Homology of the completion of instanton moduli spaces

Yasuhiko Kamiyama

Abstract

Let M(k,G) be the moduli space of based gauge equivalence classes of G-instantons on S^4 with instanton number k. M(k,G) has the Uhlenbeck completion $\overline{M}(k,G) = \bigcup_{q=0}^k \operatorname{SP}^q(\mathbf{R}^4) \times M(k-q,G)$, where $\operatorname{SP}^q(\mathbf{R}^4)$ denotes the q-fold symmetric product of \mathbf{R}^4 . Let X(k,G) be the first two strata of the completion: $X(k,G) = M(k,G) \cup \mathbf{R}^4 \times M(k-1,G)$. In this paper we study the homology of X(k,G) for G = SU(n) or Sp(n), and relate this to the homology of a certain homotopy theoretic fibre.

1 Introduction

Let V be a connected complex manifold. For simplicity we assume $\pi_1(V) = 0$ and $\pi_2(V) \cong \mathbb{Z}$. Let $\operatorname{Rat}_k(V)$ denote the space of based holomorphic maps of degree k from S^2 to V, and let $i_k : \operatorname{Rat}_k(V) \to \Omega_k^2 V$ be the inclusion. Suppose that the following stability principle is satisfied: the inclusion i_k becomes a homotopy equivalence through a range of dimensions which increases to infinity with k. In particular, we have a homotopy equivalence $\operatorname{Rat}_{\infty}(V) \simeq \Omega_0^2 V$, where $\operatorname{Rat}_{\infty}(V)$ is the direct limit $\lim_{k\to\infty} \operatorname{Rat}_k(V)$. Let $\operatorname{ad}(i_1) : \Sigma \operatorname{Rat}_1(V) \to \Omega V$ be the adjoint map of i_1 . We lift $\operatorname{ad}(i_1)$ to a

Let $\operatorname{ad}(i_1) : \Sigma \operatorname{Rat}_1(V) \to \Omega V$ be the adjoint map of i_1 . We lift $\operatorname{ad}(i_1)$ to a map $\widetilde{\operatorname{ad}}(i_1) : \Sigma \operatorname{Rat}_1(V) \to \widetilde{\Omega} V$, where $\widetilde{\Omega} V$ is the universal cover of ΩV . Let W(V) be the homotopy theoretic fibre of $\widetilde{\operatorname{ad}}(i_1)$. Then we have the following sequence of fibrations:

 $\Omega_0^2 V \longrightarrow W(V) \longrightarrow \Sigma \operatorname{Rat}_1(V) \xrightarrow{\widetilde{\operatorname{ad}}(i_1)} \widetilde{\Omega} V.$ (1.1)

Received by the editors January 2001.

Communicated by Y. Félix.

Key words and phrases : instantons, homotopy theoretic fibre.

Bull. Belg. Math. Soc. 10 (2003), 169-178

¹⁹⁹¹ Mathematics Subject Classification : 58D27.

We consider the following problem: how to construct a space $X_k(V)$, which is a natural generalization of $\operatorname{Rat}_k(V)$, such that $X_{\infty}(V)$ approximates W(V). The problem was solved for $V = \mathbb{C}P^n$ in [7]. We summarize the results. For

The problem was solved for $V = \mathbb{C}P^{n}$ in [7]. We summarize the results. For $f \in \operatorname{Rat}_{k}(\mathbb{C}P^{n})$, we assume the basepoint condition $f(\infty) = [1, \ldots, 1]$. Such holomorphic maps are given by rational functions:

$$\operatorname{Rat}_{k}(\mathbb{C}P^{n}) = \{(p_{0}(z), \dots, p_{n}(z)) : \operatorname{each} p_{i}(z) \text{ is a monic, degree-} k \text{ polynomial} \\ \text{and such that there are no roots common to all } p_{i}(z)\}.$$

The stability principle for i_k : $\operatorname{Rat}_k(\mathbb{C}P^n) \to \Omega_k^2 \mathbb{C}P^n$ was proved in [12]: i_k is a homotopy equivalence up to dimension k(2n-1). Later the stable homotopy type of $\operatorname{Rat}_k(\mathbb{C}P^n)$ was described in [4]: $\operatorname{Rat}_k(\mathbb{C}P^n) \simeq_s \bigvee_{q=1}^k D_q(S^{2n-1})$, where $D_q(S^{2n-1})$ is a stable summand of the Snaith's stable splitting $\Omega^2 S^{2n+1} \simeq_s \bigvee_{q\geq 1} D_q(S^{2n-1})$. We define $X_k^l(\mathbb{C}P^n)$ by

 $X_k^l(\mathbf{C}P^n) = \{(p_0(z), \dots, p_n(z)) : \text{each } p_i(z) \text{ is a monic, degree-}k \text{ polynomial} \\ \text{and such that there are at most } l \text{ roots common to all } p_i(z)\}.$

