Homology of the completion of instanton moduli spaces

Yasuhiko Kamiyama

Abstract

Let $M(k, G)$ be the moduli space of based gauge equivalence classes of G-instantons on S^{4} with instanton number $k . M(k, G)$ has the Uhlenbeck completion $\bar{M}(k, G)=\bigcup_{q=0}^{k} \operatorname{SP}^{q}\left(\mathbf{R}^{4}\right) \times M(k-q, G)$, where $\mathrm{SP}^{q}\left(\mathbf{R}^{4}\right)$ denotes the q-fold symmetric product of \mathbf{R}^{4}. Let $X(k, G)$ be the first two strata of the completion: $X(k, G)=M(k, G) \cup \mathbf{R}^{4} \times M(k-1, G)$. In this paper we study the homology of $X(k, G)$ for $G=S U(n)$ or $S p(n)$, and relate this to the homology of a certain homotopy theoretic fibre.

1 Introduction

Let V be a connected complex manifold. For simplicity we assume $\pi_{1}(V)=0$ and $\pi_{2}(V) \cong \mathbf{Z}$. Let $\operatorname{Rat}_{k}(V)$ denote the space of based holomorphic maps of degree k from S^{2} to V, and let $i_{k}: \operatorname{Rat}_{k}(V) \rightarrow \Omega_{k}^{2} V$ be the inclusion. Suppose that the following stability principle is satisfied: the inclusion i_{k} becomes a homotopy equivalence through a range of dimensions which increases to infinity with k. In particular, we have a homotopy equivalence $\operatorname{Rat}_{\infty}(V) \simeq \Omega_{0}^{2} V$, where $\operatorname{Rat}_{\infty}(V)$ is the direct limit $\lim _{k \rightarrow \infty} \operatorname{Rat}_{k}(V)$.

Let $\operatorname{ad}\left(i_{1}\right): \Sigma \operatorname{Rat}_{1}(V) \rightarrow \Omega V$ be the adjoint map of i_{1}. We lift $\operatorname{ad}\left(i_{1}\right)$ to a map $\widetilde{\operatorname{ad}}\left(i_{1}\right): \Sigma \operatorname{Rat}_{1}(V) \rightarrow \widetilde{\Omega} V$, where $\widetilde{\Omega} V$ is the universal cover of ΩV. Let $W(V)$ be the homotopy theoretic fibre of $\widetilde{\operatorname{ad}}\left(i_{1}\right)$. Then we have the following sequence of fibrations:

$$
\begin{equation*}
\Omega_{0}^{2} V \longrightarrow W(V) \longrightarrow \Sigma \operatorname{Rat}_{1}(V) \xrightarrow{\widetilde{\operatorname{ad}\left(i_{1}\right)}} \widetilde{\Omega} V \tag{1.1}
\end{equation*}
$$

Received by the editors January 2001.
Communicated by Y. Félix.
1991 Mathematics Subject Classification : 58D27.
Key words and phrases : instantons, homotopy theoretic fibre.

We consider the following problem: how to construct a space $X_{k}(V)$, which is a natural generalization of $\operatorname{Rat}_{k}(V)$, such that $X_{\infty}(V)$ approximates $W(V)$.
The problem was solved for $V=\mathbf{C} P^{n}$ in [7]. We summarize the results. For $f \in \operatorname{Rat}_{k}\left(\mathbf{C} P^{n}\right)$, we assume the basepoint condition $f(\infty)=[1, \ldots, 1]$. Such holomorphic maps are given by rational functions:
$\operatorname{Rat}_{k}\left(\mathbf{C} P^{n}\right)=\left\{\left(p_{0}(z), \ldots, p_{n}(z)\right)\right.$: each $p_{i}(z)$ is a monic, degree- k polynomial and such that there are no roots common to all $\left.p_{i}(z)\right\}$.

The stability principle for $i_{k}: \operatorname{Rat}_{k}\left(\mathbf{C} P^{n}\right) \rightarrow \Omega_{k}^{2} \mathbf{C} P^{n}$ was proved in [12]: i_{k} is a homotopy equivalence up to dimension $k(2 n-1)$. Later the stable homotopy type of $\operatorname{Rat}_{k}\left(\mathbf{C} P^{n}\right)$ was described in [4]: $\operatorname{Rat}_{k}\left(\mathbf{C} P^{n}\right) \simeq_{s} \bigvee_{q=1}^{k} D_{q}\left(S^{2 n-1}\right)$, where $D_{q}\left(S^{2 n-1}\right)$ is a stable summand of the Snaith's stable splitting $\Omega^{2} S^{2 n+1} \simeq_{s} \bigvee_{q \geq 1} D_{q}\left(S^{2 n-1}\right)$. We define $X_{k}^{l}\left(\mathbf{C} P^{n}\right)$ by

$$
\begin{array}{r}
X_{k}^{l}\left(\mathbf{C} P^{n}\right)=\left\{\left(p_{0}(z), \ldots, p_{n}(z)\right): \text { each } p_{i}(z) \text { is a monic, degree- } k\right. \text { polynomial } \\
\text { and such that there are at most } \left.l \text { roots common to all } p_{i}(z)\right\} .
\end{array}
$$

