Difference methods for quasilinear hyperbolic differential functional systems on the Haar pyramid

D. Jaruszewska-Walczak
Z. Kamont

Abstract

The paper deals with the local Cauchy problem for first order partial functional differential systems. A general class of difference methods is constructed. The convergence of explicit difference schemes is proved by means of consistency and stability arguments. It is assumed that the given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential systems with deviated variables and differential integral problems can be obtained from a general case by specializing the given operators. The results are illustrated by numerical examples.

1 Introduction

For any metric spaces X and Y we denote by $C(X, Y)$ the class of all continuous functions from X into Y. We will use vectorial inequalities with the understanding that the same inequalities hold between their corresponding components. We denote by $M_{k \times n}$ the space of all real $k \times n$ matrices. For $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}, p=$ $\left(p_{1}, \ldots, p_{k}\right) \in R^{k}$ and $X \in M_{k \times n}, X=\left[x_{i j}\right]_{i=1, \ldots, k, j=1, \ldots, n}$, we put

$$
\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|, \quad\|p\|=\max \left\{\left|p_{i}\right|: 1 \leq i \leq k\right\}
$$

[^0]$$
\|X\|=\max \left\{\sum_{j=1}^{n}\left|x_{i j}\right|: 1 \leq i \leq k\right\}
$$

Unless otherwice noted, we use in the paper the above norms and they are denoted by the same symbol $\|\cdot\|$. Let E be the Haar pyramid

$$
E=\left\{(t, x)=\left(t, x_{1}, \ldots, x_{n}\right) \in R^{1+n}: t \in[0, a], x \in[-b+M t, b-M t]\right\}
$$

where $a>0, b=\left(b_{1}, \ldots, b_{n}\right), M=\left(M_{1}, \ldots, M_{n}\right) \in R_{+}^{n}, R_{+}=[0,+\infty)$, and $b>M a$. Write

$$
E_{0}=\left[-r_{0}, 0\right] \times[-b, b], \quad E_{t}=\left(E_{0} \cup E\right) \cap\left(\left[-r_{0}, t\right] \times R^{n}\right), \quad 0<t \leq a,
$$

where $r_{0} \in R_{+}$, and

$$
S_{t}=[-b, b] \text { for } t \in\left[-r_{0}, 0\right], \quad S_{t}=[-b+M t, b-M t] \text { for } t \in[0, a]
$$

Set $\Omega=E \times C\left(E_{0} \cup E, R^{k}\right)$ and assume that

$$
\begin{gathered}
\varrho: \Omega \rightarrow M_{k \times n}, \varrho=\left[\varrho_{i j}\right]_{i=1, \ldots, k, j=1, \ldots, n}, \\
f: \Omega \rightarrow R^{k}, f=\left(f_{1}, \ldots, f_{k}\right) \quad \varphi: E_{0} \rightarrow R^{k}, \varphi=\left(\varphi_{1}, \ldots, \varphi_{k}\right)
\end{gathered}
$$

are given functions. We consider the system of differential functional equations

$$
\begin{equation*}
\partial_{t} z_{i}(t, x)=\sum_{j=1}^{n} \varrho_{i j}(t, x, z) \partial_{x_{j}} z_{i}(t, x)+f_{i}(t, x, z), \quad 1 \leq i \leq k \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
z(t, x)=\varphi(t, x) \quad \text { for } \quad(t, x) \in E_{0} . \tag{2}
\end{equation*}
$$

Let us denote by $\left.z\right|_{E_{t}}, 0 \leq t \leq a$, the restriction of the function $z: E_{0} \cup E \rightarrow R^{k}$ to the set E_{t}. The function $\varrho: \Omega \rightarrow M_{k \times n}$ is said to satisfy the Volterra condition if for each $(t, x) \in E$ and for $z, \bar{z} \in C\left(E_{0} \cup E, R^{k}\right)$ such that

$$
\left.z\right|_{E_{t}}=\left.\bar{z}\right|_{E_{t}} \text { we have } \varrho(t, x, z)=\varrho(t, x, \bar{z}) .
$$

Note that the Volterra condition for ϱ means that the value of ϱ at the point (t, x, z) of the space Ω depends on (t, x) and on the restriction of z to the set E_{t}. In the same way we define the Volterra condition for f. In the paper we assume that ϱ and f satisfy the Volterra condition and we consider classical solutions of the above problem.

Numerical methods for nonlinear first order partial differential functional equations were considered by many authors and under various assumptions. Difference methods for initial boundary value problems were studied in [7], [11]. Initial problems on the Haar pyramid and a general class of difference schemes with suitable interpolating operators were considered in [6], [12], [16]. The convergence of difference methods for functional parabolic problems was studied in [10], [13] - [15]. The main problem in these investigations is to find a difference functional problem which is stable and satisfies consistency conditions with respect to the original problem.

The method of difference inequalities or simple theorems on reccurent inequalities are used in the investigations of the stability.

The numerical method of lines for partial differential functional equations was considered in [17], [18]. By using a discretization with respect to the spatial variable, the partial differential equation with a functional dependence is replaced by a sequence of ordinary functional differential equations with initial conditions. The proof of the convergence of the method of lines is based on differential inequalities techniques. For further bibliographic information concerning numerical methods for partial functional differential equations see the survey paper [2] and the monograph [8].

The results given in [6], [7], [11] for nonlinear functional differential problems are not applicable to quasilinear systems of the form (1). In the paper we prove that there is a class of difference methods for (1), (2) which are convergent. The stability of the methods is investigated by using a theorem on recurrent inequalities. We give a few numerical examples.

Differential systems with deviated variables and differential integral systems can be obtained by specializing the operators ϱ and f. Existence results for quasilinear hyperbolic problems are given in [1], [3], [5], [8]. For bibliography on applications of functional partial differential equations see the monograph [8] and the survey paper [9].

2 Discretization

We denote by $\mathbf{F}(A, B)$ the class of all functions defined on A and taking values in B, where A and B are arbitrary sets. Let \mathbf{N} and \mathbf{Z} be the sets of natural numbers and integers respectively. For $x, \bar{x} \in R^{n}, x=\left(x_{1}, \ldots, x_{n}\right), \bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$, we write $x * \bar{x}=\left(x_{1} \bar{x}_{1}, \ldots, x_{n} \bar{x}_{n}\right)$. We define a mesh on the set $E_{0} \cup E$ in the following way. Let $h=\left(h_{0}, h^{\prime}\right)$ where $h^{\prime}=\left(h_{1}, \ldots, h_{n}\right)$ stand for steps of the mesh. Denote by Δ the set of all $h=\left(h_{0}, h^{\prime}\right)$ such that there exist $\tilde{N}_{0} \in \mathbf{Z}$ and $N=\left(N_{1}, \ldots, N_{n}\right) \in$ \mathbf{Z}^{n} with the properties: $N_{0} h_{0}=r_{0}$ and $N * h^{\prime}=b$. We assume that $\Delta \neq \emptyset$ and that there exists a sequence $\left\{h^{(j)}\right\}, h^{(j)} \in \Delta$, such that $\lim _{j \rightarrow+\infty} h^{(j)}=0$. We define nodal points as follows:

$$
t^{(i)}=i h_{0}, \quad x^{(m)}=m * h^{\prime}, \quad x^{(m)}=\left(x_{1}^{\left(m_{1}\right)}, \ldots, x_{n}^{\left(m_{n}\right)}\right)
$$

where $(i, m) \in \mathbf{Z}^{1+n}$. Define $N_{0} \in \mathbf{N}$ as follows: $N_{0} h_{0} \leq a<\left(N_{0}+1\right) h_{0}$.
Let

$$
R_{h}^{1+n}=\left\{\left(t^{(i)}, x^{(m)}\right):(i, m) \in \mathbf{Z}^{1+n}\right\}
$$

and

$$
\begin{gathered}
E_{h}=E \cap R_{h}^{1+n}, \quad E_{0 . h}=E_{0} \cap R_{h}^{1+n}, \\
E_{h}^{\prime}=\left\{\left(t^{(i)}, x^{(m)}\right) \in E_{h}: \quad\left(t^{(i)}+h_{0}, x^{(m)}\right) \in E_{h}\right\} .
\end{gathered}
$$

For a function $z: E_{0 . h} \cup E_{h} \rightarrow R^{k}$ we write $z^{(i, m)}=z\left(t^{(i)}, x^{(m)}\right)$. Now we formulate a difference problem corresponding to (1), (2). Let $e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in R^{n}$, $1 \leq j \leq n$, where 1 is the j-th coordinate and let $w: E_{0 . h} \cup E_{h} \rightarrow R$. We consider
difference operators $\delta_{0}, \delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ defined in the following way:

$$
\begin{gather*}
\delta_{0} w^{(i, m)}=\frac{1}{h_{0}}\left(w^{(i+1, m)}-A w^{(i, m)}\right), \quad A w^{(i, m)}=\frac{1}{2 n} \sum_{j=1}^{n}\left(w^{\left(i, m+e_{j}\right)}+w^{\left(i, m-e_{j}\right)}\right), \\
\delta_{j} w^{(i, m)}=\frac{1}{2 h_{j}}\left(w^{\left(i, m+e_{j}\right)}-w^{\left(i, m-e_{j}\right)}\right), \quad 1 \leq j \leq n \tag{3}
\end{gather*}
$$

For a function $z=\left(z_{1}, \ldots, z_{k}\right): E_{0 . h} \cup E_{h} \rightarrow R^{k}$ we write

$$
\delta_{0} z^{(i, m)}=\left(\delta_{0} z_{1}^{(i, m)}, \ldots, \delta_{0} z_{k}^{(i, m)}\right)
$$

Put $\Omega_{h}=E_{h}^{\prime} \times \mathbf{F}\left(E_{0 . h} \cup E_{h}, R^{k}\right)$ and assume that

$$
\begin{gathered}
\varrho_{h}: \Omega_{h} \rightarrow M_{k \times n}, \quad \varrho_{h}=\left[\varrho_{h . i j}\right]_{i=1, \ldots, k, j=1, \ldots, n}, \\
f_{h}: \Omega_{h} \rightarrow R^{k}, f_{h}=\left(f_{h .1}, \ldots, f_{h . k}\right), \quad \varphi_{h}: E_{0 . h} \rightarrow R^{k}, \varphi_{h}=\left(\varphi_{h .1}, \ldots, \varphi_{h . k}\right)
\end{gathered}
$$

are given functions. Let the operator $F_{h}=\left(F_{h .1}, \ldots, F_{h . k}\right)$ be defined by

$$
\begin{equation*}
F_{h . \nu}[z]^{(i, m)}=\sum_{j=1}^{m} \varrho_{h . \nu j}\left(t^{(i)}, x^{(m)}, z\right) \delta_{j} z_{\nu}^{(i, m)}+f_{h . \nu}\left(t^{(i)}, x^{(m)}, z\right), \quad 1 \leq \nu \leq k . \tag{5}
\end{equation*}
$$

We will approximate classical solutions of problem (1), (2) by means of solutions of the difference problem

$$
\begin{gather*}
\delta_{0} z^{(i, m)}=F_{h}[z]^{(i, m)}, \tag{6}\\
z^{(i, m)}=\varphi_{h}^{(i, m)} \text { on } E_{0 . h} . \tag{7}
\end{gather*}
$$

We assume that the steps of the mesh satisfy the condition $h^{\prime} \leq M h_{0}$. Now we formulate the Volterra condition for the operator F_{h}. Put

$$
E_{i . h}=\left\{\left(t^{(j)}, x^{(m)}\right) \in E_{0 . h} \cup E_{h}: \quad j \leq i\right\}
$$

where $0 \leq i \leq N_{0}$. The function ϱ_{h} is said to satisfy the Volterra condition if for each $\left(t^{(i)}, x^{(m)}\right) \in E_{h}^{\prime}$ and for $z, \bar{z} \in \mathbf{F}\left(E_{0 . h} \cup E_{h}, R^{k}\right)$ such that $z=\bar{z}$ on $E_{i . h}$ we have

$$
\varrho_{h}\left(t^{(i)}, x^{(m)}, z\right)=\varrho_{h}\left(t^{(i)}, x^{(m)}, \bar{z}\right) .
$$

In the same way we define the Volterra condition for f_{h}.
If ϱ_{h} and f_{h} satisfy the Volterra condition then the relation $h^{\prime} \leq M h_{0}$ implies that there exists exactly one solution $u_{h}=\left(u_{h .1}, \ldots, u_{h . k}\right): E_{0 . h} \cup E_{h} \rightarrow R^{k}$ of problem (6), (7). Indeed, suppose that there is a solution of the above problem on $E_{i . h}, 0 \leq i<N_{0}$, and $\left(t^{(i+1)}, x^{(m)}\right) \in E_{h}$. Then condition $h^{\prime} \leq M h_{0}$ implies that

$$
\left(t^{(i)}, x^{\left(m+e_{j}\right)}\right),\left(t^{(i)}, x^{\left(m-e_{j}\right)}\right) \in E_{0 . h} \cup E_{h} \text { for } 1 \leq j \leq n .
$$

It follows from (3)-(7) that $u_{h}^{(i+1, m)}$ can be calculated and consequently u_{h} is defined on $E_{i+1 . h}$. Then by induction the solution exists and it is unique on $E_{0 . h} \cup E_{h}$.