Thus as sets we have

$$X_k^l(\mathbf{C}P^n) = \prod_{q=0}^l \mathbf{C}^q \times \operatorname{Rat}_{k-q}(\mathbf{C}P^n), \qquad (1.2)$$

where $\mathbf{C}^q \times \operatorname{Rat}_{k-q}(\mathbf{C}P^n)$ corresponds to the subspace of $X_k^l(\mathbf{C}P^n)$ consisting of elements $(p_0(z), \ldots, p_n(z))$ such that there are exactly l roots common to all $p_i(z)$. Let $J^l(S^{2n})$ denote the l-th stage of the James construction which builds ΩS^{2n+1} , and let $W^l(S^{2n})$ be the homotopy theoretic fibre of the inclusion $J^l(S^{2n}) \hookrightarrow J(S^{2n}) \simeq$ ΩS^{2n+1} . In [7] we proved a stable homotopy equivalence $X_k^l(\mathbf{C}P^n) \simeq_s \bigvee_{q=1}^k D_q \xi^l(S^{2n})$, where $D_q \xi^l(S^{2n})$ is a stable summand of the stable splitting $W^l(S^{2n}) \simeq_s \bigvee_{q\geq 1} D_q \xi^l(S^{2n})$. We consider the case l = 1. Since $J^1(S^{2n}) \simeq S^{2n}$, $W^1(S^{2n})$ is the homotopy theoretic fibre of the Freudenthal suspension $E: S^{2n} \to \Omega S^{2n+1}$. Since $\operatorname{Rat}_1(\mathbf{C}P^n) \simeq S^{2n-1}$, $\widetilde{\operatorname{ad}}(i_1): \Sigma \operatorname{Rat}_1(\mathbf{C}P^n) \to \widetilde{\Omega} \mathbf{C}P^n \simeq \Omega S^{2n+1}$ in (1.1) is also the Freudenthal suspension. Hence $W(\mathbf{C}P^n) \simeq W^1(S^{2n})$ and $X_k^1(\mathbf{C}P^n)$ gives an answer to the problem for $V = \mathbf{C}P^n$.

The purpose of this paper is to study the problem for $V = \Omega G$, where G = SU(n)or Sp(n). In this case $\operatorname{Rat}_k(V)$ is identified with M(k, G), the moduli space of based gauge equivalence classes of G-instantons on S^4 with instanton number k. The moduli space M(k, G) is a smooth connected non-compact complex manifold of complex dimension 2kn if G = SU(n) and 2k(n+1) if G = Sp(n). Let $i_k : M(k, G) \to \Omega_k^3 G$ be the inclusion. The stability principle for i_k is called the Atiyah-Jones conjecture, which is now solved (see Section 3). Let $C = C_G(SU(2))$ be the centralizer of SU(2)in G. Define a map $J : G/C \to \Omega_0^3 G$ by $J(gC)(x) = gxg^{-1}x^{-1}$, where $x \in SU(2)$. Particular examples are: SU(n)/C is diffeomorphic to the unit tangent bundle of $\mathbb{C}P^{n-1}$ and Sp(n)/C is diffeomorphic to $\mathbb{R}P^{4n-1}$ (see [2], [11]). M(1, G) is diffeomorphic to $\mathbb{R}^5 \times G/C$ such that the following homotopy commutative diagram holds (see [2]):

$$M(1,G) \xrightarrow{i_1} \Omega_1^3 G$$

$$\downarrow \simeq \qquad \qquad \downarrow \simeq \qquad (1.3)$$

$$G/C \xrightarrow{J} \Omega_0^3 G$$

Hence $W(\Omega G)$ in (1.1) is identified with the homotopy theoretic fibre of $\operatorname{ad}(J)$: $\Sigma G/C \to \widetilde{\Omega}^2 G$.

On the other hand, M(k, G) has the Uhlenbeck completion (see [6]), which is similar to (1.2):

$$\overline{M}(k,G) = \bigcup_{q=0}^{k} \operatorname{SP}^{q}(\mathbf{R}^{4}) \times M(k-q,G),$$

where $SP^{q}(\mathbf{R}^{4})$ denotes the q-fold symmetric product of \mathbf{R}^{4} . Let X(k, G) be the first two strata of the completion:

$$X(k,G) = M(k,G) \cup \mathbf{R}^4 \times M(k-1,G).$$
(1.4)

For $X_k(\Omega G)$ in the problem, we consider X(k, G). Now our results are as follows.