Thus as sets we have

$$
\begin{equation*}
X_{k}^{l}\left(\mathbf{C} P^{n}\right)=\coprod_{q=0}^{l} \mathbf{C}^{q} \times \operatorname{Rat}_{k-q}\left(\mathbf{C} P^{n}\right) \tag{1.2}
\end{equation*}
$$

where $\mathbf{C}^{q} \times \operatorname{Rat}_{k-q}\left(\mathbf{C} P^{n}\right)$ corresponds to the subspace of $X_{k}^{l}\left(\mathbf{C} P^{n}\right)$ consisting of elements $\left(p_{0}(z), \ldots, p_{n}(z)\right)$ such that there are exactly l roots common to all $p_{i}(z)$. Let $J^{l}\left(S^{2 n}\right)$ denote the l-th stage of the James construction which builds $\Omega S^{2 n+1}$, and let $W^{l}\left(S^{2 n}\right)$ be the homotopy theoretic fibre of the inclusion $J^{l}\left(S^{2 n}\right) \hookrightarrow J\left(S^{2 n}\right) \simeq$ $\Omega S^{2 n+1}$. In [7] we proved a stable homotopy equivalence $X_{k}^{l}\left(\mathbf{C} P^{n}\right) \simeq_{s} \bigvee_{q=1}^{k} D_{q} \xi^{l}\left(S^{2 n}\right)$, where $D_{q} \xi^{l}\left(S^{2 n}\right)$ is a stable summand of the stable splitting $W^{l}\left(S^{2 n}\right) \simeq_{s} \bigvee_{q \geq 1} D_{q} \xi^{l}\left(S^{2 n}\right)$. We consider the case $l=1$. Since $J^{1}\left(S^{2 n}\right) \simeq S^{2 n}, W^{1}\left(S^{2 n}\right)$ is the homotopy theoretic fibre of the Freudenthal suspension $E: S^{2 n} \rightarrow \Omega S^{2 n+1}$. Since $\operatorname{Rat}_{1}\left(\mathbf{C} P^{n}\right) \simeq S^{2 n-1}$, $\widetilde{\operatorname{ad}}\left(i_{1}\right): \Sigma \operatorname{Rat}_{1}\left(\mathbf{C} P^{n}\right) \rightarrow \widetilde{\Omega} \mathbf{C} P^{n} \simeq \Omega S^{2 n+1}$ in (1.1) is also the Freudenthal suspension. Hence $W\left(\mathbf{C} P^{n}\right) \simeq W^{1}\left(S^{2 n}\right)$ and $X_{k}^{1}\left(\mathbf{C} P^{n}\right)$ gives an answer to the problem for $V=\mathbf{C} P^{n}$.

The purpose of this paper is to study the problem for $V=\Omega G$, where $G=S U(n)$ or $S p(n)$. In this case $\operatorname{Rat}_{k}(V)$ is identified with $M(k, G)$, the moduli space of based gauge equivalence classes of G-instantons on S^{4} with instanton number k. The moduli space $M(k, G)$ is a smooth connected non-compact complex manifold of complex dimension $2 k n$ if $G=S U(n)$ and $2 k(n+1)$ if $G=S p(n)$. Let $i_{k}: M(k, G) \rightarrow \Omega_{k}^{3} G$ be the inclusion. The stability principle for i_{k} is called the Atiyah-Jones conjecture, which is now solved (see Section 3). Let $C=C_{G}(S U(2))$ be the centralizer of $S U(2)$ in G. Define a map $J: G / C \rightarrow \Omega_{0}^{3} G$ by $J(g C)(x)=g x g^{-1} x^{-1}$, where $x \in S U(2)$. Particular examples are: $S U(n) / C$ is diffeomorphic to the unit tangent bundle of $\mathbf{C} P^{n-1}$ and $S p(n) / C$ is diffeomorphic to $\mathbf{R} P^{4 n-1}$ (see [2], [11]). $M(1, G)$ is diffeomorphic to $\mathbf{R}^{5} \times G / C$ such that the following homotopy commutative diagram holds
(see [2]):

Hence $W(\Omega G)$ in (1.1) is identified with the homotopy theoretic fibre of $\operatorname{ad}(J)$: $\Sigma G / C \rightarrow \widetilde{\Omega}^{2} G$.
On the other hand, $M(k, G)$ has the Uhlenbeck completion (see [6]), which is similar to (1.2):

$$
\bar{M}(k, G)=\bigcup_{q=0}^{k} \mathrm{SP}^{q}\left(\mathbf{R}^{4}\right) \times M(k-q, G),
$$

where $\mathrm{SP}^{q}\left(\mathbf{R}^{4}\right)$ denotes the q-fold symmetric product of \mathbf{R}^{4}. Let $X(k, G)$ be the first two strata of the completion:

$$
\begin{equation*}
X(k, G)=M(k, G) \cup \mathbf{R}^{4} \times M(k-1, G) \tag{1.4}
\end{equation*}
$$

For $X_{k}(\Omega G)$ in the problem, we consider $X(k, G)$.
Now our results are as follows.