The motivation for the definition of the set E_{h}^{\prime} is the following. Approximate solutions of problem (1), (2) are functions defined on $E_{0 . h} \cup E_{h}$. We write equation
(6) at each point $\left(t^{(i)}, x^{(m)}\right)$ of the set E_{h}^{\prime} and we calculate all the values of u_{h} on $E_{0 . h} \cup E_{h}$.

Suppose that $v: E_{0} \cup E \rightarrow R^{k}$ is a solution of the functional differential problem (1), (2). Let $v_{h}=\left.v\right|_{E_{0 . h} \cup E_{h}}$. For each $h \in \Delta$ there exists $\alpha(h)$ such that

$$
\begin{equation*}
\left\|u_{h}^{(i, m)}-v_{h}^{(i, m)}\right\| \leq \alpha(h) \text { on } E_{h} \tag{8}
\end{equation*}
$$

The above inequality gives the error estimate for the numerical method (6), (7). Suppose that there exists a function $\alpha_{0}: \Delta \rightarrow R_{+}$, such that

$$
\left\|\varphi^{(i, m)}-\varphi_{h}^{(i, m)}\right\| \leq \alpha_{0}(h) \text { on } E_{0 . h} \text { and } \lim _{h \rightarrow 0} \alpha_{0}(h)=0
$$

We say that method (6), (7) is convergent if there is $\alpha: \Delta \rightarrow R_{+}$such that condition (8) holds and $\lim _{h \rightarrow 0} \alpha(h)=0$.

For a function $z: E_{0 . h} \cup E_{h} \rightarrow R^{k}$ we write

$$
\|z\|_{i . h}=\max \left\{\left\|z^{(j, m)}\right\|: \quad\left(t^{(j)}, x^{(m)}\right) \in E_{i . h}\right\}
$$

where $0 \leq i \leq N_{0}$. Let $I_{0}=\left[-r_{0}, 0\right], I=[0, a]$ and

$$
I_{0 . h}=\left\{t^{(i)}:-\tilde{N}_{0} \leq i \leq 0\right\}, \quad I_{h}=\left\{t^{(i)}: 0 \leq i \leq N_{0}\right\}, \quad I_{h}^{\prime}=I_{h} \backslash\left\{t^{\left(N_{0}\right)}\right\}
$$

For a function $\omega: I_{0 . h} \cup I_{h} \rightarrow R$ we write $\omega^{(i)}=\omega\left(t^{(i)}\right),-\tilde{N}_{0} \leq i \leq N_{0}$, and

$$
\|\omega\|_{i . h}=\max \left\{\left|\omega^{(j)}\right|:-\tilde{N}_{0} \leq j \leq i\right\}
$$

In the sequel we will need the following operator

$$
V_{h}: \mathbf{F}\left(E_{0 . h} \cup E_{h}, R^{k}\right) \rightarrow \mathbf{F}\left(I_{0 . h} \cup I_{h}, R_{+}\right) .
$$

If $z: E_{0 . h} \cup E_{h} \rightarrow R_{k}$, then $V_{h}[z]$ is given by

$$
V_{h}[z]\left(t^{(i)}\right)=\max \left\{\left\|z^{(i, m)}\right\|: \quad\left(t^{(i)}, x^{(m)}\right) \in E_{0 . h} \cup E_{h}\right\}
$$

where $-\tilde{N}_{0} \leq i \leq N_{0}$.

3 Functional difference equations

Now we formulate general conditions for the convergence of method (6), (7). Our result will be proved by means of consistency and stability arguments.

Assumption H $\left[\sigma_{h}\right]$. Suppose that the function $\sigma_{h}: I_{h}^{\prime} \times \mathbf{F}\left(I_{. h} \cup I_{h}, R_{+}\right) \rightarrow R_{+}$ satisfies the conditions:

1) σ_{h} is nondecreasing with respect to the functional variable and fulfils the Volterra condition,
2) $\sigma_{h}\left(t, \theta_{h}\right)=0$ for $t \in I_{h}^{\prime}$ where $\theta_{h}^{(i)}=0$ for $-\tilde{N}_{0} \leq i \leq N_{0}$ and the difference problem

$$
\begin{gather*}
\eta^{(i+1)}=\eta^{(i)}+h_{0} \sigma_{h}\left(t^{(i)}, \eta\right) \text { for } 0 \leq i \leq N_{0}-1, \tag{9}\\
\eta^{(i)}=0 \text { for }-\tilde{N}_{0} \leq i \leq 0, \tag{10}
\end{gather*}
$$

is stable in the following sense: if $\eta_{h}: I_{0 . h} \cup I_{h} \rightarrow R_{+}$is a solution of the problem

$$
\begin{gather*}
\eta^{(i+1)}=\eta^{(i)}+h_{0} c \sigma_{h}\left(t^{(i)}, \eta\right)+h_{0} \gamma(h) \text { for } 0 \leq i \leq N_{0}-1, \tag{11}\\
\eta^{(i)}=\alpha_{0}(h) \text { for }-\tilde{N}_{0} \leq i \leq 0, \tag{12}
\end{gather*}
$$

where $c \geq 1$ and

$$
\alpha_{0}, \gamma: \Delta \rightarrow R_{+}, \quad \lim _{h \rightarrow 0} \alpha_{0}(h)=0, \quad \lim _{h \rightarrow 0} \gamma(h)=0
$$

then there exists a function $\beta: \Delta \rightarrow R_{+}$such that

$$
\eta_{h}^{(i)} \leq \beta(h) \text { for } 0 \leq i \leq N_{0} \text { and } \lim _{h \rightarrow 0} \beta(h)=0
$$

Assumption H $\left[\varrho_{h}, f_{h}\right]$. Suppose that the functions ϱ_{h} and f_{h} satisfy the Volterra condition and there is a function $\sigma_{h}: I_{h}^{\prime} \times \mathbf{F}\left(I_{0 . h} \cup I_{h}, R_{+}\right) \rightarrow R_{+}$satisfying Assumption $\mathrm{H}\left[\sigma_{g}\right]$ and such that

$$
\begin{aligned}
\left\|\varrho_{h}(t, x, z)-\varrho_{h}(t, x, \bar{z})\right\| & \leq \sigma_{h}\left(t, V_{h}[z-\bar{z}]\right), \\
\left\|f_{h}(t, x, z)-f_{h}(t, x, \bar{z})\right\| & \leq \sigma_{h}\left(t, V_{h}[z-\bar{z}]\right)
\end{aligned}
$$

on Ω_{h}.
Remark 3.1. The functions ϱ_{h} and f_{h} are generated by ϱ and f and corresponding interpolating operators. Adequate examples are given in Section 4.

Now we formulate a theorem on the convergence of method (6), (7).
Theorem 3.2. Suppose that Assumption $H\left[\varrho_{h}, f_{h}\right]$ is satisfied and

1) $h \in \Delta$ and

$$
\begin{equation*}
\frac{1}{n}-\frac{h_{0}}{h_{j}}\left|\varrho_{h . \nu j}(t, x, z)\right| \geq 0 \text { on } \Omega_{h} \text { for } 1 \leq \nu \leq k, 1 \leq j \leq n, \tag{13}
\end{equation*}
$$

2) $h^{\prime} \leq M h_{0}$ and $u_{h}: E_{0 . h} \cup E_{h} \rightarrow R^{k}$ is the solution of the difference functional problem (6), (7) and there exists a function $\alpha_{0}: \Delta \rightarrow R_{+}$such that

$$
\begin{equation*}
\left\|\varphi^{(i, m)}-\varphi_{h}^{(i, m)}\right\| \leq \alpha_{0}(h) \text { on } E_{0 . h} \text { and } \lim _{h \rightarrow 0} \alpha_{0}(h)=0 \tag{14}
\end{equation*}
$$

3) the function $v \in C\left(E_{0} \cup E, R^{k}\right)$ is a solution of problem (1), (2) and the function $\left.v\right|_{E}$ is of class C^{2},
4) there exists a function $\tilde{\beta}: \Delta \rightarrow R_{+}$such that

$$
\begin{gathered}
\left\|\varrho_{h}\left(t, x, v_{h}\right)-\varrho(t, x, v)\right\| \leq \tilde{\beta}(h), \\
\left\|f_{h}\left(t, x, v_{h}\right)-f(t, x, v)\right\| \leq \tilde{\beta}(h),(t, x) \in E_{h}^{\prime},
\end{gathered}
$$

and $\lim _{h \rightarrow 0} \tilde{\beta}(h)=0$ where $v_{h}=\left(v_{h .1}, \ldots, v_{h . k}\right)$ is the restriction of v to the set $E_{0 . h} \cup E_{h}$.

Under these assumptions there exists a function $\alpha: \Delta \rightarrow R_{+}$such that

$$
\left\|v_{h}^{(i, m)}-u_{h}^{(i, m)}\right\| \leq \alpha(h) \text { on } E_{h} \text { and } \lim _{h \rightarrow 0} \alpha(h)=0 .
$$

Proof. Let

$$
\Gamma_{h}=\left(\Gamma_{h .1}, \ldots, \Gamma_{h . k}\right): E_{h}^{\prime} \rightarrow R^{k}, \quad \Lambda_{h}=\left(\Lambda_{h .1}, \ldots, \Lambda_{h . k}\right): E_{h}^{\prime} \rightarrow R^{k}
$$

be the functions defined by

$$
\begin{equation*}
\Gamma_{h . \nu}^{(i, m)}=\delta_{0} v_{h . \nu}^{(i, m)}-\partial_{t} v_{\nu}^{(i, m)}+\sum_{j=1}^{n} \varrho_{\nu j}\left(t^{(i)}, x^{(m)}, v\right)\left[\partial_{x_{j}} v_{\nu}^{(i, m)}-\delta_{j} v_{h . \nu}^{(i, m)}\right], 1 \leq \nu \leq k \tag{15}
\end{equation*}
$$

and

$$
\begin{gather*}
\Lambda_{h . \nu}^{(i, m)}=f_{\nu}\left(t^{(i)}, x^{(m)}, v\right)-f_{h . \nu}\left(t^{(i)}, x^{(m)}, u_{h}\right) \tag{16}\\
+\sum_{j=1}^{n}\left[\varrho_{\nu j}\left(t^{(i)}, x^{(m)}, v\right)-\varrho_{h . \nu j}\left(t^{(i)}, x^{(m)}, u_{h}\right)\right] \delta_{j} v_{h . \nu}^{(i, m)}, 1 \leq \nu \leq k .
\end{gather*}
$$

Let $z_{h}=v_{h}-u_{h}, z_{h}=\left(z_{h .1}, \ldots, z_{h . k}\right)$ and

$$
\begin{equation*}
P_{i . m}=\left(t^{(i)}, x^{(m)}, u_{h}\right) . \tag{17}
\end{equation*}
$$