Theorem A. Let $n \ge 3$ and p a prime with p = 2 or $p \ge 2n + 1$. Then we have the following isomorphism for $q \le 2k$:

$$H_q(X(k, SU(n)); \mathbf{Z}/p) \cong H_q(W(\Omega SU(n)); \mathbf{Z}/p).$$

Theorem B. Let $n \ge 1$ and p a prime with p = 2 or $p \ge 2n + 3$. Then we have the following isomorphism for $q \le \left\lceil \frac{k}{2} \right\rceil - 1$:

$$H_q(X(k, Sp(n)); \mathbf{Z}/p) \cong H_q(W(\Omega Sp(n)); \mathbf{Z}/p).$$

For G = SU(2) = Sp(1), we have

Theorem C. For all primes p, we have the following isomorphism for $q \le k - 1$:

$$H_q(X(k, SU(2)); \mathbf{Z}/p) \cong H_q(W(\Omega SU(2)); \mathbf{Z}/p).$$

If we form $k \to \infty$ in Theorems A and B, we have the following:

Corollary D. Put $\nu(G) = 2n + 1$ if G = SU(n) $(n \ge 2)$ and $\nu(G) = 2n + 3$ if G = Sp(n) $(n \ge 1)$. Then for p a prime with p = 2 or $p \ge \nu(G)$, we have the following isomorphism:

$$H_*(X(\infty, G); \mathbf{Z}/p) \cong H_*(W(\Omega G); \mathbf{Z}/p).$$

The structure of $H_*(W(\Omega G); \mathbb{Z}/p)$ is determined in Section 2. (See Propositions 2.7, 2.9 and Remark 2.10 for G = SU(n), and Propositions 2.12 and 2.13 for G = Sp(n).)

Finally we remark about the situation where $n = \infty$. By [9] we have a homotopy equivalence $M(k, SU) \simeq BU(k)$ hence $W(\Omega SU)$ is the homotopy theoretic fibre

of the natural map $\Sigma BU(1) \to SU$. Similarly, we have a homotopy equivalence $M(k, Sp) \simeq BO(k)$ hence $W(\Omega Sp)$ is the homotopy theoretic fibre of the natural map $\Sigma BO(1) \to SU/SO$. In particular, localized away from 2, $W(\Omega Sp)$ is homotopy equivalent to $\Omega SU/SO$.

This paper is organized as follows. In Section 2 we determine $H_*(W(\Omega G); \mathbb{Z}/p)$ and in Section 3 we prove Theorems A, B and C.

2 Homology of $W(\Omega G)$

First we determine $H_*(W(\Omega SU(n)); \mathbb{Z}/2)$. Since SU(n)/C is diffeomorphic to the unit tangent bundle of $\mathbb{C}P^{n-1}$, $H^*(SU(n)/C; \mathbb{Z}/2)$ is given as follows. (1) For *n* even,

$$H^*(SU(n)/C; \mathbf{Z}/2) \cong H^*(\mathbb{C}P^{n-1}; \mathbf{Z}/2) \otimes H^*(S^{2n-3}; \mathbf{Z}/2).$$

(2) For n odd,

$$H^*(SU(n)/C; \mathbf{Z}/2) \cong H^*(\mathbb{C}P^{n-2}; \mathbf{Z}/2) \otimes H^*(S^{2n-1}; \mathbf{Z}/2).$$
 (2.1)

We write the generators of $H_*(SU(n)/C; \mathbb{Z}/2)$ as follows. (1) For *n* even,

$$\begin{cases} \alpha_{2i} & 1 \le i \le n-1 \\ \beta_{2i+1} & n-2 \le i \le 2n-3. \end{cases}$$

(2) For n odd,

$$\begin{cases} \alpha_{2i} & 1 \le i \le n-2\\ \beta_{2i+1} & n-1 \le i \le 2n-3. \end{cases}$$

Theorem 2.2 ([2]). For $n \ge 3$, there are choices of elements (1) x_{2i} i = 1 or $2 \le i \le n-2, i \equiv 0 \pmod{2}$, (2) y_{4i+1} $\left[\frac{n-1}{2}\right] \le i \le n-2, i \equiv 1 \pmod{2}$, such that $H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$ is isomorphic to the following algebra:

$$\mathbf{Z}/2 \left[Q_2^a(x_{2i}) : a \ge 0, i = 1 \text{ or } 2 \le i \le \left[\frac{n-3}{2} \right], i \equiv 0 \pmod{2} \right] \\ \otimes \mathbf{Z}/2 \left[Q_1^a Q_2^b(x_{2i}) : a, b \ge 0, \left[\frac{n-1}{2} \right] \le i \le n-2, i \equiv 0 \pmod{2} \right] \\ \otimes \mathbf{Z}/2 \left[Q_1^a Q_3^b(y_{4i+1}) : a, b \ge 0, \left[\frac{n-1}{2} \right] \le i \le n-2, i \equiv 1 \pmod{2} \right].$$

We generalize the elements x_{2i} and y_{4i+1} in Theorem 2.2 to the following ones: (1) For *n* even,

$$\begin{cases} x_{2i} & 1 \le i \le n-1 \\ y_{4i+1} & \frac{n}{2} - 1 \le i \le n-2. \end{cases}$$
(2.3)

(2) For n odd,

$$\begin{cases} x_{2i} & 1 \le i \le n-2\\ y_{4i+1} & \frac{n-1}{2} \le i \le n-2. \end{cases}$$
(2.4)

The definitions are as follows.