Theorem A. Let $n \geq 3$ and p a prime with $p=2$ or $p \geq 2 n+1$. Then we have the following isomorphism for $q \leq 2 k$:

$$
H_{q}(X(k, S U(n)) ; \mathbf{Z} / p) \cong H_{q}(W(\Omega S U(n)) ; \mathbf{Z} / p)
$$

Theorem B. Let $n \geq 1$ and p a prime with $p=2$ or $p \geq 2 n+3$. Then we have the following isomorphism for $q \leq\left[\frac{k}{2}\right]-1$:

$$
H_{q}(X(k, S p(n)) ; \mathbf{Z} / p) \cong H_{q}(W(\Omega S p(n)) ; \mathbf{Z} / p)
$$

For $G=S U(2)=S p(1)$, we have
Theorem C. For all primes p, we have the following isomorphism for $q \leq k-1$:

$$
H_{q}(X(k, S U(2)) ; \mathbf{Z} / p) \cong H_{q}(W(\Omega S U(2)) ; \mathbf{Z} / p)
$$

If we form $k \rightarrow \infty$ in Theorems A and B , we have the following:
Corollary D. Put $\nu(G)=2 n+1$ if $G=S U(n)(n \geq 2)$ and $\nu(G)=2 n+3$ if $G=\operatorname{Sp}(n)(n \geq 1)$. Then for p a prime with $p=2$ or $p \geq \nu(G)$, we have the following isomorphism:

$$
H_{*}(X(\infty, G) ; \mathbf{Z} / p) \cong H_{*}(W(\Omega G) ; \mathbf{Z} / p)
$$

The structure of $\left.H_{*}(W)(\Omega G) ; \mathbf{Z} / p\right)$ is determined in Section 2. (See Propositions 2.7, 2.9 and Remark 2.10 for $G=S U(n)$, and Propositions 2.12 and 2.13 for $G=$ $S p(n)$.)
Finally we remark about the situation where $n=\infty$. By [9] we have a homotopy equivalence $M(k, S U) \simeq B U(k)$ hence $W(\Omega S U)$ is the homotopy theoretic fibre
of the natural map $\Sigma B U(1) \rightarrow S U$. Similarly, we have a homotopy equivalence $M(k, S p) \simeq B O(k)$ hence $W(\Omega S p)$ is the homotopy theoretic fibre of the natural map $\Sigma B O(1) \rightarrow S U / S O$. In particular, localized away from $2, W(\Omega S p)$ is homotopy equivalent to $\Omega S U / S O$.
This paper is organized as follows. In Section 2 we determine $H_{*}(W(\Omega G) ; \mathbf{Z} / p)$ and in Section 3 we prove Theorems A, B and C.

2 Homology of $W(\Omega G)$

First we determine $H_{*}(W(\Omega S U(n)) ; \mathbf{Z} / 2)$. Since $S U(n) / C$ is diffeomorphic to the unit tangent bundle of $\mathbf{C} P^{n-1}, H^{*}(S U(n) / C ; \mathbf{Z} / 2)$ is given as follows.
(1) For n even,

$$
H^{*}(S U(n) / C ; \mathbf{Z} / 2) \cong H^{*}\left(\mathbf{C} P^{n-1} ; \mathbf{Z} / 2\right) \otimes H^{*}\left(S^{2 n-3} ; \mathbf{Z} / 2\right)
$$

(2) For n odd,

$$
\begin{equation*}
H^{*}(S U(n) / C ; \mathbf{Z} / 2) \cong H^{*}\left(\mathbf{C} P^{n-2} ; \mathbf{Z} / 2\right) \otimes H^{*}\left(S^{2 n-1} ; \mathbf{Z} / 2\right) \tag{2.1}
\end{equation*}
$$

We write the generators of $H_{*}(S U(n) / C ; \mathbf{Z} / 2)$ as follows.
(1) For n even,

$$
\begin{cases}\alpha_{2 i} & 1 \leq i \leq n-1 \\ \beta_{2 i+1} & n-2 \leq i \leq 2 n-3\end{cases}
$$

(2) For n odd,

$$
\begin{cases}\alpha_{2 i} & 1 \leq i \leq n-2 \\ \beta_{2 i+1} & n-1 \leq i \leq 2 n-3\end{cases}
$$

Theorem 2.2 ([2]). For $n \geq 3$, there are choices of elements
(1) $x_{2 i} \quad i=1$ or $2 \leq i \leq n-2, i \equiv 0(\bmod 2)$, (2) $y_{4 i+1} \quad\left[\frac{n-1}{2}\right] \leq i \leq n-2, i \equiv$ $1(\bmod 2)$, such that $H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)$ is isomorphic to the following algebra:

$$
\begin{aligned}
& \mathbf{Z} / 2\left[Q_{2}^{a}\left(x_{2 i}\right): a \geq 0, i=1 \text { or } 2 \leq i \leq\left[\frac{n-3}{2}\right], i \equiv 0(\bmod 2)\right] \\
& \otimes \mathbf{Z} / 2\left[Q_{1}^{a} Q_{2}^{b}\left(x_{2 i}\right): a, b \geq 0,\left[\frac{n-1}{2}\right] \leq i \leq n-2, i \equiv 0(\bmod 2)\right] \\
& \\
& \otimes \mathbf{Z} / 2\left[Q_{1}^{a} Q_{3}^{b}\left(y_{4 i+1}\right): a, b \geq 0,\left[\frac{n-1}{2}\right] \leq i \leq n-2, i \equiv 1(\bmod 2)\right] .
\end{aligned}
$$

