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Abstract

We give some criterions to establish connectedness for the geometric rep-
resentation domain of substitutions of Pisot type, unimodular and satisfying
the strong coincidence condition (PUC substitutions).

1 Introduction

Every substitution of Pisot type, unimodular and satisfying the strong coincidence
condition admits a geometric representation as a subset F of the euclidian space
Rr−1×Cs with a piecewise translation T . The structure and the properties of these
geometric representations have been intensively studied [AI01, HZ98, SW99, CS01b]
since G. Rauzy gave the first example on 3 letters [Rau82] (Sturmian substitutions
are very well known examples on 2 letters [MH38]). Indeed, G. Rauzy proved that
the representation domain F associated to the substitution 1 7→ 12, 2 7→ 13, 3 7→ 1
is a connected and simply connected subset of C.

Theorem 3.1 gives a necessary and sufficient condition for the representation
domain to be connected. However, this criterion states that an infinite number of
condition have to be satisfied to obtain connectedness. Hence this result is more
useful to prove the non-connectedness of some representations (see Example 2), as
we only have to show that one condition is not satisfied.

Inspired by G. Rauzy’s proof for connectedness of F , we give a second sufficient
criterion of connectedness, Theorem 3.2. This results permits to conclude even if the
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image Fa of a cylinder [a] is the union of a finite number of connected components,
as it is the case for 1 7→ 12312, 2 7→ 132, 3 7→ 2 (see Figure 4). Moreover, that
criterion can be explicitly verified by computations on a graph given by A. Siegel,
and the representation connectedness thus proved by the existence of a given subset
of edges in a finite graph [Sie].

2 Generalities

2.1 Generalities and notations

Let A = {1, 2, . . . , d} (d ≥ 2) a finite alphabet, A∗ the set of finite words on A.
We denote the set of non-empty finite words A+ = A∗ \ {ε}, where ε design the
empty word of A∗. We call bi-infinite word every element w in AZ. We write such
a word by pointing it between w−1 and w0, as following w = . . . w−2w−1.w0w1 . . . .
We denote |U | the length of the word U and for all letter a ∈ A, we denote |U |a
the occurrences number of letter a in the word U . The map l : A∗ → Nd which to a
word U associate the vector (|U |i)i=1,...,d is called Parikh map and its values are the
Parikh vectors.

A substitution is a morphism σ for the concatenation operation of the free mo-
nöıde A∗, which maps A on A+ and such that there exists a letter a in A satisfying
limn→∞ |σ

n(a)| = +∞. The substitution σ can be naturally prolonged to the set of
infinite words AZ by

σ(. . . w−2w−1.w0w1 . . . ) = . . . σ(w−2)σ(w−1).σ(w0)σ(w1) . . .

We denote S the shift on AZ, which to every word w = (wi)i∈Z maps the words
Sw = (wi+1)i∈Z. We call S-periodic point every word w in AZ such that there exists
h ≥ 1 with Sh(w) = w. A substitution σ is said S-periodic if there exists a periodic
point of σ which is also S-periodic.

A substitution σ is said primitive if there exists a natural integer k such that b

occurs in σk(a) for all couple (a, b) in A2.

To every substitution σ we canonically associate the occurrency matrix with
non-negative integer coefficients Mσ = (mi,j)1≤i,j≤d defined by

mi,j = |σ(j)|i ,

and Pσ its characteristic polynomial. The maps σ and Mσ satisfy

∀ w ∈ A∗ : l(σ(w)) = Mσl(w). (1)

An algebraic integer is called Pisot-Vijayaraghavan number or Pisot number if
all its algebraic conjugates β are such that |β| < 1. A substitution σ is said of Pisot
type if its characteristic polynomial Pσ is irreducible over Q and its dominating
eigenvalue is a Pisot number. Moreover, σ is said unimodular if det Mσ = ±1.

All substitutions of Pisot type are primitive and non-S-periodic.
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2.2 Dynamical symbolical system and coding

One can report to [CS01a] and [CS01b] for more details.

Definition 2.1. [CS01a] Let Γ be the map Γ : Ω → (A∗,A,A∗)N which to all
w ∈ Ω associate the sequence (pi, ai, si)i≥0 (with σ(ai+1) = piaisi for all i ≥ 0).
Γ(w) = (pi, ai, si)i≥0 is called prefix-suffix development of w.

The different developments are the labels of the paths in the following automaton
(see [CS01a]).