(i) If $i \equiv 1$ or $i \equiv 0 \pmod{2}$, then we define x_{2i} to be the one in Theorem 2.2 (1). (ii) If $i \equiv 1 \pmod{2}$, then there exist a and j uniquely such that $\deg Q_2^a(x_{4j}) = 2i$ (where we put $x_0 = [1]$). Then we define x_{2i} by $x_{2i} = Q_2^a(x_{4j})$. (iii) If $i \equiv 1 \pmod{2}$, then we define y_{4i+1} to be the one in Theorem 2.2 (2). (iv) If $i \equiv 0 \pmod{2}$, then we define y_{4i+1} by $y_{4i+1} = Q_1(x_{2i})$. Recall that we defined

a map $J: SU(n)/C \to \Omega_0^3 SU(n)$ in Section 1.

Lemma 2.5. We have the following relations:

- (1) (i) When i = 1 or $i \equiv 0 \pmod{2}$, $J_*(\alpha_{2i}) = x_{2i}$.
- (ii) When $i \equiv 1 \pmod{2}$, $J_*(\alpha_{2i})$ contains the term x_{2i} .
- (2) (i) When $i \equiv 1 \pmod{2}$, $J_*(\beta_{4i+1}) = y_{4i+1}$.
 - (ii) When $i \equiv 0 \pmod{2}$, $J_*(\beta_{4i+1})$ contains the term y_{4i+1} .
 - (iii) $J_*(\beta_{4i+3})$ is decomposable.

Proof. (1) follows from the following homotopy commutative diagram:

where i, j and k are the inclusions and $\Omega_0^3 SU \simeq BU$ is the Bott periodicity. (The homotopy commutativity of the bottom square follows from the third diagram of [11, p. 4054] for k = 1 and $l = \infty$.)

(2) is proved in [8]. In particular, (iii) is a consequence of dimensional reasons. This completes the proof of Lemma 2.5. ■

We define an increasing sequence of ideals of $H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$, I_{ν} , as follows: Consider the elements x_{2i} and y_{4i+1} in (2.3) or (2.4). Put

 I_{ν} = the ideal generated by x_{2i} and y_{4i+1} whose degree is less than ν . (2.6)

For $\gamma \in H_*(SU(n)/C; \mathbb{Z}/2)$, let $s\gamma \in H_{*+1}(\Sigma SU(n)/C; \mathbb{Z}/2)$ be the suspension.

Proposition 2.7. For $n \ge 3$, $H_*(W(\Omega SU(n)); \mathbb{Z}/2)$ is isomorphic to the following module:

$$\stackrel{a}{\underset{i=2}{\oplus}} s\alpha_{2i} \otimes I_{2i} \oplus \stackrel{n-2}{\underset{i=b}{\oplus}} s\beta_{4i+1} \otimes I_{4i+1} \oplus \stackrel{n-2}{\underset{i=b}{\oplus}} s\beta_{4i+3} \otimes H_*(\Omega_0^3 SU(n); \mathbf{Z}/2)$$
$$\oplus \frac{H_*(\Omega_0^3 SU(n); \mathbf{Z}/2)}{I_{4n-3}},$$

where

$$a = \begin{cases} n-1 & n: even \\ n-2 & n: odd \end{cases} \quad and \quad b = \begin{cases} \frac{n}{2}-1 & n: even \\ \frac{n-1}{2} & n: odd. \end{cases}$$

Proof. Consider the homology Serre spectral sequence of the fibration $\Omega_0^3 SU(n) \rightarrow W(\Omega SU(n)) \rightarrow \Sigma SU(n)/C$. By Lemma 2.5 (1) (i), we have $d^3(s\alpha_2) = x_2$ hence $E_{3,*}^{\infty} = 0$. Next, we have $d^5(s\alpha_4) = x_4$. Note that $d^5(s\alpha_4 \otimes z) = 0$ if $z \in I_4 = (x_2)$. Hence $E_{5,*}^{\infty} \cong s\alpha_4 \otimes I_4$. Following the same procedures, we obtain Proposition 2.7.