The function z_{h} satisfies the recursive equations

$$
z_{h . \nu}^{(i+1, m)}=h_{0}\left[\Gamma_{h . \nu}^{(i, m)}+\Lambda_{h . \nu}^{(i, m)}\right]+A z_{h . \nu}^{i, m)}+h_{0} \sum_{j=1}^{n} \varrho_{h . \nu j}\left(P_{i . m}\right) \delta_{j} z_{h . \nu}^{(i, m)}, 1 \leq \nu \leq k,
$$

where $\left(t^{(i)}, x^{(m)}\right) \in E_{h}^{\prime}$. It follows from (3), (4) that

$$
\begin{gathered}
z_{h . \nu}^{(i+1, m)}=h_{0}\left[\Gamma_{h, \nu}^{(i, m)}+\Lambda_{h . \nu}^{(i, m)}\right] \\
+\frac{1}{2} \sum_{j=1}^{n} z_{h . \nu}^{\left(i, m+e_{j}\right)}\left[\frac{1}{n}+\frac{h_{0}}{h_{j}} \varrho_{h . \nu j}\left(P_{i . m}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} z_{h . \nu}^{\left(i, m-e_{j}\right)}\left[\frac{1}{n}-\frac{h_{0}}{h_{j}} \varrho_{h . \nu j}\left(P_{i . m}\right)\right],
\end{gathered}
$$

where $1 \leq \nu \leq k$. Let ω_{h} be a function defined by $\omega_{h}=V_{h}\left[z_{h}\right]$. It follows from (13) that

$$
\begin{equation*}
\left\|z_{h}^{(i+1, m)}\right\| \leq \omega_{h}^{(i)}+h_{0}\left[\left\|\Gamma_{h}^{(i, m)}\right\|+\left\|\Lambda_{h}^{(i, m)}\right\|\right] \text { for }\left(t^{(i)}, x^{(m)}\right) \in E_{h}^{\prime} \tag{18}
\end{equation*}
$$

It follows from assumption 3) that there exists $c_{0} \in R_{+}$such that

$$
\begin{equation*}
\left\|\partial_{x_{j}} v(t, x)\right\| \leq c_{0}, \quad(t, x) \in E, \quad 1 \leq j \leq n \tag{19}
\end{equation*}
$$

Then $\left\|\delta_{j} v_{h}^{(i, m)}\right\| \leq c_{0}$ on E_{h}^{\prime} for $1 \leq j \leq n$. It follows from Assumption $\mathrm{H}\left[\varrho_{h}, f_{h}\right]$ and conditon 4) that

$$
\begin{gathered}
\left\|\Lambda_{h}^{(i, m)}\right\| \leq\left\|f\left(t^{(i)}, x^{(m)}, v\right)-f_{h}\left(t^{(i)}, x^{(m)}, v_{h}\right)\right\|+\left\|f_{h}\left(t^{(i)}, x^{(m)}, v_{h}\right)-f_{h}\left(t^{(i)}, x^{(m)}, u_{h}\right)\right\| \\
+c_{0}\left\|\varrho\left(t^{(i)}, x^{(m)}, v\right)-\varrho_{h}\left(t^{(i)}, x^{(m)}, v_{h}\right)\right\|+c_{0}\left\|\varrho_{h}\left(t^{(i)}, x^{(m)}, v_{h}\right)-\varrho_{h}\left(t^{(i)}, x^{(m)}, u_{h}\right)\right\| \\
\leq\left(1+c_{0}\right) \sigma_{h}\left(t^{(i)}, \omega_{h}\right)+\left(1+c_{0}\right) \tilde{\beta}(h) .
\end{gathered}
$$

We conclude from assumption 3) that there is $\tilde{\gamma}: \Delta \rightarrow R_{+}$such that

$$
\left\|\Gamma_{h}^{(i, m)}\right\| \leq \tilde{\gamma}(h) \text { on } E_{h}^{\prime} \text { and } \lim _{h \rightarrow 0} \tilde{\gamma}(h)=0
$$

The above estimates and (18) imply

$$
\begin{equation*}
\omega_{h}^{(i+1)} \leq \omega_{h}^{(i)}+h_{0}\left(1+c_{0}\right) \sigma_{h}\left(t^{(i)}, \omega_{h}\right)+h_{0} \gamma(h), 0 \leq i \leq N_{0}-1 \tag{20}
\end{equation*}
$$

where $\gamma(h)=\left(1+c_{0}\right) \tilde{\beta}(h)+\tilde{\gamma}(h)$ and

$$
\begin{equation*}
\omega_{h}^{(i)} \leq \alpha_{0}(h) \text { for } \quad-\tilde{N}_{0} \leq i \leq 0 \tag{21}
\end{equation*}
$$

Let $\eta_{h}: I_{0 . h} \cup I_{h} \rightarrow R_{+}$be a solution of the Cauchy problem

$$
\begin{gather*}
\eta^{(i+1)}=\eta^{(i)}+h_{0}\left(1+c_{0}\right) \sigma_{h}\left(t^{(i)}, \eta\right)+h_{0} \gamma(h), \quad 0 \leq i \leq N_{0}-1, \tag{22}\\
\eta^{(i)}=\alpha_{0}(h)-\tilde{N}_{0} \leq i \leq 0 . \tag{23}
\end{gather*}
$$

Using the Volterra condition and the monotonicity property of σ_{h} and (20)-(23) we get by induction that $\omega_{h}^{(i)} \leq \eta_{h}^{(i)}$ for $0 \leq i \leq N_{0}$. Then we obtain the assertion of Theorem 3.2 from the stability of problem (9), (10).
Remark 3.3. Note that condition (13) for method (6), (7) and inequality $h^{\prime} \leq M h_{0}$ imply

$$
\frac{1}{n} M \geq\left(\left|\varrho_{h . \nu 1}(t, x, z)\right|, \ldots,\left|\varrho_{h . \nu n}(t, x, z)\right|\right) \text { on } \Omega
$$

where $1 \leq \nu \leq k$.
Now we consider the difference functional problem (6), (7), where $F_{h}=\left(F_{h .1}, \ldots\right.$, $\left.F_{h . k}\right)$ is given by (5) and the operators $\delta_{0}, \delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ are calculated in the following way:

$$
\begin{gather*}
\delta_{0} z_{\nu}^{(i, m)}=\frac{1}{h_{0}}\left(z_{\nu}^{(i+1, m)}-z_{\nu}^{(i, m)}\right), \quad 1 \leq \nu \leq k, \tag{24}\\
\delta_{j} z_{\nu}^{(i, m)}=\frac{1}{h_{j}}\left(z_{\nu}^{\left(i, m+e_{j}\right)}-z_{\nu}^{(i, m)}\right) \text { if } \varrho_{h . \nu j}\left(t^{(i)}, x^{(m)}, z\right) \geq 0, \tag{25}\\
\delta_{j} z_{\nu}^{(i, m)}=\frac{1}{h_{j}}\left(z_{\nu}^{(i, m)}-z_{\nu}^{\left(i, m-e_{j}\right)}\right) \text { if } \varrho_{h . \nu j}\left(t^{(i)}, x^{(m)}, z\right)<0 \tag{26}
\end{gather*}
$$

where $1 \leq j \leq n, 1 \leq \nu \leq k$. It is easily seen that if ϱ_{h} and f_{h} satisfy the Volterra condition and $h^{\prime} \leq M h_{0}$ then there exists exactly one solution $u_{h}=\left(u_{h .1}, \ldots, u_{h . k}\right)$: $E_{h . k} \cup E_{h} \rightarrow R^{k}$ of problem (6), (7) with δ_{0} and δ given by (24) - (26).
Theorem 3.4. Suppose that Assumption $H\left[\varrho_{h}, f_{h}\right]$ is satisfied and

1) $h \in \Delta$ and

$$
\begin{equation*}
1-h_{0} \sum_{j=1}^{n} \frac{1}{h_{j}}\left|\varrho_{h . \nu j}(t, x, z)\right| \geq 0 \text { on } \Omega_{h} \text { for } 1 \leq \nu \leq k \tag{27}
\end{equation*}
$$

2) $h^{\prime} \leq M h_{0}$ and $u_{h}: E_{0 . h} \cup E_{h} \rightarrow R^{k}$ is the solution of the difference functional problem (6), (7) with the difference operators given by (24)-(26) and there exists a function $\alpha_{0}: \Delta \rightarrow R_{+}$such that condition (14) holds,
3) the function $v \in C\left(E_{0} \cup E, R^{k}\right)$ is a solution of problem (1), (2) and the function $\left.v\right|_{E}$ is of class C^{1},
4) assumption 4) of Theorem 3.2 is satisfied.

Under these assumptions there exists a function $\alpha: \Delta \rightarrow R_{+}$such that

$$
\left\|v_{h}^{(i, m)}-u_{h}^{(i, m)}\right\| \leq \alpha(h) \text { on } E_{h} \text { and } \lim _{h \rightarrow 0} \alpha(h)=0
$$

Proof. Let $\Gamma_{h}: E_{h}^{\prime} \rightarrow R^{k}$ and $\Lambda_{h}: E_{h}^{\prime} \rightarrow R^{k}$ be the functions defined by (15) and (16) with δ_{0} and δ given by (24) - (26). Write $z_{h}=v_{h}-u_{h}$ and

$$
\begin{gathered}
J_{\nu \cdot+}^{(i, m)}=\left\{j: 1 \leq j \leq n \text { and } \varrho_{h . \nu j}\left(P_{i . m}\right) \geq 0\right\}, \\
J_{\nu,-}^{(i, m)}=\{1, \ldots, n\} \backslash J_{\nu,+}^{(i, m)} .
\end{gathered}
$$

Then we have

$$
\begin{gather*}
z_{h . \nu}^{(i+1, m)}=h_{0}\left[\Gamma_{h . \nu}^{(i, m)}+\Lambda_{h . \nu}^{(i, m)}\right] \tag{28}\\
+z_{h . \nu}^{(i, m)}\left[1-h_{0} \sum_{j \in J_{\nu, \downarrow}^{(i, m)}} \frac{1}{h_{j}} \varrho_{h . \nu j}\left(P_{i . m}\right)+h_{0} \sum_{j \in J_{\nu,-}^{(i, m)}} \frac{1}{h_{j}} \varrho_{h . \nu j}\left(P_{i . m}\right)\right] \\
+h_{0} \sum_{j \in I_{\nu, \downarrow}^{(i, m)}} \frac{1}{h_{j}} \varrho_{h . \nu j}\left(P_{i . m}\right) z_{h . \nu}^{\left(i, m+e_{j}\right)}-h_{0} \sum_{j \in J_{\nu,-}^{(i, m)}} \frac{1}{h_{j}} \varrho_{h . \nu j}\left(P_{i . m}\right) z_{h \nu}^{\left(i, m-e_{j}\right)},
\end{gather*}
$$

where $\left(t^{(i)}, x^{(m)}\right) \in E_{h}^{\prime}$ and $P_{i . m}$ is given by (17). Let ω_{h} be a function defined by $\omega_{h}=V_{h}\left[z_{h}\right]$. It follows from (27), (28) that for $\left(t^{(i)} x^{(m)}\right) \in E_{h}^{\prime}$ we have

$$
\begin{equation*}
\left\|z_{h}^{(i+1, m)}\right\| \leq \omega_{h}^{(i)}+h_{0}\left[\left\|\Gamma_{h}^{(i, m)}\right\|+\left\|\Lambda_{h}^{(i, m)}\right\|\right] \tag{29}
\end{equation*}
$$

There exists $c_{0} \in R_{+}$such that condition (19) is satisfied. Then $\left\|\delta_{j} v_{h}^{(i, m)}\right\| \leq c_{0}$ on E_{h} for $1 \leq j \leq n$. It follows from Assumption $\mathrm{H}\left[\varrho_{h}, f_{h}\right]$ and (16) that

$$
\left\|\Lambda_{h}^{(i, m)}\right\| \leq\left(1+c_{0}\right) \sigma_{h}\left(t^{(i)}, \omega_{h}\right)+\left(1+c_{0}\right) \tilde{\beta}(h)
$$

We conclude that there is $\tilde{\gamma}: \Delta \rightarrow R_{+}$such that

$$
\left\|\Gamma_{h}^{(i, m)}\right\| \leq \tilde{\gamma}(h) \text { on } E_{h}^{\prime} \quad \text { and } \quad \lim _{h \rightarrow 0} \tilde{\gamma}(h)=0 .
$$

The above estimates and (29) imply

$$
\omega_{h}^{(i+1)} \leq \omega_{h}^{(i)}+h_{0}\left(1+c_{0}\right) \sigma_{h}\left(t^{(i)}, \omega_{h}\right)+h_{0} \gamma(h), \quad 0 \leq i \leq N_{0}-1,
$$

where $\gamma(h)=\left(1+c_{0}\right) \tilde{\beta}(h)+\tilde{\gamma}(h)$ and

$$
\omega_{h}^{(i)} \leq \alpha_{0}(h) \text { for } \quad-\tilde{N} \leq i \leq 0
$$

Let $\eta_{h}: I_{0 . h} \cup I_{h} \rightarrow R_{+}$be the solution of the Cauchy problem (22), (23). Using the Volterra condition and the monotonicity property of σ_{h} we get by induction that $\omega_{h}^{(i)} \leq \eta_{h}^{(i)}$ for $0 \leq i \leq N_{0}$, and we obtain the assertion of Theorem 3.4 from the stability of problem (9), (10).
Remark 3.5. Suppose that $M_{j}>0$ for $1 \leq j \leq n$. Note that condition (27) for method (6), (7) with the difference operators given by (24)-(26) and the assumption $h^{\prime} \leq M h_{0}$ imply

$$
1 \geq \sum_{j=1}^{n} \frac{1}{M_{j}}\left|\varrho_{h . \nu j}(t, x, z)\right| \text { on } \Omega
$$

where $1 \leq \nu \leq k$. If $M_{1}=M_{2}=\ldots=M_{n}=\tilde{M}$ then $\tilde{M} \geq \| \varrho_{h}(t, x, z)$ on Ω.
Remark 3.6. The stability of difference problems generated by hyperbolic systems of conservations laws is strictly connected with the Courant - Friedrichs - Levy conditions, see [4], Chapter III. Inequalities (13), (27) can be considered as the Courant-Friedrichs-Levy conditions for functional differential systems.