We generalize the elements $x_{2 i}$ and $y_{4 i+1}$ in Theorem 2.2 to the following ones:
(1) For n even,

$$
\begin{cases}x_{2 i} & 1 \leq i \leq n-1 \tag{2.3}\\ y_{4 i+1} & \frac{n}{2}-1 \leq i \leq n-2\end{cases}
$$

(2) For n odd,

$$
\begin{cases}x_{2 i} & 1 \leq i \leq n-2 \tag{2.4}\\ y_{4 i+1} & \frac{n-1}{2} \leq i \leq n-2\end{cases}
$$

The definitions are as follows.
(i) If $i=1$ or $i \equiv 0(\bmod 2)$, then we define $x_{2 i}$ to be the one in Theorem 2.2 (1).
(ii) If $i \equiv 1(\bmod 2)$, then there exist a and j uniquely such that $\operatorname{deg} Q_{2}^{a}\left(x_{4 j}\right)=2 i$ (where we put $x_{0}=[1]$). Then we define $x_{2 i}$ by $x_{2 i}=Q_{2}^{a}\left(x_{4 j}\right)$.
(iii) If $i \equiv 1(\bmod 2)$, then we define $y_{4 i+1}$ to be the one in Theorem 2.2 (2).
(iv) If $i \equiv 0(\bmod 2)$, then we define $y_{4 i+1}$ by $y_{4 i+1}=Q_{1}\left(x_{2 i}\right)$. Recall that we defined a map $J: S U(n) / C \rightarrow \Omega_{0}^{3} S U(n)$ in Section 1 .
Lemma 2.5. We have the following relations:
(1) (i) When $i=1$ or $i \equiv 0(\bmod 2), J_{*}\left(\alpha_{2 i}\right)=x_{2 i}$.
(ii) When $i \equiv 1(\bmod 2), J_{*}\left(\alpha_{2 i}\right)$ contains the term $x_{2 i}$.
(2) (i) When $i \equiv 1(\bmod 2), J_{*}\left(\beta_{4 i+1}\right)=y_{4 i+1}$.
(ii) When $i \equiv 0(\bmod 2), J_{*}\left(\beta_{4 i+1}\right)$ contains the term $y_{4 i+1}$.
(iii) $J_{*}\left(\beta_{4 i+3}\right)$ is decomposable.

Proof. (1) follows from the following homotopy commutative diagram:

where i, j and k are the inclusions and $\Omega_{0}^{3} S U \simeq B U$ is the Bott periodicity. (The homotopy commutativity of the bottom square follows from the third diagram of [11, p. 4054] for $k=1$ and $l=\infty$.)
(2) is proved in [8]. In particular, (iii) is a consequence of dimensional reasons. This completes the proof of Lemma 2.5.

We define an increasing sequence of ideals of $H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right), I_{\nu}$, as follows: Consider the elements $x_{2 i}$ and $y_{4 i+1}$ in (2.3) or (2.4). Put
$I_{\nu}=$ the ideal generated by $x_{2 i}$ and $y_{4 i+1}$ whose degree is less than ν.

For $\gamma \in H_{*}(S U(n) / C ; \mathbf{Z} / 2)$, let $s \gamma \in H_{*+1}(\Sigma S U(n) / C ; \mathbf{Z} / 2)$ be the suspension.
Proposition 2.7. For $n \geq 3, H_{*}(W(\Omega S U(n)) ; \mathbf{Z} / 2)$ is isomorphic to the following module:

$$
\begin{aligned}
& \underset{i=2}{\stackrel{a}{\oplus}} s \alpha_{2 i} \otimes I_{2 i} \oplus \stackrel{n-2}{\oplus} s \beta_{4 i+1} \otimes I_{4 i+1} \oplus \stackrel{n-2}{\oplus} s \beta_{4 i+3} \otimes H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right) \\
& \oplus \frac{H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)}{I_{4 n-3}},
\end{aligned}
$$

where

$$
a=\left\{\begin{array}{ll}
n-1 & n: \text { even } \\
n-2 & n: \text { odd }
\end{array} \quad \text { and } \quad b= \begin{cases}\frac{n}{2}-1 & n: \text { even } \\
\frac{n-1}{2} & n: \text { odd } .\end{cases}\right.
$$

Proof. Consider the homology Serre spectral sequence of the fibration $\Omega_{0}^{3} S U(n) \rightarrow$ $W(\Omega S U(n)) \rightarrow \Sigma S U(n) / C$. By Lemma 2.5 (1) (i), we have $d^{3}\left(s \alpha_{2}\right)=x_{2}$ hence $E_{3, *}^{\infty}=0$. Next, we have $d^{5}\left(s \alpha_{4}\right)=x_{4}$. Note that $d^{5}\left(s \alpha_{4} \otimes z\right)=0$ if $z \in I_{4}=\left(x_{2}\right)$. Hence $E_{5, *}^{\infty} \cong s \alpha_{4} \otimes I_{4}$. Following the same procedures, we obtain Proposition 2.7.