Definition 2.2. [CS01a] The prefix-suffix automaton Aσ associated to the sub-
stitution σ is such that

• A is the state set; all states are initial,

• P = {(p, a, s); ∃b ∈ A such thatσ(b) = pas} is the label set,

• there exists an edge from a to b labelled e = (p, a, s) if pas = σ(b), that is

a
(p,a,s)
−→ b.

We call D the set of labels of infinite walks in this automaton.

We have the following theorem

Theorem 2.1. [CS01a] Let σ be a primitive substitution without S-periodic fixed
point. Let (Ω, S) (Ω ⊂ AZ) be the dynamical system associated to σ. The map Γ
defined above is continuous and onto on the subshift of finite type Dσ. It is one-to-
one except maybe on a countable set of points, more precisely except on the S-orbit
of periodic points for σ.

Let σ be a unimodular substitution of Pisot type. Let α1 the Pisot eigenvalue,
{α2, . . . , αr} the real contracting eigenvalues, and {αr+1, . . . , αr+s, αr+1, . . . , αr+s}
the complex contracting eigenvalues.

We recall (see [CS01b]) that the digit map δ is a morphism for the concatenation
operation of A∗:

δ(w1 w2) = δ(w1) + δ(w2).

Moreover, if C ∈ Ms+r−1(C) is the diagonal matrix of size s + r − 1 whose entries
are the contracting eigenvalues (conjugate complex eigenvalues are taken only once):
we have ||C|| < 1. Then C and σ verify a commutation relation:

δ(σ(j)) = C δ(j) with C =









α2 (0)
. . .

(0) αr+s









.

Definition 2.3. [CS01b] Let c = (pj, aj, sj)j≥0 in D a walk in the prefix-suffix
automaton. Let Λ the continuous map defined from D to Rr−1 × Cs by

Λ(c) = lim
n→+∞

δ( σn(pn) . . . σ0(p0) )

=
∑

j≥0

Cj δ(pj) =









∑

j≥0 δ2(pj) α2
j

...
∑

j≥0 δr+s(pj) αr+s
j









.
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Definition 2.4. [CS01b] Let x be a word of Ω and Γ(x) = (pj, aj, sj)j≥0 its prefix-
suffix development. Let ϕ be the continuous representation map, defined from Ω
to Rr−1 × Cs:

ϕ(x) = Λ ◦ Γ(x)

=
∑

j≥0

Cj δ(pj).

Proposition 2.1. [CS01b] For all x in Ω :

ϕ(Sx) = ϕ(x) + δ(x0)

ϕ(σx) = Cϕ(x).

We recall the strong coincidence condition:

Definition 2.5. [AI01] A substitution σ satisfies the strong coincidence condition
on the prefixes (resp. on the suffixes) if for all couple of letter (j, k) there exists a
constant n such that σn(j) and σn(k) can be decomposed in the following way

σn(j) = pas and σn(k) = qar, with l(p) = l(q)

(resp. l(s) = l(r))

We denote PUC a substitution of Pisot type, unimodular and satisfying the
strong coincidence condition. For a PUC substitution (see [CS01b]), the represen-
tation map ϕ is one-to-one in measure, which implies that the image of Ω by ϕ can
be decomposed as a disjoint union

F =
d

∐

i=1

ϕ[i] almost everywhere.

If we denote Fi = ϕ[i] the image of the cylinder [i], we can define almost every-
where a piecewise exchange T on F ,

T : F → F
x ∈ Fi 7→ x + δ(i).

(2)

We then have a measure-theoretically isomorphism between (Ω, S) and piecewise
translation on a self-similar domain.

Theorem 2.2. [AI01, CS01b] Let σ be a PUC substitution, then the symbolical
dynamical system (Ω, S,BΩ, µ) is measure theoretically isomorphic to the system
(F , T ,BRr−1×Cs , m).

The shift S on Ω is then conjugate in measure to T , whereas the substitution σ

is conjugate to the contraction C.
Moreover, the domain F has a self-similar structure. Let p be a word over A,

we call fp the contraction

fp : Rr−1 × Cs → Rr−1 × Cs

x 7→ Cx + δ(p).
(3)
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The description of cylinders of Ω as [i] =
∐

i
(p,i,s)
−→ j

S |p|σ[j] implies that the images

of cylinders can be decomposed in measure in the following way

Fi =
∐

i
(p,i,s)
−→ j

fp(Fj), (4)

where Fi are compact subsets.

