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Abstract

We consider a family of minimal sequences on a 3-symbol alphabet with
complexity 2n + 1, which satisfy a special combinatorial property. These
sequences were originally defined by P. Arnoux and G. Rauzy in [2] as a
generalization of the binary sturmian sequences. We prove that the dynamical
system associated to each of these sequences of this family, can be realized
as a dynamical system defined on a geodesic lamination on the hyperbolic
disk. This is a generalization of the results shown in [17]. We also show some
applications of these results.

1 Introduction

Let u be an one-sided infinite sequence in the finite alphabet A. We associate to
the sequence u a dynamical system (Ω, σ) where Ω is the closure of the orbit of u
under the shift map σ, i.e. σ(v0v1v2 · · · ) = v1v2 · · · . We are interested in finding a
geometrical interpretation of the symbolic system, i.e. to find a dynamical system
defined on a geometrical structure such that there is a semiconjugacy between these
systems.

The complexity of the sequence u is the function p(n) which is defined as the
number of different subwords of length n of u. Hedlund and Morse proved that u is
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eventually periodic if and only if p(n) ≤ n, for some n (cf [11]). So the simplest non-
trivial sequences have complexity p(n) = n+1, which are called sturmian sequences.
The most well know example of sturmian sequence is the Fibonacci sequence, which
is the fixed point of the substitution 1 → 12, 2 → 1, i.e. u = 12112121 · · · . These
sequences are obtained from the symbolic coding of the orbit of a point on the circle
under a rotation by an irrational number, using the partition given by the continuity
intervals (cf. [11, 12]). The sturmian sequences have been extensively studied, see
for example [9, 8, 4, 5]. There has been defined different generalizations of sturmian
sequences, one of them is due to Arnoux and Rauzy. They introduced in [2] a
family of minimal sequences in the alphabet of three symbols, of complexity p(n) =
2n+1 which satisfy an additional combinatorial property called the ∗ condition, see
definition 2.1. A well known sequence of this family is obtained by the fixed point
of the tribonacci substitution, 1 → 12, 2 → 13, 3 → 1. It was showed that the
dynamical systems associated to these sequences are realizable as interval exchange
transformations. They also show that these sequences can be obtained as an infinite
composition of three different substitutions. It was conjectured that these sequences
come from rotations of the two dimensional torus, with a suitable partition for the
coding. As it happens in the tribonacci substitution, in this case the coding of the
orbit is done according to the partition obtained by the Rauzy fractal (cf. [14]).
In [6] it was showed that this conjecture is not true. These sequences have also been
studied in [1, 15, 5].

In this paper we will give a new geometrical realization of these symbolic sys-
tems. We construct a geodesic lamination Λ on the disk associated to the symbolic
system and define a dynamical system (Λ, F ) on this lamination. We shall show in
Theorem 3.4 that (Λ, F ) is a geometrical realization of (Ω, σ), i.e. the system (Λ, F )
is semiconjugate to (Ω, σ). The dynamical system (Λ, F ) helps to understand bet-
ter the dynamics of the interval exchange map associated to the original sequence,
since it gives a description of the points on the interval that have the same symbolic
representation (Theorems 3.1 and 3.3). This is a generalization of the results of [16]
and [17]. There the author showed that the dynamical system associated to the
tribonacci substitution can be realized as a dynamical system on a geodesic lamina-
tion. The results of this paper can be generalized in a straight forward manner to
minimal sequences in the alphabet of k symbols and complexity p(n) = (k− 1)n+1
which satisfy the ∗ property for k symbols.

2 Preliminaries and Notation

Let A = {1, 2, 3} be the alphabet and u a sequence in this alphabet. A word is
allowed or admissible in u if it is a finite subword of the sequence u.

Definition 2.1. We say that the sequence u = u0u1 . . . has the ∗ property if for all
n there are allowed subwords of length n, Vn and Wn such that Vn1, Vn2, Vn3 and
1Wn, 2Wn, 3Wn are also allowed words.