4 Difference schemes for quasilinear systems

We give examples of functions ϱ_{h} and f_{h} corresponding to ϱ and f. We also give error estimates for the difference methods. We adopt additional assumptions for the mesh $E_{0 . h} \cup E_{h}$. We assume that the steps of the mesh satisfy the condition: $h^{\prime}=M h_{0}$. Then we can write the definitions of the sets $E_{0 . h}$ and E_{h} in the following way:

$$
\begin{aligned}
& E_{0 . h}=\left\{\left(t^{(i)}, x^{(m)}\right):-\tilde{N}_{0} \leq i \leq 0,-N \leq m \leq N\right\} \\
E_{h}= & \left\{\left(t^{(i)}, x^{(m)}\right): \quad 0 \leq i \leq N_{0},\left|m_{i}\right| \leq N_{i}-i \text { for } i=1, \ldots, n\right\} .
\end{aligned}
$$

Put $B=[-b, b] \subset R^{n}$ and $B_{h^{\prime}}=\left\{x^{(m)}:-N \leq m \leq N\right\}$. We define the operator $T_{h^{\prime}}: \mathbf{F}\left(\left[-r_{0}, a\right] \times B_{h^{\prime}}, R\right) \rightarrow \mathbf{F}\left(\left[-r_{0}, a\right] \times B, R\right)$ as follows. Write

$$
S_{+}=\left\{s=\left(s_{1}, \ldots, s_{n}\right): s_{i} \in\{0,1\} \text { for } 1 \leq i \leq n\right\} .
$$

Let $w \in \mathbf{F}\left(\left[-r_{0}, a\right] \times B_{h^{\prime}}, R\right)$ and $t \in\left[-r_{0}, a\right], x \in B$. There exists $m \in \mathbf{Z}^{n}$ such that $x^{(m)}, x^{(m+1)} \in B_{h^{\prime}}$ where $m+1=\left(m_{1}+1, \ldots, m_{n}+1\right)$ and $x^{(m)} \leq x \leq x^{(m+1)}$. We define

$$
T_{h^{\prime}}[w](t, x)=\sum_{s \in S_{+}} w\left(t, x^{(m+s)}\right)\left(\frac{x-x^{(m)}}{h^{\prime}}\right)^{s}\left(1-\frac{x-x^{(m)}}{h^{\prime}}\right)^{1-s}
$$

where

$$
\begin{aligned}
\left(\frac{x-x^{(m)}}{h^{\prime}}\right)^{s} & =\prod_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{\left(m_{i}\right)}}{h_{i}}\right)^{s_{i}} \\
\left(1-\frac{x-x^{(m)}}{h^{\prime}}\right)^{1-s} & =\prod_{i=1}^{n}\left(1-\frac{x_{i}-x_{i}^{\left(m_{i}\right)}}{h_{i}}\right)^{1-s_{i}}
\end{aligned}
$$

and we take $0^{0}=1$ in the above formulas. Then the function $T_{h^{\prime}}[w](t, \cdot)$ is continuous on B.

We define the operator $T_{h}: \mathbf{F}\left(E_{0 . h} \cup E_{h}, R\right) \rightarrow \mathbf{F}\left(E_{0} \cup E, R\right)$ in the following way. Suppose that $w: E_{0 . h} \cup E_{h} \rightarrow R$. For $(t, x) \in E_{0} \cup E$ and $-r_{0} \leq t \leq a$ three cases will be distinguished.
I. Suppose that $(t, x) \in E_{0}$. Then there is $(i, m) \in \mathbf{Z}^{1+n}$ such that

$$
\left(t^{(i)}, x^{(m)}\right),\left(t^{(i+1)}, x^{(m+1)}\right) \in E_{0 . h} \text { and } t^{(i)} \leq t \leq t^{(i+1)}, x^{(m)} \leq x \leq x^{(m+1)} .
$$

We define

$$
\begin{equation*}
T_{h}[w](t, x)=\left(1-\frac{t-t^{(i)}}{h_{0}}\right) T_{h^{\prime}}[w]\left(t^{(i)}, x\right)+\frac{t-t^{(i)}}{h_{0}} T_{h^{\prime}}[w]\left(t^{(i+1)}, x\right) . \tag{30}
\end{equation*}
$$

II. Suppose that $(t, x) \in E$ and there is $(i, m) \in \mathbf{Z}^{1+n}$ such that

$$
\left[t^{(i)}, t^{(i+1)}\right] \times\left[x^{(m)}, x^{(m+1)}\right] \subset E
$$

and $t^{(i)} \leq t<t^{(i+1)}, x^{(m)} \leq x \leq x^{(m+1)}$. Then we define $T_{h}[w](t, x)$ by formula (30).
III. Suppose that $(t, x) \in E$ and
(a) $t^{(i)} \leq t<t^{(i+1)}$ for some $i, 0 \leq i \leq N_{0}-1, x^{(m)} \leq x \leq x^{(m+1)}$ for some $m \in \mathbf{Z}^{N}$,
(b) $\left(t^{(i)}, x^{(m)}\right),\left(t^{(i)}, x^{(m+1)}\right) \in E$ and

$$
\left(t^{(i)}, x^{(m)}\right) \in \partial_{0} E \text { or }\left(t^{(i)}, x^{(m+1)}\right) \in \partial_{0} E
$$

where $\partial_{0} E=\partial E \cap\left([0, a] \times R^{n}\right)$ and ∂E is the boundary of E. Define the sets of integers $I_{+}[i, m], I_{-}[i, m], I_{0}[i, m]$ (possibly empty) as follows :

$$
\begin{gathered}
I_{+}[i, m]=\left\{j: 1 \leq j \leq n \text { and } x_{j}^{\left(m_{j}+1\right)}=b_{j}-M_{j} t^{(i)},\right\} \\
I_{-}[i, m]=\left\{j: 1 \leq j \leq n \text { and } x_{j}^{\left(m_{j}\right)}=-b_{j}+M_{j} t^{(i)}\right\}, \\
I_{0}[i, m]=\{1, \ldots, n\} \backslash\left(I_{+}[i, m] \cup I_{-}[i, m]\right) .
\end{gathered}
$$

We define $U x=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ and $W x=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)$ as follows:

$$
\begin{gathered}
\bar{x}_{j}=x_{j}^{\left(m_{j}\right)}+\frac{h_{0}}{t^{(i)}+h_{0}-t}\left(x_{j}-x_{j}^{\left(m_{j}\right)}\right) \text { and } \tilde{x}_{j}=x_{j}^{\left(m_{j}\right)} \text { for } j \in I_{+}[i, m], \\
\bar{x}_{j}=x_{j}^{\left(m_{j}+1\right)}+\frac{h_{0}}{t^{(i)}+h_{0}-t}\left(x_{j}-x_{j}^{\left(m_{j}+1\right)}\right) \text { and } \tilde{x}_{j}=x_{j}^{\left(m_{j}+1\right)} \text { for } j \in I_{-}[i, m], \\
\bar{x}_{j}=\tilde{x}_{j}=x_{j} \text { for } j \in I_{0}[i, m] .
\end{gathered}
$$

Then we write

$$
T_{h}[w](t, x)=\left(1-\frac{t-t^{(i)}}{h_{0}}\right) T_{h^{\prime}}[w]\left(t^{(i)}, U x\right)+\frac{t-t^{(i)}}{h_{0}} T_{h^{\prime}}[w]\left(t^{(i+1)}, W x\right)
$$

If $(t, x) \in E_{0} \cup E$ and $N_{0} h_{0}<t \leq a$ then we put $T_{h}[w](t, x)=T_{h}[w]\left(N h_{0}, x\right)$. Then we have defined $T_{h}[w]: E_{0} \cup E \rightarrow R$ and $T_{h}[w]$ is a continuous function on $E_{0} \cup E$.

The above interpolating operator was introduced and widely studied in [6].
It $z=\left(z_{1}, \ldots, z_{k}\right): E_{0 . h} \cup E_{h} \rightarrow R^{k}$ then we put $T_{h}[z]=\left(T_{h}\left[z_{1}\right], \ldots, T_{h}\left[z_{k}\right]\right)$. We will denote by $\|\cdot\|_{t}$ the maximum norm in the space $C\left(E_{t}, R^{k}\right), 0 \leq t \leq a$.

Lemma 4.1. Suppose that $v: E_{0} \cup E \rightarrow R^{k}$ is of class C^{2} and denote by v_{h} the restriction of v to the set $E_{0 . h} \cup E_{h}$. Let \tilde{C} be such a constant that

$$
\left\|\partial_{t t} v(t, x)\right\| \leq \tilde{C}, \quad\left\|\partial_{t x_{j}} v(t, x)\right\| \leq \tilde{C}, \quad\left\|\partial_{x_{i} x_{j}} v(t, x)\right\| \leq \tilde{C}, \quad 1 \leq i, j \leq n
$$

on $E_{0} \cup E$, and

$$
C_{0}=\frac{1}{2} \tilde{C}\left[1+2 \sum_{j=1}^{n} M_{i}+\sum_{i, j=1}^{n} M_{i} M_{j}\right]
$$

Then $\left\|T_{h}\left[v_{h}\right]-v\right\|_{t} \leq C_{0} h_{0}^{2}$ for $t \in\left[0, N_{0} h_{0}\right]$.
The proof o the above lemma is silmilar to the proof of Theorem 3.1 in [6]. We omit details.

Now we consider functional differential problem (1), (2) and the difference functional system

$$
\begin{equation*}
\delta_{0} z_{\nu}^{(i+1, m)}=\sum_{j=1}^{n} \varrho_{\nu j}\left(t^{(i)}, x^{(m)}, T_{h}[z]\right) \delta_{j} z_{\nu}^{(i, m)}+f_{\nu}\left(t^{(i)}, x^{(m)}, T_{h}[z]\right), \quad 1 \leq \nu \leq k \tag{31}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
z^{(i, m)}=\varphi_{h}^{(i, m)} \quad \text { on } \quad E_{0 . h}, \tag{32}
\end{equation*}
$$

where $\varphi_{h}: E_{0 . h} \rightarrow R^{k}$ is a given function and the operators $\delta_{0}, \delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ are defined by (3), (4).