3 Connectedness of the representation domain F

In the following, except when explicitly mentioned, we will consider PUC substi-
tutions over the alphabet A. We recall that Aσ is the prefix-suffix automaton
associated to σ.

Example 1 Let σ be the PUC substitution 1 7→ 12, 2 7→ 31, 3 7→ 1. Let β

be a contracting eigenvalue of Mσ, that is a complex root of the polynomial x3 =
x2 + x + 1. The matrix C is (β) and the vector δ = (δ(1), δ(2), δ(3)) can be chosen
as (1, β − 1, β2 − β − 1). Then F = F1 ∪ F2 ∪ F3 (see Figure 3) has the following
self-similar structure

F1 = βF1 ∪ (βF2 + β2 − β − 1) ∪ βF3

F2 = βF1 + 1 (5)

F3 = βF2

�

We define some particular sets named bricks.

Definition 3.1. Let e1 . . . ek be a path of length k in the automaton Aσ, from a to
b, with ei = (pi, ai, si). We call k-brick associated to this path the set

B(a) = Fa if k = 0, (6)

B(a; e1 . . . ek; b) = fp1 ◦ · · · ◦ fpk
(Fb) if k ≥ 1.

Example 1 (continuation) The system (5) can be written in the following way
with bricks (see Figure 1)

B(1) = B(1; (ε, 1, 2); 1) ∪B(1; (3, 1, ε); 2) ∪ B(1; (ε, 1, ε); 3),

B(2) = B(2; (1, 2, ε); 1),

B(3) = B(3; (ε, 3, 1); 2).

�

The bricks have the following properties. Denote D = diam(F). It follows
obviously from (4) that

B(a; e1 . . . ek; b) ⊂ Fa, (7)

B(a; e1 . . . ek; b) =
⋃

b
e
−→c

B(a; e1 . . . ek e; c), (8)

diam(B(a; e1 . . . ek; b)) ≤ ||C||kD. (9)
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3

21

(ε,3,1)

(ε,1,2)

(ε,1,ε)

(1,2,ε)

(3,1,ε)

Figure 1: Prefix-suffix automaton of σ : 1 7→ 12, 2 7→ 31, 3 7→ 1

We can easily remark that, for any path P ∈ D with P = (ei)i≥1 and ei =
(pi, ai, si), we have

Λ(P ) ∈ B(a1; e1 . . . ei; ai+1) ∀i ≥ 1. (10)

Similarly, let the path P ′ = (e′i)i≥1 where e′1 = (p, a, s) and for all i ≥ 2, e′i = ei−1.
Then

Λ(P ′) = fp(Λ(P )) = δ(p) + CΛ(P ). (11)

In particular, for any path P ∈ D, it is possible to give a path P ′ with p = ε. That
means that for all z ∈ B(a1), we have Cz ∈ CB(a1) = B(a; (ε, a, s); a1).

For any integer k ≥ 0, denote Bk the set of k-bricks associated to paths of length
k. Hence B0 = {Fa; a ∈ A} and

B1 = {B(a; (p, a, s); b) ; σ(b) = pas}

= {fp(Fb) ; (p, a, s) ∈ P, σ(b) = pas}.

In order to define an equivalence relation on the sets Bk, we define a first relation
R′.

Definition 3.2. Two subsets E1 and E2 of Rr−1 × Cs are in relation by R′ and
noted E1R

′E2 if
E1 ∩ E2 6= ∅.

The relation R′ is trivially reflexive and symmetrical, so it is possible for any
positive integer k to define the following equivalence relations by completing R′ by
transitivity

• let R(k) the equivalence relation defined by completing R′ by transitivity on
the set of k-bricks,
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• for any letter a in A, let R(k)
a the equivalence relation defined by completing

R′ by transitivity on the set of of k-bricks of the form B(a; e1 . . . ek; b).

We give a necessary and sufficient criterion for the connectedness of F .

Theorem 3.1. Let σ be a PUC substitution and (F , T ) the geometric representation
generated by σ. Then F is connected if and only if the following condition is satisfied

∀k ≥ 0 : ∀B1, B2 ∈ Bk : B1 R
(k) B2. (12)

Proof. We will show that the set F is not connected if and only if there exists
an integer k ≥ 0 such that all bricks in Bk are not in the same equivalence class for
the relation R(k).

Suppose there exists k ≥ 0 and B1, B2 ∈ Bk such that B1

/

R(k) B2, then the set

of bricks Bk can be divided in at least two equivalence classes for R(k). Let n ≥ 2
the number of classes, which is finite as #Bk is finite. Denote Ci with 1 ≤ i ≤ n

the union of the elements in each class. Then the sets Ci and Cj are disjoint one to
another. The sets Ci are closed, as finite unions of compact subsets. It suffices then
to remember that F =

⋃

1≤i≤n Ci to see that F is not connected.