Let $n \geq 2$ and p a prime with $p \geq 2 n+1$. Then $H^{*}(S U(n) / C ; \mathbf{Z} / p)$ is of the form (2.1), and we define $\alpha_{2 i}$ and $\beta_{2 i+1}$ similarly. On the other hand, localized at $p, S U(n)$ is homotopy equivalent to $\prod_{i=1}^{n-1} S^{2 i+1}$ (see [10]) and $H_{*}\left(\Omega^{3} S^{2 i+1} ; \mathbf{Z} / p\right)$ is given in [5]. For $1 \leq i \leq n-2$, let $x_{2 i} \in H_{2 i}\left(\Omega^{3} S^{2 i+3} ; \mathbf{Z} / p\right)$ be the generator. Form $x_{2}, \ldots, x_{2 n-4}$, we define an increasing sequence of ideals of $H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / p\right), I_{\nu}$, in the same way as in (2.6).
Lemma 2.8. For $p \geq 2 n+1$, we have the following relations:
(1) For $1 \leq i \leq n-2, J_{*}\left(\alpha_{2 i}\right)=x_{2 i}$. (2) For $n-1 \leq i \leq 2 n-3, J_{*}\left(\beta_{2 i+1}\right)=0$.

Proof. We can prove (1) in the same way as in Lemma 2.5 (1). For (2), a minimal odd dimensional element of $H_{*}\left(\Omega_{0}^{3} S^{3} ; \mathbf{Z} / p\right)$ is $\beta Q_{2}[1]$, whose degree is $2 p-3$. On the other hand, $\operatorname{deg} \beta_{2 i+1} \leq 4 n-5$. Since $p \geq 2 n+1$, dimensional reasons show $J_{*}\left(\beta_{2 i+1}\right)=0$. This completes the proof of Lemma 2.8.

Proposition 2.9. For $n \geq 2$ and $p \geq 2 n+1, H_{*}(W(\Omega S U(n)) ; \mathbf{Z} / p)$ is isomorphic to the following module:

$$
\underset{i=2}{\stackrel{n-2}{\oplus}} s \alpha_{2 i} \otimes I_{2 i} \oplus \underset{i=n-1}{\stackrel{2 n-3}{\oplus}} s \beta_{2 i+1} \otimes H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / p\right) \oplus \frac{H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / p\right)}{I_{2 n-2}}
$$

Proof. We can prove the proposition in the same way as in Proposition 2.7.
Remark 2.10. In order to determine $H_{*}(W(\Omega S U(2)) ; \mathbf{Z} / p)$ for all primes p, we need to consider the cases $p=2$ and 3 . For $p=2$, see Proposition 2.12. For $p=3$, we have $J_{*}\left(\beta_{3}\right)=\beta Q_{2}[1]$ (where β in the right-hand side is the Bockstein homomorphism). Hence

$$
H_{*}(W(\Omega S U(2)) ; \mathbf{Z} / 3) \cong s \beta_{3} \otimes\left(\beta Q_{2}[1]\right) \oplus \frac{H_{*}\left(\Omega_{0}^{3} S^{3} ; \mathbf{Z} / 3\right)}{\left(\beta Q_{2}[1]\right)}
$$

Next we study $H_{*}(W(\Omega S p(n)) ; \mathbf{Z} / p)$. Recall that $S p(n) / C$ is diffeomorphic to $\mathbf{R} P^{4 n-1}$. Let $\alpha_{i}(1 \leq i \leq 4 n-1)$ be the generator of $H_{i}(S p(n) / C ; \mathbf{Z} / 2)$.
Theorem 2.11 ([3]). For $n \geq 1, H_{*}\left(\Omega_{0}^{3} S p(n) ; \mathbf{Z} / 2\right)$ is isomorphic to the following algebra:

$$
\mathbf{Z} / 2\left[Q_{1}^{a} Q_{2}^{b}[1] *\left[-2^{a+b}\right]: a, b \geq 0\right] \otimes \mathbf{Z} / 2\left[Q_{1}^{a} Q_{2}^{b}\left(x_{4 j}\right): a, b \geq 0,1 \leq j \leq n-1\right] .
$$

We generalize $x_{4 j}(1 \leq j \leq n-1)$ in Theorem 2.11 to $x_{i}(1 \leq i \leq 4 n-1)$ in the same way as in (2.3) or (2.4). That is,
(i) If $i \equiv 0(\bmod 4)$, then we define x_{i} to be the one in Theorem 2.11.
(ii) If $i \not \equiv 0(\bmod 4)$, then there exist a, b and j uniquely such that $\operatorname{deg} Q_{1}^{a} Q_{2}^{b}\left(x_{4 j}\right)=i$ (where we put $x_{0}=[1]$). Then we define x_{i} by $x_{i}=Q_{1}^{a} Q_{2}^{b}\left(x_{4 j}\right)$. From the elements $x_{1}, \ldots, x_{4 n-1}$, we define an increasing sequence of ideals of $H_{*}\left(\Omega_{0}^{3} S p(n) ; \mathbf{Z} / 2\right), I_{\nu}$, in the same way as in (2.6).

