(n(s − 2)) − αn(s−2),

it follows that

0 ≤ αñ ≤ Hñ(z) − Hn(s−2)(z) + (1/k(ñ) + 1/k(n(s − 2)))|z|+

αn(s−2) ≤ Hn(s)(z) − Hn(s−2)(z) + 2|z|/k(n(s − 2)) + r(s − 1)/(s − 1) ≤

(δs + 2/k(s − 2) + 1/(s − 1))|z|,

where, since Q is bounded,

δs := sup
|t|=1

(Hn(s)(t) − Hn(s−2)(t)) → 0 as s → ∞.



500 J. Bonet – R. Meise – S. N. Melikhov

We define in this case

γs(z) := (δs + 2/k(n(s − 2)) + 1/(s − 1) + 1/(s − 2) + εs)|z|.

Then h(z) ≥ L(z) − γs(z). If

γ(z) :=

{

sup|z|≤r(1)(h(z) − L(z)), |z| ≤ r(1),
γs(z), r(s − 1) < |z| ≤ r(s), s ≥ 2,

we have γ(z) = o(|z|) as |z| → ∞. Consequently, κ(z) := exp(−L(z) + γ∗(z)), z ∈
C

N , where γ∗ is the upper semicontinuous regularization of γ, belongs to V (G) and
v ≤ κ. The lemma is proved.

For the definition of a carrier of an analytic functional we refer to Hörmander
[13]. The definition and properties of the conjugate diagram of an entire function of
exponential type in one variable can be seen in [14, Chapter I, 20].

Proposition 5. Let Q be a bounded convex locally closed set in CN . An entire
function f on C

N belongs to the projective hull HV (CN) if and only if f is of
exponential type and, for each bounded open convex neighbourhood G of Q, some
carrier of the analytic functional F−1(f) is contained in G.

In particular, for N = 1 an entire function f belongs to HV (CN ) if and only if
the conjugate diagram of f is contained in each bounded convex open neighbourhood
G of Q.

Proof. By Lemma 4, f ∈ HV (CN ) if and only if f ∈ H(V (G))(CN) for all
bounded convex open neighbourhoods G of Q. By [13, 4.7.3] and Lemma 3, f ∈
VGH(CN) if and only if a carrier of F−1(f) is contained in G. The rest of the
assertion follows from the properties of the conjugate diagram [14].

Theorem 6. (i) If a convex locally closed set Q in CN is bounded and strictly convex
at ∂rω, then the weighted inductive limit V H(CN) coincides with its projective hull
HV (CN ) algebraically and topologically.
(ii) Suppose that a convex locally closed set Q in CN is bounded, nonpluripolar,
and that it has a neighborhood basis of domains of holomorphy. If V H(CN) is a
topological subspace of HV (CN), then Q is strictly convex at ∂rω.

Proof. (i) Since the hypotheses on Q and Proposition 2 imply that Q has a neigh-
bourhood basis of bounded convex open sets G, it follows that H(Q) = indGH(G)
as G runs over the bounded convex open neighbourhoods of Q. Since every bounded
set in H(Q) is bounded in H(G) for some G as above, H(Q)′b = projGH(G)′b
holds algebraically and topologically. Applying the Laplace transform, we have
that V H(CN) = projGVGH(CN) holds algebraically and topologically. By Lemma
4, we conclude the algebraic and topological identity V H(CN) = HV (CN).

(ii) Since V H(CN) contains the polynomials, it follows from Taylor [19, Theorem
4] that the space V H(CN) is dense in VGH(CN) for each bounded convex open
neighbourhood G of Q. Therefore V H(CN) is dense in HV (CN) by Lemma 4.
This yields the algebraic equality V H(CN)′ = (projGVGH(CN))′. Next fix an open
neighbourhood Ω of Q and note that the hypothesis implies that we may assume that
Ω is a domain of holomorphy. Hence there exists a function h ∈ H(Ω) which cannot
be continued analytically beyond Ω (see Hörmander [13, Theorem 2.5]). Since h
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can be considered as an element h̃ of H(Q), there is an element ĥ in V H(CN)′ so
that F t(ĥ) = h̃, where F denotes the Laplace transform. From the projective limit
representation for V H(CN)′ above it follows that there exist a bounded convex open
neighbourhood G of Q and ĝ ∈ VGH(CN))′ which coincides with ĥ in V H(CN)′. Now
let g := F t(ĝ). For each z ∈ Q we have

g(z) = 〈δz, g〉 = 〈δz,F
t(ĝ)〉 = 〈F(δz), ĝ〉 = 〈F(δz), ĥ〉 =

= 〈δz,F
t(ĥ)〉 = 〈δz, h̃〉 = h̃(z) = h(z).