Let $n \geq 2$ and p a prime with $p \geq 2n + 1$. Then $H^*(SU(n)/C; \mathbf{Z}/p)$ is of the form (2.1), and we define α_{2i} and β_{2i+1} similarly. On the other hand, localized at p, SU(n) is homotopy equivalent to $\prod_{i=1}^{n-1} S^{2i+1}$ (see [10]) and $H_*(\Omega^3 S^{2i+1}; \mathbf{Z}/p)$ is given in [5]. For $1 \leq i \leq n-2$, let $x_{2i} \in H_{2i}(\Omega^3 S^{2i+3}; \mathbf{Z}/p)$ be the generator. Form x_2, \ldots, x_{2n-4} , we define an increasing sequence of ideals of $H_*(\Omega_0^3 SU(n); \mathbf{Z}/p), I_{\nu}$, in the same way as in (2.6).

Lemma 2.8. For $p \ge 2n + 1$, we have the following relations: (1) For $1 \le i \le n - 2$, $J_*(\alpha_{2i}) = x_{2i}$. (2) For $n - 1 \le i \le 2n - 3$, $J_*(\beta_{2i+1}) = 0$.

Proof. We can prove (1) in the same way as in Lemma 2.5 (1). For (2), a minimal odd dimensional element of $H_*(\Omega_0^3 S^3; \mathbb{Z}/p)$ is $\beta Q_2[1]$, whose degree is 2p - 3. On the other hand, $\deg \beta_{2i+1} \leq 4n - 5$. Since $p \geq 2n + 1$, dimensional reasons show $J_*(\beta_{2i+1}) = 0$. This completes the proof of Lemma 2.8.

Proposition 2.9. For $n \ge 2$ and $p \ge 2n+1$, $H_*(W(\Omega SU(n)); \mathbb{Z}/p)$ is isomorphic to the following module:

$$\bigoplus_{i=2}^{n-2} s\alpha_{2i} \otimes I_{2i} \oplus \bigoplus_{i=n-1}^{2n-3} s\beta_{2i+1} \otimes H_*(\Omega_0^3 SU(n); \mathbf{Z}/p) \oplus \frac{H_*(\Omega_0^3 SU(n); \mathbf{Z}/p)}{I_{2n-2}}.$$

Proof. We can prove the proposition in the same way as in Proposition 2.7.

Remark 2.10. In order to determine $H_*(W(\Omega SU(2)); \mathbb{Z}/p)$ for all primes p, we need to consider the cases p = 2 and 3. For p = 2, see Proposition 2.12. For p = 3, we have $J_*(\beta_3) = \beta Q_2[1]$ (where β in the right-hand side is the Bockstein homomorphism). Hence

$$H_*(W(\Omega SU(2)); \mathbf{Z}/3) \cong s\beta_3 \otimes (\beta Q_2[1]) \oplus \frac{H_*(\Omega_0^3 S^3; \mathbf{Z}/3)}{(\beta Q_2[1])}$$

Next we study $H_*(W(\Omega Sp(n)); \mathbf{Z}/p)$. Recall that Sp(n)/C is diffeomorphic to $\mathbf{R}P^{4n-1}$. Let α_i $(1 \le i \le 4n-1)$ be the generator of $H_i(Sp(n)/C; \mathbf{Z}/2)$.

Theorem 2.11 ([3]). For $n \ge 1$, $H_*(\Omega_0^3 Sp(n); \mathbb{Z}/2)$ is isomorphic to the following algebra:

$$\mathbf{Z}/2\left[Q_1^a Q_2^b[1] * \left[-2^{a+b}\right] : a, b \ge 0\right] \otimes \mathbf{Z}/2\left[Q_1^a Q_2^b(x_{4j}) : a, b \ge 0, 1 \le j \le n-1\right].$$

We generalize x_{4j} $(1 \le j \le n-1)$ in Theorem 2.11 to x_i $(1 \le i \le 4n-1)$ in the same way as in (2.3) or (2.4). That is,

(i) If $i \equiv 0 \pmod{4}$, then we define x_i to be the one in Theorem 2.11.

(ii) If $i \neq 0 \pmod{4}$, then there exist a, b and j uniquely such that $\deg Q_1^a Q_2^b(x_{4j}) = i$ (where we put $x_0 = [1]$). Then we define x_i by $x_i = Q_1^a Q_2^b(x_{4j})$. From the elements x_1, \ldots, x_{4n-1} , we define an increasing sequence of ideals of $H_*(\Omega_0^3 Sp(n); \mathbb{Z}/2), I_{\nu}$, in the same way as in (2.6). **Proposition 2.12.** For $n \ge 1$, $H_*(W(\Omega Sp(n)); \mathbb{Z}/2)$ is isomorphic to the following module:

$$\bigoplus_{i=2}^{4n-1} s\alpha_i \otimes I_i \oplus \frac{H_*(\Omega_0^3 Sp(n); \mathbf{Z}/2)}{I_{4n}}$$

Proof. In the same way as in the proof of Lemma 2.5 (1), we see that $J_*(\alpha_i)$ contains the term x_i . Then from the fibration $\Omega_0^3 Sp(n) \to W(\Omega Sp(n)) \to \Sigma \mathbf{R}P^{4n-1}$, we can prove the proposition in the same way as in Proposition 2.7.