We will estimate functions of several variables by means of functions of one variable. Therefore we will need the following operator $V: C\left(E_{0} \cup E, R^{k}\right) \rightarrow$ $C\left(\left[-r_{0}, a\right], R_{+}\right)$. If $z \in C\left(E_{0} \cup E, R^{k}\right)$ then

$$
V[z](t)=\max \left\{\|z(t, x)\|: \quad x \in S_{t}\right\}, \quad-r_{0} \leq t \leq a
$$

Assumption H $[\sigma, f]$. Suppose that the functions $\varrho: \Omega \rightarrow M_{k \times n}$ and $f: \Omega \rightarrow R^{k}$ are continuous, they satisfy the Volterra condition and

1) there exists a continuous function $\sigma: R_{+} \times C\left(\left[-r_{0}, a\right], R_{+}\right) \rightarrow R_{+}$such that
(i) σ is nondecreasing with respect to both variables,
(ii) σ satisfies the Volterra condition and $\sigma(t, \theta)=0$ for $t \in R_{+}$where $\theta(t)=0$ for $t \in\left[-r_{0}, a\right]$,
(iii) for each $c \geq 1$ the maximal solution of the problem

$$
\omega^{\prime}(t)=c \sigma(t, \omega), \quad \omega(t)=0 \text { for } t \in\left[-r_{0}, 0\right]
$$

is $\bar{\omega}(t)=0$ for $t \in R_{+}$,
2) for $(t, x, z),(t, x, \bar{z}) \in \Omega$ we have the estimates

$$
\|\varrho(t, x, z)-\varrho(t, x, \bar{z})\| \leq \sigma(t, V[z-\bar{z}]),
$$

and

$$
\|f(t, x, z)-f(t, x, \bar{z})\| \leq \sigma(t, V[z-\bar{z}])
$$

Theorem 4.2. Suppose that Assumption $H[\varrho, f]$ is satisfied and

1) $h \in \Delta$ and

$$
\frac{1}{n}-\frac{h_{0}}{h_{j}}\left|\varrho_{\nu j}(t, x, z)\right| \geq 0 \text { on } \Omega
$$

for $1 \leq \nu \leq k, 1 \leq j \leq n$, and there is a function $\alpha_{0}: \Delta \rightarrow R_{+}$such that condition (14) holds,
2) $h^{\prime}=M h_{0}$ and the function $u_{h}: E_{0 . h} \cup E_{h} \rightarrow R^{k}$ is a solution of problem (31), (32) with δ_{0} and δ given by (3), (4),
3) $v: E_{0} \cup E \rightarrow R^{k}$ is a solution of (1), (2) and v is of class C^{2} and $v_{h}=$ $\left.v\right|_{E_{0 . h} \cup E_{h}}$.

Then there is $\varepsilon>0$ and a function $\alpha: \Delta \rightarrow R_{+}$such that for $\|h\|<\varepsilon_{0}$ we have

$$
\left\|u_{h}^{(i, m)}-v_{h}^{(i, m)}\right\| \leq \alpha(h) \text { on } E_{h} \text { and } \lim _{h \rightarrow 0} \alpha(h)=0
$$

Proof. Let

$$
L_{h_{0}}: \mathbf{F}\left(I_{0 . h} \cup I_{h}\right) \rightarrow C\left(\left[-r_{0}, a\right], R\right)
$$

be the operator given by

$$
\left(L_{h_{0}} \eta\right)(t)=\eta^{(i+1)} \frac{t-t^{(i)}}{h_{0}}+\eta^{(i)}\left(1-\frac{t-t^{(i)}}{h_{0}}\right) \text { for } t^{(i)} \leq t \leq t^{(i+1)}
$$

and

$$
\left(L_{h_{0}} \eta\right)(t)=\left(L_{h_{0}} \eta\right)\left(N_{0} h_{0}\right) \text { for } n_{0} h_{0}<t \leq a,
$$

where $\eta \in \mathbf{F}\left(I_{0 . h} \cup I_{h}, R\right)$. We prove that the functions

$$
\varrho_{h}(t, x, z)=\varrho\left(t, x, T_{h}[z]\right), \quad f_{h}(t, x, z)=f\left(t, x, T_{h}[z]\right) \text { where }(t, x, z) \in \Omega_{h}
$$

and

$$
\sigma_{h}(t, \eta)=\sigma\left(t, L_{h_{0}} \eta\right), \quad(t, \eta) \in I_{h}^{\prime} \times \mathbf{F}\left(I_{0 . h} \cup I_{h}, R_{+}\right)
$$

satisfy all the assumptions of Theorem 3.2.
We first prove that problem (9), (10) is stable in the sense of Assumption $\mathrm{H}\left[\sigma_{h}\right]$. Let $\eta_{h}: I_{0 . h} \cup I_{h} \rightarrow R_{+}$be the solution of (11), (12), where

$$
\alpha_{0}, \gamma: \Delta \rightarrow R_{+} \text {and } \lim _{h \rightarrow 0} \alpha_{0}(h)=0, \lim _{h \rightarrow 0} \gamma(h)=0
$$

Denote by $\omega_{h}:\left[-r_{0}, a\right] \rightarrow R_{+}$the maximal solution of the problem

$$
\omega^{\prime}(t)=c \sigma(t, \omega)+\gamma(h), \quad \omega(t)=\alpha_{0}(h) \text { for } t \in I_{0}
$$

There exists $\varepsilon>0$ such that the solution ω_{h} is defined on $\left[-r_{0}, a\right]$ for $\|h\|<\varepsilon_{0}$ and

$$
\lim _{h \rightarrow 0} \omega_{h}(t)=0 \text { uniformly on }\left[-r_{0}, a\right]
$$

The function ω_{h} is convex on $[0, a]$, therefore we have

$$
\omega_{h}^{(i+1)} \geq \omega_{h}^{(i)}+h_{0} c \sigma\left(t, \omega_{h}\right)+h_{0} \gamma(h), \quad 0 \leq i \leq N_{0}-1
$$

Since η_{h} satisfies (11), (12), then we have $\eta_{h}^{(i)} \leq \omega_{h}^{(i)}$ for $0 \leq i \leq N_{0}$, which proves the stability of problem (9), (10). For $(t, x, z) \in \Omega_{h}, \bar{z} \in \mathbf{F}\left(E_{0 . h} \cup E_{h}, R^{k}\right)$ we have

$$
\begin{gathered}
\left\|\varrho_{h}(t, x, z)-\varrho_{h}(t, x, \bar{z})\right\|=\left\|\varrho\left(t, x, T_{h}[z]\right)-\varrho\left(t, x, T_{h}[\bar{z}]\right)\right\| \\
\left.\leq \sigma\left(t, V\left[T_{h}[z-\bar{z}]\right]\right)\right)=\sigma_{h}\left(t, V_{h}[z-\bar{z}]\right)
\end{gathered}
$$

and

$$
\left\|f_{h}(t, x, z)-f_{h}(t, x, \bar{z})\right\| \leq \sigma_{h}\left(t, V_{h}[z-\bar{z}]\right)
$$

It follows from Lemma 4.1 that there is $\tilde{\beta}: \Delta \rightarrow R_{+}$such that

$$
\begin{gathered}
\left\|\varrho\left(t, x, T_{h}\left[v_{h}\right]\right)-\varrho(t, x, v)\right\| \leq \tilde{\beta}(h), \\
\left\|f\left(t, x, T_{h}\left[v_{h}\right]\right)-f(t, x, v)\right\| \leq \tilde{\beta}(h) \text { on } E_{h}^{\prime}
\end{gathered}
$$

and $\lim _{h \rightarrow 0} \tilde{\beta}(h)=0$. Then the assertion of Theorem 4.2 follows from Theorem 3.2.
Now we give an error estimate for method (31), (32) with the difference operators δ_{0} and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ defined by (3), (4). According to Theorem 3.2 we have the estimate

$$
\left\|u_{h}-v_{h}\right\|_{i . h} \leq \tilde{\omega}_{h}^{(i)}, \quad 0 \leq i \leq N_{0}
$$

where $\tilde{\omega}_{h}: I_{0 . h} \cup I_{h} \rightarrow R_{+}$satisfies the difference functional inequality

$$
\tilde{\omega}_{h}^{(i+1)} \geq \tilde{\omega}_{k}^{(i)}+h_{0}\left(1+c_{0}\right) \sigma_{h}\left(t^{(i)}, \tilde{\omega}_{h}\right)+h_{0} \gamma(h), \quad 0 \leq i \leq N_{0}-1
$$

where $\gamma(h)=\left(1+c_{0}\right) \tilde{\beta}(h)+\tilde{\gamma}(h)$ and

$$
\tilde{\omega}_{h}^{(i)} \geq \alpha_{0}(h) \text { for }-\tilde{N}_{0} \leq i \leq 0 .
$$

The constant c_{0} and the functions $\alpha_{0}, \tilde{\beta}, \tilde{\gamma}: \Delta \rightarrow R_{+}$are defined by the relations

$$
\left\|\varrho\left(t, x, T_{h}\left[v_{h}\right]\right)-\varrho(t, x, v)\right\| \leq \tilde{\beta}(h), \quad\left\|f\left(t, x, T_{h}\left[v_{h}\right]\right)-f(t, x, v)\right\| \leq \tilde{\beta}(h)
$$

on E_{h}^{\prime} and

$$
\begin{gathered}
\left\|\varphi_{h}(t, x)-\varphi(t, x)\right\| \leq \alpha_{0}(h) \text { on } E_{0 . h} \\
\left\|\partial_{x_{j}} v(t, x)\right\| \leq c_{0} \text { on } E, \quad 1 \leq j \leq n
\end{gathered}
$$

and

$$
\left\|\Gamma_{h}^{(i, m)}\right\| \leq \tilde{\gamma}(h) \text { on } E_{h}^{\prime}
$$

where $\Gamma_{h}=\left(\Gamma_{h .1}, \ldots, \Gamma_{h . k}\right)$, and

$$
\Gamma_{h . \nu}^{(i, m)}=\delta_{0} v_{h . \nu}^{(i, m)}-\partial_{t} v_{\nu}^{(i, m)}+\sum_{j=1}^{n} \varrho_{\nu j}\left(t^{(i)}, x^{(m)}, v\right)\left[\partial_{x_{j}} v_{\nu}^{(i, m)}-\delta_{j} v_{h . \nu}^{(i, m)}\right], \quad 1 \leq \nu \leq k
$$

Assumption $\mathbf{H}_{L}[\varrho, f]$. Suppose that the functions $\varrho: \Omega \rightarrow M_{k \times n}$ and $f: \Omega \rightarrow$ R^{k} are continuous and there is $L \in R_{+}$such that

$$
\begin{aligned}
\|\varrho(t, x, z)-\varrho(t, x, \bar{z})\| & \leq L\|z-\bar{z}\|_{t} \\
\|f(t, x, z)-f(t, x, \bar{z})\| & \leq L\|z-\bar{z}\|_{t}
\end{aligned}
$$

on Ω.
Remark 4.3. It follows from Assumption $H_{L}[\varrho, f]$ that ϱ and f satisfy the Volterra condition on Ω.

Theorem 4.4. Suppose that

1) Assumption $H_{L}[\varrho, f]$ is satisfied and condition 1) - 3) of Theorem 4.2 hold,
2) the function $\left.v\right|_{E}$ is of class C^{3} and $c_{0}, \tilde{C}, \bar{C}, d \in R_{+}$are such constants that

$$
\begin{gather*}
\left\|\partial_{x_{j}} v(t, x)\right\| \leq c_{0} \text { on } E, \quad 1 \leq j \leq n, \tag{33}\\
\left\|\partial_{t t} v(t, x)\right\|,\left\|\partial_{t x_{j}} v(t, x)\right\|, \quad\left\|\partial_{x_{i} x_{j}} v(t, x)\right\| \leq \tilde{C} \text { on } E_{0} \cup E, \tag{34}
\end{gather*}
$$

where $1 \leq i, j \leq n$ and

$$
\begin{array}{r}
\left\|\partial_{x_{j} x_{j} x_{j}} v(t, x)\right\| \leq \bar{C} \text { on } E, \quad 1 \leq j \leq n, \\
\left|\varrho_{\nu j}(t, x, v)\right| \leq d \text { on } E, \quad 1 \leq \nu \leq k, \quad 1 \leq j \leq n . \tag{36}
\end{array}
$$

Then

$$
\begin{equation*}
\left\|u_{h}-v_{h}\right\|_{i . h} \leq \tilde{\eta}_{h}^{(i)} \text { for } 0 \leq i \leq N_{0} \tag{37}
\end{equation*}
$$

where $\tilde{\eta}_{h}^{(0)}=\alpha_{0}(h)$, and

$$
\tilde{\eta}_{h}^{(i)}=\alpha_{0}(h)\left(1+\tilde{L} h_{0}\right)^{i}+h_{0} \gamma^{\star}\left(h_{0}\right) \sum_{j=0}^{i-1}\left(1+\tilde{L} h_{0}\right)^{j}, 1 \leq i \leq N_{0}
$$

and

$$
\begin{gathered}
\gamma^{\star}\left(h_{0}\right)=\left(1+c_{0}\right) B^{\star} h_{0}^{2}+A h_{0}+B h_{0}^{2}, \\
A=\frac{1}{2} \tilde{C}\left[1+\frac{1}{n} \sum_{j=1}^{n} M_{j}^{2}\right], \quad B=\frac{1}{6} d \bar{C} \sum_{j=1}^{n} M_{j}^{2},
\end{gathered}
$$

and

$$
\begin{equation*}
\tilde{L}=L\left(1+c_{0}\right), \quad B^{\star}=\frac{1}{2} \tilde{C} L\left[1+2 \sum_{j=1}^{n} M_{j}+\sum_{i, j=1}^{n} M_{i} M_{j}\right] . \tag{38}
\end{equation*}
$$