Let us consider the following substitutions:

Π1 :





1 → 1
2 → 12,
3 → 13

Π2 :





1 → 21
2 → 2,
3 → 23

Π3 :





1 → 31
2 → 32
3 → 3
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Theorem 2.1 ([2]). Let u be a minimal sequence in the alphabet {1, 2, 3}. Then u
has complexity p(n) = 2n+1 and satisfies the ∗ condition, if and only if there exists
a sequence {ik}k with values in {1, 2, 3} such that each symbol appears infinitely
many times and

u = lim
k→∞

Πi1 · · ·Πik(u).

If the sequence {ik}k is periodic then the sequence u is the fixed point of the
substitution Πi1 · · ·Πil, where {ik}k = {i1, . . . , il, i1, . . . , il, . . .}. This substitution is
Pisot, which means that the incidence matrix of the substitution has one eigenvalue
greater than one and all other eigenvalues are less than one in modulus. In the case
that u is the fixed point of the tribonacci substitution, i.e. 1 → 12, 2 → 13, 3 → 1,
the sequence {ik}k of Theorem 2.1 is the periodic sequence {1, 2, 3, 1, 2, 3, . . .}. Since
Π1Π2Π3 is the cube of the previous substitution. A general reference for substitution
dynamical systems is [13].

We will denote by u the sequence . . . u−2u−1u0 where u−j = uj, it is called the
reverse sequence of u. Note that the dynamical system associated to u, using the
right shift, is the same one associated to u.

Corollary 2.1. Let u be a sequence that satisfies the hypothesis of the previous
theorem and u its reverse sequence. Then u can be written as

u = lim
k→∞

Πi1 · · ·Πik(u)

where {ik} is the sequence obtained in theorem 2.1 and

Π1 :





1 → 1
2 → 21,
3 → 31

Π2 :





1 → 12
2 → 2,
3 → 32

Π3 :





1 → 13
2 → 23
3 → 3.

Let

M1 =




1 1 1
0 1 0
0 0 1


 , M2 =




1 0 0
1 1 1
0 0 1


 , M3 =




1 0 0
0 1 0
1 1 1




be the matrices associated to the substitutions (they are also called the incidence
matrices of the substitutions) Π1, Π1, Π2, Π2 and Π3, Π3 respectively.

The image of the positive cone under the infinite product Mi1 · · ·Mik · · · is a
straight line passing through the origin. Since products of the form MiM

l
jMk appear

infinitely many times in the infinite product and they are contractions of the positive
cone by a ratio smaller than 1 (cf.[2]). Let (α, β, γ) be the element of norm 1 in this
line.

Let f be the interval exchange transformation (iet) defined as f = LI ◦LI1 ◦LI2 ◦
LI3 where I = [0, 1), I1 = [0, α), I2 = [α, α + β), I3 = [α + β, 1) and LJ denotes the
rotation of order 2 on the interval J = [a, b), i.e.

LJ(x) =





x + b−a
2

if a ≤ x < a+b
2

x− b−a
2

if a+b
2
≤ x < b

x otherwise.
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Let ν : I → {1, 2, 3} the map that give the coding according to the partition
given by the canonical intervals I1, I2, I3, i.e. ν(x) = j if x ∈ Ij. Let θ : I →
Ω be the map that give the coding of the forward orbit of a point under f , i.e.
θ(x) = {ν(f k(x))}k≥0. This map is continuous to the right and has the property
that θ(f(x)) = σ(θ(x)) for all x ∈ I (cf.[2]).

Since the iet f is an invertible map, we can codify the forward as well as the
backward f -orbits of the points of the circle using the canonical partition. We define

Ω̃ = {ν(fn(x)) | x ∈ [0, 1), n ∈ Z}

so we have the map θ̃ : I → Ω̃ that send the point x to itinerary of its two sided
infinite f -orbit. The space Ω̃ consists of the extensions of the sequences of Ω to two
sided infinite sequences and θ̃ is the extension of the map θ to Ω̃. The map θ̃ is
right-continuous.

Let x1 = 0, x2 = α, x3 = α + β be the extremities of the canonical intervals and
y1 = α/2, y2 = α + β/2, and y3 = α + β + γ/2 be the middle points of the canonical
intervals. These points are the discontinuities of the iet f .

Proposition 2.1. The coding of the backward orbits of x1, x2, x3 is given by u.