Proposition 2.12. For $n \geq 1, H_{*}(W(\Omega S p(n)) ; \mathbf{Z} / 2)$ is isomorphic to the following module:

$$
\underset{i=2}{\stackrel{4 n-1}{\oplus}} s \alpha_{i} \otimes I_{i} \oplus \frac{H_{*}\left(\Omega_{0}^{3} S p(n) ; \mathbf{Z} / 2\right)}{I_{4 n}}
$$

Proof. In the same way as in the proof of Lemma 2.5 (1), we see that $J_{*}\left(\alpha_{i}\right)$ contains the term x_{i}. Then from the fibration $\Omega_{0}^{3} S p(n) \rightarrow W(\Omega S p(n)) \rightarrow \Sigma \mathbf{R} P^{4 n-1}$, we can prove the proposition in the same way as in Proposition 2.7.

Let p be a prime with $p \geq 2 n+3$ and $\alpha_{4 n-1}$ be the generator of $H_{4 n-1}\left(\mathbf{R} P^{4 n-1} ; \mathbf{Z} / p\right)$. Localized at $p, S p(n)$ is homotopy equivalent to $\prod_{i=1}^{n} S^{4 i-1}$.
Proposition 2.13. For $n \geq 1$ and $p \geq 2 n+3, H_{*}(W(\Omega S p(n)) ; \mathbf{Z} / p)$ is isomorphic to the following module:

$$
\begin{aligned}
s \alpha_{4 n-1} \otimes H_{*}\left(\Omega_{0}^{3} S p(n) ; \mathbf{Z} / p\right) \oplus H_{*}\left(\Omega_{0}^{3} S p(n)\right. & ; \mathbf{Z} / p) \\
& \cong H_{*}\left(S^{4 n} ; \mathbf{Z} / p\right) \otimes H_{*}\left(\Omega_{0}^{3} S p(n) ; \mathbf{Z} / p\right) .
\end{aligned}
$$

Proof. In the same way as in the proof of Lemma 2.8 (2), we have $J_{*}\left(\alpha_{4 n-1}\right)=0$ for $p \geq 2 n+3$. Then the proposition follows easily.

3 Proofs of Theorems A, B and C

The Atiyah-Jones conjecture suggests the stability principle for $i_{k}: M(k, G) \rightarrow \Omega_{k}^{3} G$. The conjecture was first proved in [1] for $G=S U(2)$. Later the conjecture was confirmed for general G and the range of homotopy equivalence for i_{k} was improved. At present, the following solutions are known:
Theorem 3.1 ([9], [13], [14]). The map $i_{k}: M(k, G) \rightarrow \Omega_{k}^{3} G$ induces homomorphisms in homotopy groups, which are
(i) if $G=\operatorname{SU}(n)(n \geq 3)$, isomorphisms in dimensions less than $2 k+1$, and an epimorphism in dimension $2 k+1$;
(ii) if $G=\operatorname{Sp}(n)(n \geq 2)$, isomorphisms in dimensions less than $\left[\frac{k}{2}\right]$, and an epimorphism in dimension $\left[\frac{k}{2}\right]$;
(iii) if $G=S U(2)=S p(1)$, isomorphisms in dimensions less than k, and an epimorphism in dimension k.

By [2] we have a C_{4}-structure in $\coprod_{k \geq 1} M(k, G)$, in particular we have a loop sum * : $M(k, G) \times M\left(k^{\prime}, G\right) \rightarrow M\left(k+k^{\prime}, G\right)$. Similarly, we have a map *: $X(k, G) \times$ $M\left(k^{\prime}, G\right) \rightarrow X\left(k+k^{\prime}, G\right)$, which is an extension of the above loop sum. Passing to homology, $\oplus_{k \geq 1} H_{*}(X(k, G) ; \mathbf{Z} / p)$ is a module over $\oplus_{k \geq 1} H_{*}(M(k, G) ; \mathbf{Z} / p)$. We prove the following:
Lemma 3.2. For all primes p, we have the following long exact sequence:

$$
\begin{aligned}
& \cdots \rightarrow H_{q}(M(k, G) ; \mathbf{Z} / p) \rightarrow H_{q}(X(k, G) ; \mathbf{Z} / p) \\
& \rightarrow \underset{i+j=q}{\oplus} \widetilde{H}_{i}(\Sigma G / C ; \mathbf{Z} / p) \otimes H_{j}(M(k-1, G) ; \mathbf{Z} / p) \\
& \xrightarrow{\phi_{q}} H_{q-1}(M(k, G) ; \mathbf{Z} / p) \rightarrow \cdots .
\end{aligned}
$$

Moreover, ϕ_{q} is given by

$$
\phi_{q}(s \gamma \otimes z)=\gamma * z,
$$

where $\gamma \in \widetilde{H}_{i}(G / C ; \mathbf{Z} / p)$, s γ is the suspension of γ and $z \in H_{j}(M(k-1, G) ; \mathbf{Z} / p)$. As in Section 1, let $C=C_{G}(S U(2))$ be the centralizer of $S U(2)$ in G.