Proof. It follows that

$$
\left\|\partial_{t} v^{(i, m)}-\delta_{0} v_{h}^{(i, m)}\right\| \leq \frac{1}{2} \tilde{C} h_{0}\left[1+\sum_{j=1}^{n} M_{j}^{2}\right]
$$

and

$$
\left\|\partial_{x_{j}} v^{(i, m)}-\delta_{j} v_{h}^{(i, m)}\right\| \leq \frac{1}{6} \bar{C} M_{j}^{2} h_{0}^{2}, \quad 1 \leq j \leq n,
$$

where $\left(t^{(i)}, x^{(m)}\right) \in E_{h}^{\prime}$. Then we have

$$
\left\|\Gamma_{h}^{(i, m)}\right\| \leq A h_{0}+B h_{0}^{2} \text { on } E_{h}^{\prime} .
$$

According to Lemma 4.1 and Assumption $\mathrm{H}_{L}[\varrho, f]$, the terms

$$
\left\|\varrho\left(t, x, T_{h}\left[v_{h}\right]\right)-\varrho(t, x, v)\right\|, \quad\left\|f\left(t, x, T_{h}\left[v_{h}\right]\right)-f(t, x, v)\right\|, \quad(t, x) \in E,
$$

are bounded from above by $B^{\star} h_{0}^{2}$. By Theorem 3.2 we have the estimate (37) with $\tilde{\eta}_{h}: I_{h} \rightarrow R_{+}$satisfying the equation

$$
\eta^{(i+1)}=\left(1+\tilde{L} h_{0}\right) \eta^{(i)}+h_{0} \gamma^{\star}\left(h_{0}\right), \quad 0 \leq i \leq N_{0}-1,
$$

and the intial condition $\eta^{(0)}=\alpha_{0}(h)$. This completes the proof.
Now we consider the difference functional system (31) with the initial condition (32), where δ_{0} is defined by (24) and

$$
\begin{align*}
& \delta_{j} z_{\nu}^{(i, m)}=\frac{1}{h_{j}}\left(z_{\nu}^{\left(i, m+e_{j}\right)}-z_{\nu}^{(i, m)}\right) \text { if } \varrho\left(t^{(i)}, x^{(m)}, T_{h}[z]\right) \geq 0 \tag{39}\\
& \delta_{j} z_{\nu}^{(i, m)}=\frac{1}{h_{j}}\left(z_{\nu}^{(i, m)}-z_{\nu}^{\left(i, m-e_{j}\right)}\right) \text { if } \varrho\left(t^{(i)}, x^{(m)}, T_{h}[z]\right)<0 \tag{40}
\end{align*}
$$

where $1 \leq j \leq n, 1 \leq \nu \leq k$.
We will consider solutions of (1), (2) which are of class C^{1} on $E_{0} \cup E$. Therefore we will need the following Lemma.

Lemma 4.5. ([8], Chapter 3) Suppose that the function v: $E_{0} \cup E \rightarrow R^{k}$ is of class C^{1}. Let v_{h} be the restriction of v the the set $E_{0 . h} \cup E_{h}$. Then there is $C^{\star} \in R_{+}$such that

$$
\left\|T_{h}\left[v_{h}\right]-v\right\|_{t} \leq C^{\star}\|h\|, \quad 0 \leq t \leq a .
$$

Theorem 4.6. Suppose that Assumption $H[\varrho, f]$ is satisfied and

1) $h \in \Delta$ and

$$
1-h_{0} \sum_{j=1}^{n} \frac{1}{h_{j}}\left|\varrho_{\nu j}(t, x, z)\right| \geq 0 \text { on } \Omega,
$$

2) $h^{\prime}=M h_{0}$ and the function $u_{h}: E_{0 . h} \cup E_{h} \rightarrow R^{k}$ is a solution of problem (31), (32) with δ_{0} and δ given by (24) and (39), (40) respectively,
3) there is a function $\alpha_{0}: \Delta \rightarrow R_{+}$such that condition (14) holds,
4) $v: E_{0} \cup E \rightarrow R^{k}$ is a solution of (1),(2), v is of class C^{1} and $v_{h}=\left.v\right|_{E_{0 . h} \cup E_{h}}$.

Then there is $\varepsilon_{0}>0$ and a function $\alpha: \Delta \rightarrow R_{+}$such that for $\|h\|<\varepsilon_{0}$ we have

$$
\left\|u_{h}^{(i, m)}-v_{h}^{(i, m)}\right\| \leq \alpha(h) \text { on } E_{h} \quad \text { and } \quad \lim _{h \rightarrow 0} \alpha(h)=0 .
$$

The proof of the above Theorem is similar to the proof of Theorem 4.2. Details are omited.

Now we formulate a result on the error estimate.
Theorem 4.7. Suppose that Assumption $H_{L}[\varrho, f]$ is satisfied and

1) conditions 1) - 3) of Theorem 4.6 hold,
2) $v: E_{0} \cup E \rightarrow R^{k}$ is a solution of (1), (2) and v is of class C^{2} on $E_{0} \cup E$,
3) $c_{0}, \tilde{C}, d \in R_{+}$are constants satisfying (33), (34), (36) respectively.

Then

$$
\left\|u_{h}-v_{h}\right\|_{i . h} \leq \bar{\eta}_{h}^{(i)}, \quad 0 \leq i \leq N_{0},
$$

where $\bar{\eta}_{h}^{(0)}=\alpha_{0}(h)$ and

$$
\begin{gathered}
\bar{\eta}_{h}^{(i)}=\alpha_{0}(h)\left(1+\tilde{L} h_{0}\right)^{i}+\bar{\gamma}\left(h_{0}\right) \sum_{j=0}^{i-1}\left(1+\tilde{L} h_{0}\right)^{j}, \\
\bar{\gamma}\left(h_{0}\right)=\left(1+c_{0}\right) B^{\star} h_{0}^{2}+\bar{A} h_{0}, \quad \bar{A}=\frac{1}{2} \tilde{C}\left[1+d \sum_{j=1}^{n} M_{j}\right],
\end{gathered}
$$

and the constants \tilde{L}, B^{\star} are given by (38).
The proof of the above theorem is similar to the proof of Theorem 4.4. We omit details.

5 Numerical examples

Example 5.1 For $n=2$ we put

$$
E=\{(t, x, y): t \in[0,1],-2+t \leq x \leq 2-t,-2+t \leq y \leq 2-t\} .
$$

Let us denote by z an unknown function of the variables (t, x, y) and consider the differential integral equation

$$
\begin{equation*}
\partial_{t} z(t, x, y)=y\left\{1+\left[\int_{-x}^{x} z(t, s, y) d s-2 t x y\right]^{2}\right\}^{-1} \partial_{x} z(t, x, y) \tag{41}
\end{equation*}
$$

$$
\begin{gathered}
+x\left\{1+\left[\int_{-y}^{y} z(t, x, r) d r-2 t x y\right]^{2}\right\}^{-1} \partial_{y} z(t, x, y) \\
+\int_{D(t, x, y)} z(t, s, r) d r d s-\frac{1}{2}(2-t)^{2} z(t, x, y)+(x+y)(1-t)
\end{gathered}
$$

with the initial condition

$$
\begin{equation*}
z(0, x, y)=0 \text { for }(x, y) \in[-2,2] \times[-2,2] \tag{42}
\end{equation*}
$$

where

$$
\int_{D(t, x, y)} z(t, s, r) d r d s=\int_{-1+0.5(x+t)}^{1+0.5(x-t)} \int_{-1+0.5(y+t)}^{1+0.5(y-t)} z(t, s, r) d r d s .
$$

Note that if $(t, x, y) \in E$, then

$$
\{t\} \times[-1+0.5(x+t), 1+0.5(x-t)] \times[-1+0.5(y+t), 1+0.5(y-t)] \in E
$$

The exact solution of this problem is known. It is $v(t, x, y)=t(x+y),(t, x, y) \in E$.
We apply Theorem 4.6 to (41), (42). Let $h=\left(h_{0}, h_{1}, h_{2}\right)$ stand for the steps of the mesh on E. Let $T_{h}: \mathbf{F}\left(E_{h}, R\right) \rightarrow \mathbf{F}(E, R)$ be the interpolating operator, defined in Section 4 with $n=2$. It follows that for a point $\left(t^{(i)}, x^{(j)}, y^{(k)}\right) \in E_{h}$ and for a function $z: E_{h} \rightarrow R$ we have

$$
\begin{gathered}
T_{h}[z]\left(t^{(i)}, x, y\right)=z^{(i, j, k)}\left(1-\frac{x-x^{(j)}}{h_{1}}\right)\left(1-\frac{y-y^{(k)}}{h_{2}}\right) \\
+z^{(i, j, k+1)}\left(1-\frac{x-x^{(j)}}{h_{1}}\right) \frac{y-y^{(k)}}{h_{2}}+z^{(i, j+1, k)} \frac{x-x^{(j)}}{h_{1}}\left(1-\frac{y-y^{(k)}}{h_{2}}\right) \\
+z^{(i, j+1, k+1)} \frac{x-x^{(j)}}{h_{1}} \frac{y-y^{(k)}}{h_{2}}, \quad x^{(j)} \leq x \leq x^{(j+1)}, \quad y^{(k)} \leq y \leq y^{(k+1)}
\end{gathered}
$$

and consequently

$$
\begin{gather*}
\int_{x^{(j)}}^{x} \int_{y^{(k)}}^{y} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s \tag{43}\\
=z^{(i, j, k)} \frac{x-x^{(j)}}{2}\left(2-\frac{x-x^{(j)}}{h_{1}}\right) \frac{y-y^{(k)}}{2}\left(2-\frac{y-y^{(k)}}{h_{2}}\right) \\
+z^{(i, j, k+1)} \frac{x-x^{(j)}}{2}\left(2-\frac{x-x^{(j)}}{h_{1}}\right) \frac{\left(y-y^{(k)}\right)^{2}}{2 h_{2}} \\
+z^{(i, j+1 . k)} \frac{\left(x-x^{(j)}\right)^{2}}{2 h_{1}} \frac{y-y^{(k)}}{2}\left(2-\frac{y-y^{(k)}}{h_{2}}\right) \\
+z^{(i, j+1, k+1)} \frac{\left(x-x^{(j)}\right)^{2}}{2 h_{1}} \frac{\left(y-y^{(k)}\right)^{2}}{2 h_{2}} .
\end{gather*}
$$

According to the above formula, we have

$$
\begin{equation*}
\int_{x^{(j)}}^{x^{(j+1)}} \int_{y^{(k)}}^{y^{(k+1)}} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s \tag{44}
\end{equation*}
$$

$$
=\frac{h_{1} h_{2}}{4}\left(z^{(i, j, k)}+z^{(i, j, k+1)}+z^{(i, j+1, k)}+z^{(i, j+1, k+1)}\right)
$$

and

$$
\begin{gather*}
\int_{x^{(j)}}^{x^{(j+1)}} \int_{y^{(k)}}^{y} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s=\frac{h_{1}}{2} \frac{\left(y-y^{(k)}\right)^{2}}{2 h_{2}}\left(z^{(i, j, k+1)}+z^{(i, j+1, k+1)}\right) \tag{45}\\
+\frac{h_{1}}{2} \frac{y-y^{(k)}}{2}\left(2-\frac{y-y^{(k)}}{h_{2}}\right)\left(z^{(i, j, k)}+z^{(i, j+1, k)}\right)
\end{gather*}
$$

and

$$
\begin{align*}
\int_{x^{(j)}}^{x} \int_{y^{(k)}}^{y^{(k+1)}} & T_{h}[z]\left(t^{(i)}, s, r\right) d r d s=\frac{\left(x-x^{(j)}\right)^{2}}{2 h_{1}}\left(z^{(i, j+1, k)}+z^{(i, j+1, k+1)}\right) \tag{46}\\
& +\frac{h_{2}}{2} \frac{x-x^{(j)}}{2}\left(2-\frac{x-x^{(j)}}{h_{1}}\right)\left(z^{(i, j, k)}+z^{(i, j, k+1)}\right)
\end{align*}
$$