Proof: Suppose that I1 is the largest of the canonical intervals and α > 1/2.
Let f̂ be the induced map of f on J = f(I1), its extreme points are identified in
order to obtained the map defined on the circle. On J we consider the partition
J1 = f(I1) ∩ I1, J2 = I2, J3 = I3. The relationship between the coding of the orbit
of a point in J under f̂ and under f is given by Π1, i.e. let the map ν ′(x) = j if
x ∈ Jj, then ν(fn(x)) = Π1(ν

′(f̂n(x))). Observe that the boundary points of the
intervals of the partition on J are the same as the partition on I. We continue this
process, each time taking the induction, on the larger interval, as it is described
in [2]. So the points x1, x2 and x3 are always boundary points of the intervals of the
corresponding partition. In the limit we get that the coding for the backward orbit
of x1, x2 and x3 is given by u. �

Proposition 2.2. θ(f(y1)) = θ(f(y2)) = θ(f(y3)) = u.

Proof: Since f = LI ◦LI1 ◦LI2 ◦LI3 and each LIi
is an involution, f is conjugate

to f−1 by LI , i.e. rotation by 1/2. Observe that LI(xi) = f(yi) then the coding of
forward orbit of f(yi) is given by u for i = 1, 2, 3. �

3 Construction of the geodesic lamination

Let L be the set of geodesics of the hyperbolic disk, D
2. We can think of S

1 as
the circle at infinity of D

2 and of the interval exchange map f as acting on it. We
identify S

1 to I = [0, 1).
The topology of L ∪ S

1 is given by the following basis of neighbourhoods:

• If λ is an element of L with end points a and b in S
1, consider the collection

of neighbourhoods (a − ε, a + ε) and (b − ε, b + ε) for ε > 0. Then the basis
elements containing λ are given by the set of geodesics with one end point in
(a− ε, a + ε) and the other in (b− ε, b + ε).
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Figure 1: The geodesic lamination Λ for Π1Π
3
2Π3.

• If t is in S
1, consider the collection of neighbourhoods in S

1 given by (t−ε, t+ε)
for ε > 0, then the basis elements containing t are given by the point t and
the set of geodesics with one end point in (t− ε, t) and the other in (t, t + ε).

Let v0 . . . vk be an allowed word and

[v0 . . . vk] = Iv0
∩ f−1(Iv1

) ∩ · · · ∩ f−k(Ivk
) (3-1)

the corresponding cylinder on I. We consider the σ-algebra generated by these
cylinders. Since f is an iet the cylinder is a finite collection of intervals.

The construction of the geodesic lamination Λ is as follows: we join by geodesics
consecutive extreme points that belong to different components of a given cylinder.
We do this for all the cylinders and then the closure of the union of all these geodesics
is taken. The elements of Λ are either geodesics of the hyperbolic disk or points in S

1.
In the later case those points are called degenerate geodesics. A geodesic lamination
of the disk is a non-empty closed subset of L∪S

1 whose elements are disjoint. See [7]
for geodesic laminations on surfaces.

We will give an alternative description of the set Λ. We are interested in studying
when different points in Ω̃ have the same backward orbit (past) but different forward
orbits (future), reciprocally when they have the same future but different pasts,
and in finding the corresponding points in [0, 1). Clearly this kind of behaviour is
associated to the discontinuity points of the interval exchange map f .

Theorem 3.1. Λ is the closure of the geodesics λ such that the image under θ̃ of
the end points of λ have the same past and different futures.

Proof: Let [v0 . . . vk] be a cylinder. It is clear that the extremities of the intervals
that correspond to this cylinder are backward images under f of its discontinuity
points that have the same past, i.e. x1, x2, x3. So the neighbouring extremities in a
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Figure 2: The geodesic lamination Λ for Π1Π
5
2Π3.

gap of the cylinder are of the form f−l(xi) and limt→x
−

i

f−l(t), which will be denoted

by f−l(x−i ), for some nonnegative integer l ≤ k. These points have the same past
and different futures (Proposition 2.1). Due to the density of the orbits and the
construction of Λ follows the theorem. �

Using the facts that the neighbouring extremities in a gap of a cylinder are points
of the form f−l(xi) and f−l(x−i ), for some positive l and 1 ≤ i ≤ 3, the orbits are
disjoint and the absence of periodic points. We can conclude that the cylinders of
the form (3-1) consist of at most three intervals.