Let p be a prime with $p \ge 2n+3$ and α_{4n-1} be the generator of $H_{4n-1}(\mathbb{R}P^{4n-1}; \mathbb{Z}/p)$. Localized at p, Sp(n) is homotopy equivalent to $\prod_{i=1}^{n} S^{4i-1}$.

Proposition 2.13. For $n \ge 1$ and $p \ge 2n+3$, $H_*(W(\Omega Sp(n)); \mathbb{Z}/p)$ is isomorphic to the following module:

$$s\alpha_{4n-1} \otimes H_*(\Omega_0^3 Sp(n); \mathbf{Z}/p) \oplus H_*(\Omega_0^3 Sp(n); \mathbf{Z}/p)$$
$$\cong H_*(S^{4n}; \mathbf{Z}/p) \otimes H_*(\Omega_0^3 Sp(n); \mathbf{Z}/p).$$

Proof. In the same way as in the proof of Lemma 2.8 (2), we have $J_*(\alpha_{4n-1}) = 0$ for $p \ge 2n+3$. Then the proposition follows easily.

3 Proofs of Theorems A, B and C

The Atiyah-Jones conjecture suggests the stability principle for $i_k : M(k, G) \to \Omega_k^3 G$. The conjecture was first proved in [1] for G = SU(2). Later the conjecture was confirmed for general G and the range of homotopy equivalence for i_k was improved. At present, the following solutions are known:

Theorem 3.1 ([9], [13], [14]). The map $i_k : M(k, G) \to \Omega^3_k G$ induces homomorphisms in homotopy groups, which are

(i) if G = SU(n) $(n \ge 3)$, isomorphisms in dimensions less than 2k + 1, and an epimorphism in dimension 2k + 1;

(ii) if G = Sp(n) $(n \ge 2)$, isomorphisms in dimensions less than $\left\lfloor \frac{k}{2} \right\rfloor$, and an epimorphism in dimension $\left\lfloor \frac{k}{2} \right\rfloor$;

(iii) if G = SU(2) = Sp(1), isomorphisms in dimensions less than k, and an epimorphism in dimension k.

By [2] we have a C_4 -structure in $\coprod_{k\geq 1} M(k, G)$, in particular we have a loop sum $*: M(k, G) \times M(k', G) \to M(k + k', G)$. Similarly, we have a map $*: X(k, G) \times M(k', G) \to X(k + k', G)$, which is an extension of the above loop sum. Passing to homology, $\bigoplus_{k\geq 1} H_*(X(k, G); \mathbf{Z}/p)$ is a module over $\bigoplus_{k\geq 1} H_*(M(k, G); \mathbf{Z}/p)$. We prove the following:

Lemma 3.2. For all primes *p*, we have the following long exact sequence:

$$\dots \to H_q(M(k,G); \mathbf{Z}/p) \to H_q(X(k,G); \mathbf{Z}/p)$$
$$\to \bigoplus_{i+j=q} \widetilde{H}_i(\Sigma G/C; \mathbf{Z}/p) \otimes H_j(M(k-1,G); \mathbf{Z}/p)$$
$$\xrightarrow{\phi_q} H_{q-1}(M(k,G); \mathbf{Z}/p) \to \dots$$

Moreover, ϕ_q is given by

$$\phi_q(s\gamma \otimes z) = \gamma * z,$$

where $\gamma \in \widetilde{H}_i(G/C; \mathbb{Z}/p)$, $s\gamma$ is the suspension of γ and $z \in H_j(M(k-1, G); \mathbb{Z}/p)$. As in Section 1, let $C = C_G(SU(2))$ be the centralizer of SU(2) in G.

Proof. We recall how the stratum $\mathbf{R}^4 \times M(k-1,G)$ is attached to M(k,G) and builds X(k,G) in (1.4) (see [6, Section 3.4]). By [2] we have a diffeomorphism $M(1,G) \cong \mathbf{R}^5 \times G/C$. Hence M(1,G) is parametrized by $\mathbf{R}^4 \times (0,\delta) \times G/C$, where $\delta > 0$ is a small number. The point $x \in \mathbf{R}^4$ represents the center of the instanton, while the scale $\lambda \in (0,\delta)$ represents the spread of the curvature density function. The remaining parameter is G/C. For G = SU(2), $SU(2)/C \cong SO(3)$ represents the framing at infinity.