Since Q is not pluripolar, for some domain Ω1 with Q ⊂ Ω1 the functions g and
h coincide on Ω1. By the choice of h we have G ⊂ Ω. Consequently, Q has a
neighborhood basis of bounded convex open sets containing Q. By Proposition 2,
Q is strictly convex at ∂rω, and the proof is complete.

As a consequence of Theorem 6, we obtain the following corollary.

Corollary 7. Let Q be a nonpluripolar bounded convex subset of RN which is locally
closed. The following holds:

(a) The weighted inductive limit V H(CN) is a topological subspace of its projec-
tive hull HV (CN ) if and only if Q is compact.

(b) If Q is compact, the spaces V H(CN) and HV (CN) coincide also algebraically.

Proof. If Q is compact, then V H(CN) is an (LB)-space, and one implication in
part (a) and part (b) follow from [5, 1.6]. The other implication in (a) follows from
Theorem 6(ii), since the present hypotheses on Q imply that Q is compact if and
only if it is strictly convex at ∂rω.

Theorem 8. Let Q be a bounded convex locally closed subset of C
N .

(i) Assume that the following condition (∗) holds:

There is a supporting hyperplane Π to Q such that Π∩Q 6= ∅ and there exists
z0 ∈ (Π ∩ Q) \ Q which is a smooth point of ∂Q,

then V H(CN) 6= HV (CN).

(ii) V H(C) 6= HV (C) if and only if the condition (∗) holds.

Proof. (i): There is z1 ∈ Q such that the interval [z0, z1] is contained in Π ∩ Q.
We assume that there exists a convex open neighborhood G of Q with z0 /∈ G. As
z0 ∈ Q and Q ⊂ G we have that z0 ∈ Q ∩ ∂G. If Π1 a supporting hyperplane to G
at z0, then Π1 6= Π because z1 ∈ G and hence z1 /∈ Π1. Moreover Π1 is a supporting
hyperplane to Q at z0. Since z0 is a smooth point of ∂Q this is a contradiction. Hence
z0 ∈ G for any convex open neighborhood G of Q. The function f(z) := exp〈z0, z〉,
z ∈ CN , belongs to HV (CN ) = ∩GVGH(CN) but does not belong to V H(CN).

(ii): We must prove the implication ”V H(C) 6= HV (C) ⇒ (∗)”. From V H(C) 6=
HV (C) it follows that there is f ∈ ∩GVGH(C) such that f /∈ V H(C). Let K be the
conjugate diagram of f . Since the compact set K is not contained in Qn for each n
it is not contained in Q. By Proposition 5, for each convex open neighborhood G
of Q the set K is contained in G. We choose z0 ∈ K\Q. Since ∩GG ⊂ Q the point
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z0 belongs to Q. Hence z0 ∈ (K ∩ ∂Q) \Q. Let l be a supporting line to Q at z0. If
l ∩ Q = ∅ the set Q is contained in an open half-plane G with the boundary l. In
this case z0 /∈ G and we have a contradiction to K ⊂ G. Hence the set l ∩ Q is not
empty. If z0 is a corner point of ∂Q there is a supporting line l1 to Q at z0 such that
l1 ∩Q = ∅. This contradicts the inclusion K ⊂ G. Thus z0 is a smooth point of ∂Q.

Using different methods, we deal with the algebraic identity in the case of open
(not necessarily bounded) intervals in the real line in [7]. We mention the following
result for purposes of comparison.

Proposition 9. Let Q be a convex open subset of RN . The weighted (LF)-space
V H(CN) which is isomorphic to the space H(Q)′b coincides algebraically with its
projective hull HV (CN).
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