Having disposed of this preliminary step, we formulate the difference problem corresponding to (41), (42). Consider the difference equation

$$
\begin{align*}
& \delta_{0} z^{(i, j, k)}=y^{(k)}\left\{1+\left[\int_{-x^{(j)}}^{x^{(j)}} T_{h}[z]\left(t^{(i)}, s, y^{(k)}\right) d s-2 t^{(i)} x^{(j)} y^{(k)}\right]\right\}^{-1} \delta_{1} z^{(i, j \cdot k)} \tag{47}\\
& \quad+x^{(j)}\left\{1+\left[\int_{-y^{(k)}}^{y^{(k)}} T_{h}[z]\left(t^{(i)} x^{(j)}, r\right) d r-2 t^{(i)}, x^{(j)} y^{(k)}\right]^{2}\right\}^{-1} \\
& +\int_{D\left(t^{(i)}, x^{(j)}, y^{(k)}\right)} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s-\frac{1}{2}\left(2-t^{(i)}\right)^{2} z^{(i, j, k)}+\left(x^{(j)}+y^{(k)}\right)\left(1-t^{(i)}\right)
\end{align*}
$$

with the initial condition

$$
\begin{equation*}
z\left(0, x^{(j)}, y^{(k)}\right)=0 \text { for }\left(x^{(j)}, y^{(k)}\right) \in[-2,2] \times[-2,2] \tag{48}
\end{equation*}
$$

where

$$
\begin{gathered}
\delta_{0} z^{(i, j, k)}=\frac{1}{h_{0}}\left[z^{(i+1, j, k)}-z^{(i, j, k)}\right], \\
\delta_{1} z^{(i, j, k)}=\frac{1}{h_{1}}\left[z^{(i, j+1, k)}-z^{(i, j, k)}\right] \text { if } y^{(k)} \geq 0, \\
\delta_{1} z^{(i, j, k)}=\frac{1}{h_{2}}\left[z^{(i, j, k)}-z^{(i, j-1, k)}\right] \text { if } y^{(k)}<0
\end{gathered}
$$

and

$$
\begin{aligned}
& \delta_{2} z^{(i, j, k)}=\frac{1}{h_{2}}\left[z^{(i, j, k+1)}-z^{(i, j, k)}\right] \quad \text { if } x^{(j)} \geq 0, \\
& \delta_{2} z^{(i, j, k)}=\frac{1}{h_{2}}\left[z^{(i, j, k)}-z^{(i, j, k-1)}\right] \quad \text { if } x^{(j)}<0 .
\end{aligned}
$$

Note that results of the papers [6], [11], [16] cannot be applied to the above problem.

We can now formulate formulas for calculating integrals in equation (47). Our considerations start with the observation that

$$
\begin{equation*}
\int_{-x^{(j)}}^{x^{(j)}} T_{h}[z]\left(t^{(i)}, s, y^{(k)}\right) d s=\frac{h_{1}}{2}\left[z^{(i,-j, k)}+z^{(i, j, k)}\right]+h_{1} \sum_{\nu=-j+1}^{j-1} z^{(i, \nu, k)} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-y^{(k)}}^{y^{(k)}} T_{h}[z]\left(t^{(i)}, x^{(j)}, r\right) d r=\frac{h_{2}}{2}\left[z^{(i, j,-k)}+z^{(i, j, k)}\right]+h_{2} \sum_{\xi=-k+1}^{k-1} z^{(i, j, \xi)} \tag{50}
\end{equation*}
$$

The last integral in equation (47) has the following property: if $\left(t^{(i)}, x^{(j)}, y^{(k)}\right)$ is a grid point, then

$$
\begin{aligned}
& \left(t^{(i)},-1+0.5\left(x^{(j)}+t^{(i)}\right),-1+0.5\left(y^{(k)}+t^{(i)}\right)\right) \\
& \quad\left(t^{(i)}, 1+0.5\left(x^{(j)}-t^{(i)}\right), 1+0.5\left(y^{(k)}-t^{(i)}\right)\right)
\end{aligned}
$$

in general, are not grid points. Therefore we need the following construction. Write

$$
\theta_{i j}=1-0.5\left(x^{(j)}+t^{(i)}\right), \quad \tilde{\theta}_{i j}=1+0.5\left(x^{(j)}-t^{(i)}\right)
$$

and

$$
\eta_{i k}=1-0.5\left(y^{(k)}+t^{(i)}\right), \quad \tilde{\eta}_{i k}=1+0.5\left(y^{(k)}-t^{(i)}\right) .
$$

Then

$$
x^{(j)}+\theta_{i j}=1+0.5\left(x^{(j)}-t^{(i)}\right), \quad x^{(j)}-\tilde{\theta}_{i j}=-1+0.5\left(x^{(j)}+t^{(i)}\right),
$$

and

$$
y^{(k)}+\eta_{i k}=1+0.5\left(y^{(k)}-t^{(i)}\right), \quad y^{(k)}-\tilde{\eta}_{i k}=-1+0.5\left(y^{(k)}+t^{(i)}\right) .
$$

There exist $\kappa_{i j}, \tilde{\kappa}_{i j}, \mu_{i k}, \tilde{\mu}_{i k} \in \mathbf{N}$ and $\varepsilon_{x}^{(i, j)}, \tilde{\varepsilon}_{x}^{(i, j)} \in\left[0, h_{1}\right), \varepsilon_{y}^{(i, k)}, \tilde{\varepsilon}_{y}^{(i, k)} \in\left[0, h_{2}\right)$ such that

$$
\theta_{i j}=\left(\kappa_{i j}+1\right) h_{1}+\varepsilon_{x}^{(i, j)}, \quad \tilde{\theta}_{i j}=\tilde{\kappa}_{i j} h_{1}+\tilde{\varepsilon}_{x}^{(i, j)}
$$

and

$$
\eta_{i k}=\left(\mu_{i k}+1\right) h_{2}+\varepsilon_{y}^{(i, k)}, \quad \tilde{\eta}_{i k}=\tilde{\mu}_{i k} h_{2}+\tilde{\varepsilon}_{y}^{(i, k)}
$$

Write

$$
\begin{gathered}
A[i, j, k]=h_{1} h_{2} \sum_{\nu=-\tilde{\kappa}_{i j}+1}^{\kappa_{i j}-1} \sum_{\xi=-\tilde{\mu}_{i k}+1}^{\mu_{i k}-1} z^{(i, j+\nu, k+\xi)} \\
+\frac{h_{1} h_{2}}{2} \sum_{\xi=-\tilde{\mu}_{i k}+1}^{\mu_{i k}-1}\left[z^{\left(i, j-\tilde{\kappa}_{i j}, \xi\right)}+z^{\left(i, j+\kappa_{i j}, \xi\right)}\right]+\frac{h_{1} h_{2}}{2} \sum_{\nu=-\tilde{\kappa}_{i j}+1}^{\kappa_{i j}-1}\left[z^{\left(i, \nu, k-\tilde{\mu}_{i k}\right)}+z^{\left(i, \nu, k+\mu_{i k}\right)}\right] \\
+\frac{h_{1} h_{2}}{4}\left[z^{\left(i, j-\tilde{\kappa}_{i j}, k+\mu_{i k}\right)}+z^{\left(i, j+\kappa_{i j}, k+\mu_{i k}\right)}+z^{\left(i, j-\tilde{\kappa}_{i j}, k-\tilde{\mu}_{i k}\right)}+z^{\left(i, j+\kappa_{i j}, k-\tilde{\mu}_{i, k}\right)}\right] .
\end{gathered}
$$

For simplicity of formulation of next formulas we write

$$
x^{[j, i]}=1+0.5\left(x^{(j)}-t^{(i)}\right), \quad \tilde{x}^{[j, i]}=-1+0.5\left(x^{(j)}+t^{(i)}\right),
$$

$$
y^{[k . i]}=1+0.5\left(y^{(k)}-t^{(i)}\right), \quad \tilde{y}^{[k . i]}=-1+0.5\left(y^{(k)}+t^{(i)}\right) .
$$

The integrals

$$
B[i, \nu, k]=\int_{x^{(\nu)}}^{x^{(\nu+1)}}\left[\int_{y^{\left(k+\mu_{i k}+1\right)}}^{y^{[k, i]}} T_{h}[z]\left(t^{(i)}, s, r\right) d r+\int_{\tilde{y}^{[k, i]}}^{y^{\left(k-\tilde{\mu}_{i k}\right)}} T_{h}[z]\left(t^{(i)}, s, r\right) d r\right] d s
$$

and

$$
C[i, j, \xi]=\int_{y^{(\xi)}}^{y^{(\xi+1)}}\left[\int_{\tilde{x}^{[j, i]}}^{x^{\left(j-\kappa_{i j}\right)}} T_{h}[z]\left(t^{(i)}, s, r\right) d s+\int_{x^{\left(j+\kappa_{i j}+1\right)}}^{x^{[j, i]}} T_{h}[z]\left(t^{(i)}, s, r\right) d s\right] d r
$$

where $-\tilde{\kappa}_{i j} \leq \nu \leq \kappa_{i j},-\tilde{\mu}_{i k} \leq \xi \leq \mu_{i k}$, can be calculated using (45) and (46). Write

$$
\begin{aligned}
E[i, j, k]= & \int_{x^{\left(j+\kappa_{i j}+1\right)}}^{x^{[j, i]}} \int_{y^{\left(k+\mu_{i k}+1\right)}}^{y^{[k, i]}} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s+ \\
\int_{x^{\left(j+\kappa_{i j}+1\right)}}^{x^{[j, i]}} \int_{\tilde{y}^{[k, i]}}^{y^{\left(k-\tilde{\mu}_{i k}\right)}} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s & +\int_{\tilde{x}^{[j, i]}}^{x^{\left(j-\kappa_{i j}\right)}} \int_{\tilde{y}^{[k, i]}}^{y^{\left(k-\tilde{\mu}_{i k}\right)}} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s \\
& +\int_{\tilde{x}^{[j, i]}}^{x^{\left(j-\tilde{\kappa}_{i j}\right)}} \int_{y^{\left(k+\mu_{i k}+1\right)}}^{y^{[k, i]}} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s .
\end{aligned}
$$

We calculate $E[i, j, k]$ using (43).
Note that we have actually proved that

$$
\begin{gather*}
\int_{D\left(t^{(i)}, x^{(j)}, y^{(k)}\right)} T_{h}[z]\left(t^{(i)}, s, r\right) d r d s=A[i, j, k]+E[i, j, k] \tag{51}\\
+\sum_{\nu=-\tilde{\kappa}_{i j}}^{\kappa_{i j}} B[i, \nu, k]+\sum_{\xi=-\tilde{\mu}_{i k}}^{\mu_{i k}} C[i, j, \xi] .
\end{gather*}
$$

We approximate the solution of the problem (41), (42) by means of solutions of the difference problem consisting of (47) - (51). Let $u_{h}: E_{h} \rightarrow R$ be the solution of this difference problem. Write

$$
\varepsilon_{h}^{(i)}=\max \left\{\left|u_{h}^{(i, j, k)}-v_{h}^{(i, j, k)}\right|: \quad\left(t^{(i)}, x^{(j)}, y^{(k)}\right) \in E_{h}\right\}, 0 \leq i \leq N_{0},
$$

where v_{h} is the restriction of v to the set E_{h}. We take $h_{0}=h_{1}=h_{2}=10^{-3}$. The values of $\varepsilon_{h}^{(i)}$ are listed in the table.