Let the scale $\lambda \in (0, \delta)$ approach 0. At the moment when $\lambda = 0$, all the elements of G/C are identified to a point. Thus, when $\lambda = 0$, the remaining parameter is only \mathbf{R}^4 and a tubular neighborhood of this \mathbf{R}^4 in X(1, G) is given by $\left(\mathbf{R}^4 \times [0, \delta] \times G/C\right) / \sim$, where we put $(x, 0, u) \sim (x, 0, u')$.

Similarly, we apply the above construction to X(k, G). We consider $\mathbf{R}^4 \times (0, \delta) \times G/C \times M(k-1, G) \subset M(k, G)$. As above, let the scale $\lambda \in (0, \delta)$ approach 0. When $\lambda = 0$, we obtain a new stratum $\mathbf{R}^4 \times M(k-1, G)$ and a tubular neighborhood of the stratum in X(k, G) is given by

$$\nu = \left(\mathbf{R}^4 \times [0, \delta] \times G/C \times M(k-1, G)\right) / \sim,$$

where we put $(x, 0, u, A) \sim (x, 0, u', A)$.

Let $\partial \nu$ be the boundary of ν . We consider the homology long exact sequence of the pair (X(k,G), M(k,G)). By excision, we have

$$H_*(X(k,G), M(k,G); \mathbf{Z}/p) \cong H_*(\nu, \partial\nu; \mathbf{Z}/p).$$
(3.3)

Moreover,

$$H_{*}(\nu, \partial\nu; \mathbf{Z}/p)$$

$$\cong H_{*}\left(\frac{[0, \delta] \times G/C}{\{0\} \times G/C}, \{\delta\} \times G/C; \mathbf{Z}/p\right) \otimes H_{*}(M(k-1, G); \mathbf{Z}/p)$$

$$\cong \widetilde{H}_{*}(\Sigma G/C; \mathbf{Z}/p) \otimes H_{*}(M(k-1, G); \mathbf{Z}/p).$$
(3.4)

From (3.3) and (3.4), we obtain the long exact sequence of Lemma 3.2. By the same argument as in [7], it is easy to see that in the long exact sequence of the pair (X(k,G), M(k,G)), the connecting homomorphism $\partial_* : H_q(X(k,G), M(k,G); \mathbf{Z}/p) \to H_{q-1}(M(k,G); \mathbf{Z}/p)$ corresponds to ϕ_q in Lemma 3.2.

In order to prove Theorem A, we first determine $H_q(X(k, SU(n)); \mathbb{Z}/2)$ for $q \leq 2k$. We consider the long exact sequence of Lemma 3.2 starting from

$$\bigoplus_{i+j=2k+1} \widetilde{H}_i(\Sigma SU(n)/C; \mathbf{Z}/2) \otimes H_j(M(k-1, SU(n)); \mathbf{Z}/2).$$

Using Theorem 3.1 (i), $\phi_q \ (q \le 2k+1)$ in Lemma 3.2 is written as follows:

$$\phi_q: \bigoplus_{i+j=q} \widetilde{H}_i(\Sigma SU(n)/C; \mathbf{Z}/2) \otimes H_j(\Omega_0^3 SU(n); \mathbf{Z}/2) \to H_{q-1}(\Omega_0^3 SU(n); \mathbf{Z}/2), \quad (3.5)$$

where $\phi_q(s\gamma \otimes z) = J_*(\gamma) * z$.
From the exactness, we have

$$H_q(X(k, SU(n)); \mathbb{Z}/2) \cong \operatorname{Ker} \phi_q \oplus \operatorname{Coker} \phi_{q+1}$$

We claim:

$$\operatorname{Ker} \phi_{q} \cong \begin{bmatrix} a \\ \bigoplus \\ i=2 \end{bmatrix} s \alpha_{2i} \otimes I_{2i} \oplus \bigoplus_{i=b}^{n-2} s \beta_{4i+1} \otimes I_{4i+1} \\ \oplus \bigoplus_{i=b}^{n-2} s \beta_{4i+3} \otimes H_{*}(\Omega_{0}^{3}SU(n); \mathbf{Z}/2) \Big]_{q} \quad (q \leq 2k) \quad (3.6)$$

and

$$\operatorname{Coker} \phi_{q+1} \cong \left[\frac{H_*(\Omega_0^3 SU(n); \mathbf{Z}/2)}{I_{4n-3}} \right]_q \quad (q \le 2k).$$
(3.7)

Here a and b in (3.6) are defined in Proposition 2.7 and $[]_q$ denotes the subspace consisting of elements of degree q.