Proof. We recall how the stratum $\mathbf{R}^{4} \times M(k-1, G)$ is attached to $M(k, G)$ and builds $X(k, G)$ in (1.4) (see [6, Section 3.4]). By [2] we have a diffeomorphism $M(1, G) \cong \mathbf{R}^{5} \times G / C$. Hence $M(1, G)$ is parametrized by $\mathbf{R}^{4} \times(0, \delta) \times G / C$, where $\delta>0$ is a small number. The point $x \in \mathbf{R}^{4}$ represents the center of the instanton, while the scale $\lambda \in(0, \delta)$ represents the spread of the curvature density function. The remaining parameter is G / C. For $G=S U(2), S U(2) / C \cong S O$ (3) represents the framing at infinity.
Let the scale $\lambda \in(0, \delta)$ approach 0 . At the moment when $\lambda=0$, all the elements of G / C are identified to a point. Thus, when $\lambda=0$, the remaining parameter is only \mathbf{R}^{4} and a tubular neighborhood of this \mathbf{R}^{4} in $X(1, G)$ is given by $\left(\mathbf{R}^{4} \times[0, \delta] \times G / C\right) / \sim$, where we put $(x, 0, u) \sim\left(x, 0, u^{\prime}\right)$.
Similarly, we apply the above construction to $X(k, G)$. We consider $\mathbf{R}^{4} \times(0, \delta) \times$ $G / C \times M(k-1, G) \subset M(k, G)$. As above, let the scale $\lambda \in(0, \delta)$ approach 0 . When $\lambda=0$, we obtain a new stratum $\mathbf{R}^{4} \times M(k-1, G)$ and a tubular neighborhood of the stratum in $X(k, G)$ is given by

$$
\nu=\left(\mathbf{R}^{4} \times[0, \delta] \times G / C \times M(k-1, G)\right) / \sim,
$$

where we put $(x, 0, u, A) \sim\left(x, 0, u^{\prime}, A\right)$.
Let $\partial \nu$ be the boundary of ν. We consider the homology long exact sequence of the pair $(X(k, G), M(k, G))$. By excision, we have

$$
\begin{equation*}
H_{*}(X(k, G), M(k, G) ; \mathbf{Z} / p) \cong H_{*}(\nu, \partial \nu ; \mathbf{Z} / p) . \tag{3.3}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& H_{*}(\nu, \partial \nu ; \mathbf{Z} / p) \tag{3.4}\\
\cong & H_{*}\left(\frac{[0, \delta] \times G / C}{\{0\} \times G / C},\{\delta\} \times G / C ; \mathbf{Z} / p\right) \otimes H_{*}(M(k-1, G) ; \mathbf{Z} / p) \\
\cong & \widetilde{H}_{*}(\Sigma G / C ; \mathbf{Z} / p) \otimes H_{*}(M(k-1, G) ; \mathbf{Z} / p) .
\end{align*}
$$

From (3.3) and (3.4), we obtain the long exact sequence of Lemma 3.2.
By the same argument as in [7], it is easy to see that in the long exact sequence of the pair $(X(k, G), M(k, G))$, the connecting homomorphism $\partial_{*}: H_{q}(X(k, G), M(k, G)$; $\mathbf{Z} / p) \rightarrow H_{q-1}(M(k, G) ; \mathbf{Z} / p)$ corresponds to ϕ_{q} in Lemma 3.2. This completes the proof of Lemma 3.2.

In order to prove Theorem A, we first determine $H_{q}(X(k, S U(n)) ; \mathbf{Z} / 2)$ for $q \leq$ $2 k$. We consider the long exact sequence of Lemma 3.2 starting from

$$
\underset{i+j=2 k+1}{\oplus} \widetilde{H}_{i}(\Sigma S U(n) / C ; \mathbf{Z} / 2) \otimes H_{j}(M(k-1, S U(n)) ; \mathbf{Z} / 2)
$$

Using Theorem 3.1 (i), $\phi_{q}(q \leq 2 k+1)$ in Lemma 3.2 is written as follows:

$$
\begin{equation*}
\phi_{q}: \underset{i+j=q}{\oplus} \widetilde{H}_{i}(\Sigma S U(n) / C ; \mathbf{Z} / 2) \otimes H_{j}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right) \rightarrow H_{q-1}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right), \tag{3.5}
\end{equation*}
$$

where $\phi_{q}(s \gamma \otimes z)=J_{*}(\gamma) * z$.
From the exactness, we have

$$
H_{q}(X(k, S U(n)) ; \mathbf{Z} / 2) \cong \operatorname{Ker} \phi_{q} \oplus \operatorname{Coker} \phi_{q+1} .
$$

We claim:

$$
\begin{align*}
\operatorname{Ker} \phi_{q} \cong\left[\underset{i=2}{\stackrel{a}{\oplus}} s \alpha_{2 i} \otimes I_{2 i} \oplus\right. & \stackrel{n-2}{\oplus} s \beta_{i=b} \\
& \oplus \beta_{4 i+1} \otimes I_{4 i+1} \tag{3.6}\\
& \left.\stackrel{n-2}{\oplus} s \beta_{4 i+3} \otimes H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)\right]_{q} \quad(q \leq 2 k)
\end{align*}
$$

and

$$
\begin{equation*}
\text { Coker } \phi_{q+1} \cong\left[\frac{H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)}{I_{4 n-3}}\right]_{q} \quad(q \leq 2 k) . \tag{3.7}
\end{equation*}
$$