TABLE of ERrors

$t^{(i)}:$	0.5	0.6	0.7	0.8	0.9	1.0
$\varepsilon_{h}^{(i)}:$	5.065010^{-3}	5.285210^{-3}	5.465410^{-3}	5.605610^{-3}	5.705710^{-3}	5.765710^{-3}

The results shown in the table are consistent with our mathematical analysis.
Example 5.2 For $n=2$ we put

$$
E=\{(t, x, y): t \in[0,0.5],-1+t \leq x \leq 1-t,-1+t \leq y \leq 1-t\} .
$$

Let us denote by (u, v) an unknown function of the variables (t, x, y) and consider the system of differential equations with a deviated argument

$$
\begin{gathered}
\partial_{t} v(t, x, y)=\left\{1-\frac{1}{1+\left[u(\alpha)-t v(\gamma)+f_{11}(t, x, y)\right]^{2}}\right\} \partial_{x} u(t, x, y) \\
-\left\{1-\frac{1}{1+\left[u(\delta)-t v(\beta)+f_{12}(t, x, y)\right]^{2}}\right\} \partial_{y} u(t, x, y) \\
+u(t, x, y)-v(t, x, y)-(t-1)(x y-x-y)+x y \\
\partial_{t} v(t, x, y)=\frac{x}{1+\left[u(\beta)+t v(\alpha)+f_{21}(t, x, y)\right]^{2}} \partial_{x} v(t, x, y) \\
\quad+\frac{y}{1+\left[u(\delta)+t v(\gamma)+f_{22}(t, x, y)\right]^{2}} \partial_{y} v(t, x, y) \\
\quad+u(t, x, y)-v(t, x, y)-x y(1+t),
\end{gathered}
$$

with the initial condition

$$
u(0, x, y)=x+y, \quad v(0, x, y)=x y, \quad(x, y) \in[-1,1] \times[-1,1],
$$

where

$$
\begin{gathered}
f_{11}(t, x, y)=(t-1)(t x+0.5(x+y)), \quad f_{12}(t, x, y)=(t-1)\left(0.5(x+y)-1-t^{2}\right), \\
f_{21}(t, x, y)=-0.5(x+y)\left(1+t^{2}\right)-0.5 t x y+(t-1)(1+0.5 t x), \\
f_{22}(t . x, y)=-0.5(x+y)\left(t^{2}+1\right)+(1-t)(1+0.5 t x)-0.5 t x y,
\end{gathered}
$$

and

$$
\begin{gathered}
\alpha=(t, 0.5(x-1+t), 0.5(y+1-t)), \quad \beta=(t, 0.5(x+1-t), 0.5(y+1-t)), \\
\gamma=(t, 0.5(x+1-t), 0.5(y-1+t)), \quad \delta=(t, 0.5(x-t+t), 0.5(y-1+t)) .
\end{gathered}
$$

Note that $\alpha, \beta, \gamma, \delta \in E$ for $(t, x, y) \in E$. The exact solution of this problem is known. It is

$$
\tilde{u}(t, x, y)=t x y+x+y, \quad \tilde{v}(t, x, y)=t(x+y)+x y, \quad(t, x, y) \in E .
$$

Suppose that $h=\left(h_{0}, h_{1}, h_{2}\right)$ stand for the steps of the mesh on E and T_{h} : $\mathbf{F}\left(E_{h}, R\right) \rightarrow \mathbf{F}(E, R)$ is the interpolating operator defined in Section 4 for $n=2$. For a function $z: E_{h} \rightarrow R$ we put

$$
\delta_{0} z^{(i, j k)}=\frac{1}{h_{0}}\left[z^{(i+1, j, k)}-A z^{(i, j, k))}\right],
$$

where

$$
A z^{(i . j \cdot k)}=\frac{1}{4}\left[z^{(i, j+1, k)}+z^{(i, j-1, k)}+z^{(i, j, k+1)}+z^{(i, j, k-1)}\right]
$$

and

$$
\delta_{1} z^{(i, j, k)}=\frac{1}{2 h_{1}}\left[z^{(i, j+1, k)}-z^{(i, j-1, k)}\right], \quad \delta_{2} z^{(i, j, k)}=\frac{1}{2 h_{2}}\left[z^{(i, j, k+1)}-z^{(i, j, k-1)}\right] .
$$

Consider the system of difference equations

$$
\begin{aligned}
& \delta_{0} v^{(i, j, k)}=\left\{1-\frac{1}{1+\left[T_{h}[u]\left(\alpha_{i j k}\right)-t^{(i)} T_{h}[v]\left(\gamma_{i j k}\right)+f_{11}^{(i, j, k)}\right]^{2}}\right\} \delta_{1} u^{(i, j, k)} \\
&-\left\{1-\frac{1}{1+\left[T_{h}[u]\left(\delta_{i j k}\right)-t^{(i)} T_{h}[v]\left(\beta_{i j k}\right)+f_{12}^{(i, j, k)}\right]^{2}}\right\} \delta_{2} u^{(i, j, k)} \\
&+u^{(i, j, k)}-v^{(i, j, k)}-\left(t^{(i)}-1\right)\left(x^{(j)} y^{(k)}-x^{(j)}-y^{(k)}\right)+x^{(j)} y^{(k)}, \\
& \delta_{0} u^{(i, j, k)}= \frac{x^{(j)}}{1+\left[T_{h}[u]\left(\beta_{i j k}\right)+t^{(i)} T_{h}[v]\left(\alpha_{i j k}\right)+f_{21}^{(i, j, k)}\right]^{2}} \delta_{1} v^{(i, j, k)} \\
&+\frac{y^{(j)}}{1+\left[T_{h}[u]\left(\delta_{i j k}\right)+t^{(i)} T_{h}[v]\left(\gamma_{i j k}\right)+f_{22}^{(i, j, k)}\right]^{2}} \delta_{2} v^{(i, j, k)} \\
& \quad+u^{(i, j, k)}-v^{(i, j, k)}-x^{(j)} y^{(k)}\left(1+t^{(i)}\right)
\end{aligned}
$$

with the initial condition
$u\left(0, x^{(j)}, y^{(k)}\right)=x^{(j)}+y^{(k)}, \quad v\left(0, x^{(j)}, y^{(k)}\right)=x^{(j)} y^{(k)}, \quad\left(x^{(j)}, y^{(k)}\right) \in[-1,1] \times[-1,1]$,
where

$$
f_{\nu \xi}^{(i, j, k)}=f_{\nu \xi}\left(t^{(i)}, x^{(j)}, y^{(k)}\right), \quad \nu, \xi=1,2,
$$

and

$$
\begin{aligned}
& \alpha_{i j k}=\left(t^{(i)}, 0.5\left(x^{(j)}-1+t^{(i)}\right), 0.5\left(y^{(k)}+1-t^{(i)}\right)\right), \\
& \beta_{i j k}=\left(t^{(i)}, 0.5\left(x^{(j)}+1-t^{(i)}\right), 0.5\left(y^{(k)}+1-t^{(i)}\right)\right), \\
& \gamma_{i j k}=\left(t^{(i)}, 0.5\left(x^{(j)}+1-t^{(i)}\right), 0.5\left(y^{(k)}-1+t^{(i)}\right)\right), \\
& \delta_{i j k}=\left(t^{(i)}, 0.5\left(x^{(j)}-1+t^{(i)}\right), 0.5\left(y^{(k)}-1+t^{(i)}\right)\right) .
\end{aligned}
$$

Note that if $\left(t^{(i)}, x^{(j)}, y^{(k)}\right)$ is a grid point then $\alpha_{i j k}, \beta i j k, \gamma_{i j k}, \delta_{i j k}$ in general, are not grid points. Denote by $\left(u_{h}, v_{h}\right): E_{h} \rightarrow R^{2}$ the solution of this difference problem. Write

$$
\begin{aligned}
& \varepsilon_{1 . h}^{(i)}=\max \left\{\left|u_{h}^{(i, j, k)}-\tilde{u}_{h}^{(i, j, k)}\right|:\left(t^{(i)}, x^{(j)}, y^{(k)}\right) \in E_{h}\right\}, \\
& \varepsilon_{2 . h}^{(i)}=\max \left\{\left|v_{h}^{(i, j, k)}-\tilde{v}_{h}^{(i, j, k)}\right|:\left(t^{(i)}, x^{(j)}, y^{(k)}\right) \in E_{h}\right\},
\end{aligned}
$$

where $0 \leq i \leq N_{0}$ and $\left(\tilde{u}_{h}, \tilde{v}_{h}\right)$ is the restriction ov (\tilde{u}, \tilde{v}) to the set E_{h}. Put

$$
\varepsilon_{h}^{(i)}=\max \left\{\varepsilon_{1 . h}^{(i)}, \varepsilon_{2 . h}^{(i)}\right\}, \quad 0 \leq i \leq N_{0}
$$

We take $h_{0}=h_{1}=h_{2}=10^{-4}$. The values of $\varepsilon_{h}^{(i)}$ are listed in the table.

Table of errors

$$
\begin{array}{cccccc}
t^{(i)}: & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\varepsilon_{h}^{(i)}: & 4.565710^{-4} & 4.573210^{-4} & 4.580110^{-4} & 4.603110^{-4} & 4.616310^{-4}
\end{array}
$$

The results shown in the table are consistent with our mathematical analysis.
Remark 5.1. The methods described in Section 4 have the potential for applications in the numerical solving of differential integral equations or equations with a deviated argument. Difference methods considered in the paper have the following property: a large number of previous values $z^{(i, m)}$ must be preserved, because they are needed to compute an approximate solution corresponding to $t=t^{(i+1)}$.

References

[1] P. Bassanini, M.C. Salvatori, Un problema ai limiti per sistemi integrodifferenziali non linear di tipo iperbolico, Boll. Un. Mat. Ital. (5) 18-B, 1981, 785 798.
[2] H. Brunner, The numerical treatment of ordinary and partial Volterra integrodifferential equtions, Proceed. First Internat. Colloq. o Numerical Anal., Plovdiv, 1992, Eds.: D. Bainov, V. Covachev, pp. 13- 26, VSP Utrecht, Tokyo, 1993.
[3] T. Człapiński, Z. Kamont, Generalized solutions of local initial problems for quasi-linear hyperbolic functional differential systems, Studia Sci. Math. Hung. 35, 1999, 185-206.
[4] E. Godlewski, P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Berlin, Heidelberg, New York, Tokyo; Springer, 1996.
[5] F. F. Ivanauskas, On solutions of the Cauchy problem for a system of differential integral equations, (Russian), Zh. Vychisl. Mat. i Mat. Fis. 18, 1978, 1025 - 1028.
[6] D. Jaruszewska-Walczak, Z. Kamont, Numerical methods for hyperbolic functional differential problems on the Haar pyramid, Computing 65, 2000, 45 72.
[7] Z. Kamont, Finite difference approximations for first order partial differential functional equations, Ukr. Math. Journ. 46, 1994, 985-996.
[8] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, 1999.
[9] Z. Kamont, Functional differential and difference inequalities with impulses, Mem. Diff. Equat. Math. Phys. 24, 2001, 5- 82.
[10] Z. Kamont, H. Leszczyński, Stability of difference equations generated by parabolic differential functional problems, Rend. Mat. Ser. VII, 16, 1996, 265 - 287.
[11] Z. Kamont, K. Prządka, Difference methods for first order partial differentialfunctional equations with initial-boundary conditions, J. Comp. Math. Phys.31, 1991, 1476-1488.
[12] H. Leszczyński Discrete approximations to the Cauchy problem for hyperbolic differential-functional systems in the Schauder canonic form, J. Comp. Math. Math. Phys. 34 (2), 1994, 151 - 164.
[13] M. Malec, Sur une méthode des différences finies puor équation non linéaire intégro différentielle á argument retardé, Bull. Acad. Polon. Sci., Ser. Sci. math. phys. astr., 26, 1978, 501-517.
[14] M. Malec, M. Rosati, A convergent scheme for nonlinear systems of differential functional systems of parabolic type, Rend. Mat. VII, 3, 1983, 211-227.
[15] M. Malec, A. Schafiano, Méthode aux différences finies pour une équation non linéaire différentielle fonctionelle du type parabolic avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. (7), I-B, 1987, 99-109.
[16] K. Prza̧dka, Difference methods for nonlinear partial differential-functional equations of the first order, Math. Nachr. 138, 1988, 105-123.
[17] B. Zubik-Kowal, Convergence of the lines methods for first - order partial differential functional equations, Numer. Meth. Partial Equat. 10, 1994, 395404.
[18] B. Zubik-Kowal, The method of lines for parabolic differential functional equations, IMA Journ. Numer. Anal. 17, 1997, 103-123.

Institute of Mathematics University of Gdańsk
Wit Stwosz Street 57
80-952 Gdańsk, Poland
e-mail: dana@math.univ.gda.pl zkamont@math.univ.gda.pl

[^0]: Received by the editors August 2001.
 Communicated by F. Bastint.
 1991 Mathematics Subject Classification : 65M10, 65M15, 35R10.
 Key words and phrases : Initial problems on the Haar pyramid, interpolating operators, difference functional equations, error estimates.