Theorem 3.2. Λ is a geodesic lamination on disk.

Proof: We have to prove that two distinct geodesics of Λ are disjoint, perhaps
with the exception of the end points. By density we can restrict to geodesics joining
the extremities of the cylinders. Let C1 and C2 be two cylinders, they are either
disjoint or one is contained in the other. If C1 is contained in C2 then the geodesics
joining points of C1 are contained in the convex hull of C2, which is limited by the
geodesics joining the extreme points.

We shall prove that if they are disjoint then one is contained in the gap of the
other. Moreover we show that we can fill the gaps between two components of
any cylinder. Consider C1, a cylinder of two intervals, [a1, a2), [a3, a4), a similar
argument is used if it has more components. The points a2, a3 are extremities for
other cylinder. If this new cylinder has two components, it is clear that it lies in the
gap, since the cylinders are disjoint. But if it has more than two components, all of
them have to lie in the gap of the original cylinder. Suppose that it is not the case,
so C2 = [a2, b1)∪[b2, a3)∪[b3, b4) with a3 < a4 < b3. Since a2 and a3 are neighbouring
extreme points of the cylinder C1, we have shown in the proof of Theorem 3.1, that
these points are of the form f−l(xi) and f−l(x−i ) for some positive integer l and
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some i in {1, 2, 3}. On the other hand a3 and b3 are neighbouring extremities of the
cylinder C2, so they are of the form f−m(xj) and f−m(x−j ) for some positive integer
m 6= l and some j in {1, 2, 3}. But this is not possible due to the absence of periodic
orbits of f and the disjointness of the f orbit of the xi’s. �

Theorem 3.3. Λ is the closure of the geodesics λ such that the image under θ̃ of
the end points of λ have the same future and different pasts.

Proof: Let v0 . . . vk be an allowed word in u. We associate to it the set Iv0
∩ · · ·

∩ f k(Ivk
). In Proposition 2.2 we showed that the maps f and f−1 are conjugate

by LI , the rotation by 1/2, i.e. f = LI ◦ f−1 ◦ LI . Therefore Iv0
∩ · · · ∩ f k(Ivk

) is
in the σ-algebra generated by the cylinders described in (3-1). This set consists of
a finite union of intervals, whose extreme points are forward images under f of its
discontinuity points that have the same future, i.e. yi for i = 1, 2, 3. Therefore the
neighbouring extremities in a gap of the set are of the form f l(yi) and f l(y−i ), for
some i and non-negative integer l ≤ k. �

As we saw in the proof of Proposition 2.2 the rotation by 1/2, maps the backward
f orbits of xi to the forward orbit of f(yi), so from Theorems 3.1 and 3.3, Λ is
invariant under rotation by 1/2.

Corollary 3.1. The geodesic lamination Λ is invariant under the rotation by 1/2.

The geodesic laminations associated to quadratic Julia sets have also the same
property of being invariant under rotation by 1/2 (cf. [3, 10]).

On Λ we define the map F as follows: let λ be an element of the lamination
with end point in I, aλ < bλ, then F (λ) is the geodesic with end points f(aλ) and
f(b−λ ). If λ is a degenerate geodesic, say λ = aλ in I, then F (λ) is defined as the
geodesic with end points f(aλ) and f(a−λ ). In order to verify that F (λ) is an element
of the lamination Λ. Suppose that happens an intersection between F (λ) and an
element of the lamination. For Theorem 3.1, we can assume that the intersection
is with a geodesic that join points of the form f−l(xi) and f−l(x−i ) for some l ≥ 0
and 1 ≤ i ≤ 3. Then there will be an intersection between λ and the geodesics that
joins f−l−1(xi) and f−l−1(x−i ), so λ could not be in Λ.

Theorem 3.4. The dynamical system (Λ, F ) is semiconjugate to (Ω, σ).