Here a and b in (3.6) are defined in Proposition 2.7 and [$]_{q}$ denotes the subspace consisting of elements of degree q.
It is easy to prove the following:
Lemma 3.8. Let $\varphi: V \rightarrow V^{\prime}$ be a linear mapping between vector spaces and let W be a subspace of V. Let $\varphi \mid W: W \rightarrow V^{\prime}$ be the restriction and $\bar{\varphi}: V / W \rightarrow V^{\prime} / \varphi(W)$ be the induced mapping. Then we have

$$
\operatorname{Ker} \varphi \cong \operatorname{Ker} \varphi \mid W \oplus \operatorname{Ker} \bar{\varphi}
$$

Hereafter, let $q \leq 2 k$ and we drop q from all modules and maps.
Step 1. For φ and W in Lemma 3.8, we take $\varphi=\phi$ in (3.5) and $W=s \alpha_{2} \otimes$ $H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)$. Then using Lemma 2.5 (1) (i), we have
$\operatorname{Ker} \phi \cong 0 \oplus \operatorname{Ker} \bar{\phi}$,
where $\bar{\phi}: \mathbf{Z} / 2\left\{s \alpha_{4}, \ldots, s \beta_{4 n-5}\right\} \otimes H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right) \longrightarrow \frac{H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)}{I_{4}}$ is the mapping induced from $\phi .\left(\mathbf{Z} / 2\left\{s \alpha_{4}, \ldots, s \beta_{4 n-5}\right\}\right.$ is a free $\mathbf{Z} / 2$-module with a $\mathbf{Z} / 2$-basis $\left\{s \alpha_{4}, \ldots, s \beta_{4 n-5}\right\}$.)

Step 2. For φ and W in Lemma 3.8, we take $\varphi=\bar{\phi}$ and $W=s \alpha_{4} \otimes$ $H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)$. Then

$$
\operatorname{Ker} \bar{\phi} \cong s \alpha_{4} \otimes I_{4} \oplus \operatorname{Ker} \overline{\bar{\phi}},
$$

where $\overline{\bar{\phi}}: \mathbf{Z} / 2\left\{s \alpha_{6}, \ldots, s \beta_{4 n-5}\right\} \otimes H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right) \rightarrow \frac{H_{*}\left(\Omega_{0}^{3} S U(n) ; \mathbf{Z} / 2\right)}{I_{6}}$ is the mapping induced from $\bar{\phi}$.

We repeat these steps with respect to $s \alpha_{2 i}$ and $s \beta_{2 i+1}$. Then we obtain (3.6). (3.7) follows from Lemma 2.5. Now from (3.6), (3.7) and Proposition 2.7, we have Theorem A for $p=2$. Theorem A for $p \geq 2 n+1$ is proved from Proposition 2.9. This completes the proof of Theorem A.

Similarly, Theorem B follows from Propositions 2.12, 2.13 and Theorem 3.1 (ii), and Theorem C follows from Remark 2.10 and Theorem 3.1 (iii).

Acknowledgment. I would like to thank the referee for suggesting how to improve the first draft.

Bibliography

[1] C.P. Boyer, J.C. Hurtubise, B.M. Mann, R.J. Milgram, The topology of instanton moduli spaces. I: The Atiyah-Jones conjecture, Ann. of Math. 137 (1993), 561-609;
[2] C.P. Boyer, B.M. Mann, D. Waggoner, On the homology of $S U(n)$ instantons, Trans. Amer. Math. Soc. 323 (1991), 529-561;
[3] Y. Choi, The mod 2 homology of $S p(n)$ instantons and the classifying space of the gauge group, Bull. Austral. Math. Soc. 55 (1997), 503-512;
[4] F.R. Cohen, R.L. Cohen, B.M. Mann, R.J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163-221;
[5] F.R. Cohen, T.J. Lada, J.P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag, 1976;
[6] S.K. Donaldson, P.B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford University Press, 1990;
[7] Y. Kamiyama, Polynomial model for homotopy fibers associated with the James construction, Math. Z. 237 (2001), 149-180;
[8] Y. Kamiyama, Generating varieties for the triple loop spaces of classical Lie groups, preprint;
[9] F.C. Kirwan, Geometric invariant theory and the Atiyah-Jones conjecture, The Sophus Lie Memorial Conference (Oslo, 1992), 161-186, Scand. Univ. Press, Oslo (1994);
[10] M. Mimura, H. Toda, Topology of Lie groups, I and II, Translations of Mathematical Monographs, 91, Amer. Math. Soc., 1991;
[11] M. Sanders, Classifying spaces and Dirac operators coupled to instantons, Trans. Amer. Math. Soc. 347 (1995), 4037-4072;
[12] G.B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72;
[13] Y. Tian, The Atiyah-Jones conjecture for classical groups and Bott periodicity, J. Differential Geom. 44 (1996), 178-199;
[14] G. Valli, Bi-invariant Grassmannians and Atiyah-Jones theorems, Topology 39 (2000), 1-31;

Department of Mathematics, University of the Ryukyus, Okinawa 903-0213, Japan
email : kamiyama@sci.u-ryukyu.ac.jp