It is easy to prove the following:

Lemma 3.8. Let $\varphi : V \to V'$ be a linear mapping between vector spaces and let W be a subspace of V. Let $\varphi|W: W \to V'$ be the restriction and $\overline{\varphi} : V/W \to V'/\varphi(W)$ be the induced mapping. Then we have

$$\operatorname{Ker} \varphi \cong \operatorname{Ker} \varphi | W \oplus \operatorname{Ker} \overline{\varphi}.$$

Hereafter, let $q \leq 2k$ and we drop q from all modules and maps. STEP 1. For φ and W in Lemma 3.8, we take $\varphi = \phi$ in (3.5) and $W = s\alpha_2 \otimes H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$. Then using Lemma 2.5 (1) (i), we have

$$\operatorname{Ker} \phi \cong 0 \oplus \operatorname{Ker} \overline{\phi},$$

where $\overline{\phi} : \mathbf{Z}/2\{s\alpha_4, \ldots, s\beta_{4n-5}\} \otimes H_*(\Omega_0^3 SU(n); \mathbf{Z}/2) \longrightarrow \frac{H_*(\Omega_0^3 SU(n); \mathbf{Z}/2)}{I_4}$ is the mapping induced from ϕ . $(\mathbf{Z}/2\{s\alpha_4, \ldots, s\beta_{4n-5}\}$ is a free $\mathbf{Z}/2$ -module with a $\mathbf{Z}/2$ -basis $\{s\alpha_4, \ldots, s\beta_{4n-5}\}$.)

STEP 2. For φ and W in Lemma 3.8, we take $\varphi = \overline{\phi}$ and $W = s\alpha_4 \otimes H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$. Then

$$\operatorname{Ker} \overline{\phi} \cong s\alpha_4 \otimes I_4 \oplus \operatorname{Ker} \overline{\overline{\phi}},$$

where $\overline{\phi} : \mathbf{Z}/2\{s\alpha_6, \ldots, s\beta_{4n-5}\} \otimes H_*(\Omega_0^3 SU(n); \mathbf{Z}/2) \to \frac{H_*(\Omega_0^3 SU(n); \mathbf{Z}/2)}{I_6}$ is the mapping induced from $\overline{\phi}$.

We repeat these steps with respect to $s\alpha_{2i}$ and $s\beta_{2i+1}$. Then we obtain (3.6). (3.7) follows from Lemma 2.5. Now from (3.6), (3.7) and Proposition 2.7, we have Theorem A for p = 2. Theorem A for $p \ge 2n + 1$ is proved from Proposition 2.9. This completes the proof of Theorem A.

Similarly, Theorem B follows from Propositions 2.12, 2.13 and Theorem 3.1 (ii), and Theorem C follows from Remark 2.10 and Theorem 3.1 (iii).

Acknowledgment. I would like to thank the referee for suggesting how to improve the first draft.

Bibliography

- C.P. Boyer, J.C. Hurtubise, B.M. Mann, R.J. Milgram, The topology of instanton moduli spaces. I: The Atiyah-Jones conjecture, Ann. of Math. 137 (1993), 561–609;
- [2] C.P. Boyer, B.M. Mann, D. Waggoner, On the homology of SU(n) instantons, Trans. Amer. Math. Soc. **323** (1991), 529–561;
- [3] Y. Choi, The mod 2 homology of Sp(n) instantons and the classifying space of the gauge group, Bull. Austral. Math. Soc. **55** (1997), 503–512;
- [4] F.R. Cohen, R.L. Cohen, B.M. Mann, R.J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163–221;
- [5] F.R. Cohen, T.J. Lada, J.P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag, 1976;
- [6] S.K. Donaldson, P.B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford University Press, 1990;
- [7] Y. Kamiyama, Polynomial model for homotopy fibers associated with the James construction, Math. Z. 237 (2001), 149–180;
- [8] Y. Kamiyama, Generating varieties for the triple loop spaces of classical Lie groups, preprint;
- [9] F.C. Kirwan, Geometric invariant theory and the Atiyah-Jones conjecture, The Sophus Lie Memorial Conference (Oslo, 1992), 161–186, Scand. Univ. Press, Oslo (1994);
- [10] M. Mimura, H. Toda, Topology of Lie groups, I and II, Translations of Mathematical Monographs, 91, Amer. Math. Soc., 1991;
- M. Sanders, Classifying spaces and Dirac operators coupled to instantons, Trans. Amer. Math. Soc. 347 (1995), 4037–4072;
- [12] G.B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39–72;
- [13] Y. Tian, The Atiyah-Jones conjecture for classical groups and Bott periodicity, J. Differential Geom. 44 (1996), 178–199;
- [14] G. Valli, Bi-invariant Grassmannians and Atiyah-Jones theorems, Topology 39 (2000), 1–31;

Department of Mathematics, University of the Ryukyus, Okinawa 903-0213, Japan *email :* kamiyama@sci.u-ryukyu.ac.jp