Proof: The continuity of F has only to be checked at the geodesics that have
end points at the discontinuities of f , since on the other geodesics follows from the
continuity of f . At the geodesics that join pairwise the points x1, x2, x3 the map F is
continuous since these points the map f is right-continuous. To study the continuity
of F at y1, y2 and y3, we need first to show that the elements of Λ with extreme
points at y1, y2 and y3 are degenerate geodesics. The coding of the forward orbit of
f(yi) is given by u, so f(yi)’s are joined by geodesics. Due to the invariance of Λ by
F , the points yi’s are joined by geodesics or they are degenerate geodesics. But they
cannot be joined by geodesics since they belong to different intervals (cylinders),
whose extremities, i.e. xi, are joined by geodesics. Therefore the points y1, y2, y3

are degenerate geodesics.
Let ε > 0. The preimage under F of the set of non-degenerate geodesics in the

lamination with one end point in (f(y−i ) − ε, f(y−i ) + ε) and the other in (f(yi) −
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ε, f(yi) + ε) is the neighbourhood of yi given by the set of geodesics in Λ ∩ L with
one end point in (yi − ε, yi) and the other in (yi, yi + ε). So F is continuous at yi,
for i = 1, 2, 3.

We define a map Θ : Λ → Ω as follows: let λi the geodesic that joins f(yi) with
f(yi+1), here i + 1 is taken mod 3. So Θ(F k(λi)) is defined as θ(f k(yi)), which is
σk(u). Let λ be a geodesic in Λ whose end points are aλ and bλ (aλ = bλ if λ is
degenerate). Since {F k(λi) | k > 0} is dense in Λ, there exists a subsequence kn

such that the limit of f kn(yi) is aλ and the limit of f kn(yi+1) is bλ. So we define
Θ(λ) = limn→∞ σkn(u). By construction Θ is continuous. It is straight-forward to
prove that this map is surjective. However it is not injective, consider the point u
in Ω, there are three geodesics that are mapped to this point: the geodesics that
join f(yi) for i = 1, 2, 3. �

Corollary 3.2. The dynamical system (Λ, F ) is semiconjugate to (Ω̃, σ).

Proof: The inverse of the map F is well defined due to theorem 3.3. Let Θ̃ : Λ →
Ω̃ be the map defined as Θ̃(λ) = θ̃(aλ) where λ is a geodesic in Λ and its end points
are 0 ≤ aλ ≤ bλ < 1. We shall show that θ̃(aλ) = θ̃(b−λ ). In fact we have seen that
θ(f k(yi)) = θ(f k(yi+1)), for all k > 0. Furthermore θ(f k(yi+1)) = θ(f k(yi+1)

−) =
θ(f k(y−i )). Since f−1 is not discontinuous at yi, θ̃(f k(yi)) = θ̃(f k(y−i )) for all k.
Hence θ̃(aλ) = θ̃(b−λ ).

The map Θ̃ is continuous. In fact: Let λ be a non-degenerate geodesic in Λ,
with end points aλ and bλ. The point aλ is the extremity of two different geodesics,
otherwise it will be a degenerate geodesic. So a neighbourhood of λ in Λ consists
of all non-degenerate geodesics with one end point at (aλ, aλ + ε) and the other
at (bλ − ε, bλ), for some ε > 0, i.e. there are no nondegenerate geodesics in the
lamination with end points in (aλ− ε, aλ) and the other at (bλ, bλ + ε). Therefore the
continuity of Θ̃ at λ follows from the right continuity of θ̃ at aλ. Let λ be a degenerate
geodesic, i.e. λ = aλ. Let ε > 0, then by the right continuity of θ̃ there exists ε′ > 0
such that if λ′ is a geodesic with end points aλ′ and bλ′ , satisfying aλ − aλ′ < ε′ and
bλ′ − aλ < ε′, then dist(θ̃(b−λ′), θ̃(aλ)) < ε. Hence dist(θ̃(aλ′), θ̃(aλ)) < ε, where dist
is the usual distance in Ω̃.

It is straight-forward to prove that this map Θ̃ is surjective. However Θ̃ is not an
open map, since any open neighbourhood of a degenerate geodesic, in the topology
of Λ, does not include other degenerate geodesics. �
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