For the converse, suppose that F is not connected. It is compact, so the union
of at least two compact connected components. Let’s consider for simplicity that
the number of connected components is two, which we note C1 and C2. We have to
show that C1 and C2 are unions of k-bricks for a given k. Let ∆ be the euclidian
distance on Rr−1 × Cs. The compacity of C1 and C2 says that ∆(C1, C2) = g > 0.
Then, for all x1 ∈ C1 and x2 ∈ C2, ∆(x1, x2) ≥ g. As ||C|| < 1, there exists an
integer k such that ||C||kD < g. Let now B be a k-brick, and y1, y2 be two points
from B. The relation (9) proves that ∆(y1, y2) ≤ ||C||kD < g, which implies that
B ⊂ C1 or B ⊂ C2. Hence, the sets C1 and C2 are unions of k-bricks. Finally, no
brick B1 ⊂ C1 is in relation by R′ with a brick B2 ⊂ C2, as g > 0, and so by R(k).

�

Example 2 Let σ be the PUC substitution 1 7→ 112, 2 7→ 21. The representation
domain F can be decomposed in the following way

B(1) = B(1; (ε, 1, 12); 1)∪ B(1; (1, 1, 2); 1)∪ B(1; (2, 1, ε); 2)

B(2) = B(2; (ε, 2, 1); 2)∪ B(2; (11, 2, ε); 1)

We can verify by computation that for k = 2, the condition (12) is not satisfied,
as for example the 2-brick B(1; (2, 1, ε)(ε, 2, 1); 2) is not in relation with any other
2-brick. This shows that the geometric representation domain F is not connected.

Figure 2 shows a drawing of the geometric representation of the substitution
σ : 1 7→ 112, 2 7→ 21, where F1 is shown in clear and F2 in dark. The subsets are
not on the same level to improve visibility. The two vertical barres show a mesh of
the lattice L = {k(δ(2) − δ(1)) | k ∈ Z}. Despite what may appear on the figure,
m(F1 ∩ F2) = 0. �
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Figure 2: Geometric representation of the substitution σ : 1 7→ 112, 2 7→ 21

We formulate a sufficient condition for F to be connected.

Theorem 3.2. Let σ be a PUC substitution and (F , T ) the geometric representation
generated by σ. If the two following conditions are satisfied

∀a1, a2 ∈ A : B(a1)R
(0)B(a2), (13)

∀a ∈ A : ∀(e, f) ∈ P2 couple of edges starting from a : (14)

B(a; e; b)R(1)
a B(a; f ; c),

then F is connected. Moreover, the domain Fa is connected for all a ∈ A.

Remark that condition (13) is also necessary for the connectedness of F , but
we will see later that if F is connected but not all Fa, then condition (14) is not
satisfied.

Proof. The proof is based on G. Rauzy ([Rau82]) and A. Messaoudi ([Mes96])
works on the substitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1. As F is a compact set, it
suffices to show that it is well chained. For this we construct, for all ε > 0 and any
couple of points (x, y) in F 2, a chain of points x1, . . . , xn in F , linking x to y (x1 = x

and xn = y), and such that for all 1 ≤ j ≤ n− 1, we have d(xj, xj+1) < ε.

We treat in a first step the case of x and y being in the same subset Fa. We
show by induction on h that for any letter a in A and any couple (x, y) in F 2

a ,
there exists a chain x1, . . . , xn linking x to y (x1 = x and xn = y), such that for
all 1 ≤ j ≤ n − 1, there exists a path e1 . . . eh from a to bj of length h in Aσ such
that xj, xj+1 ∈ B(a; e1 . . . eh; bj). Finally, with relation (9) it suffices to take h big
enough such that ||C||hD < ε.

Let a ∈ A and (x, y) ∈ F 2
a . The case h = 0 is obvious by relation (6) and x, y is

a chain linking x to y.

Assume that the property is true for some h ≥ 0. By hypothesis, there exists
a chain x1, . . . , xn linking x to y (x1 = x and xn = y), such that for all 1 ≤ j ≤
n − 1, there exists a path e1 . . . eh from a to b of length h such that xj, xj+1 ∈
B(a; e1 . . . eh; b). Note here that e1 . . . eh and b depend on j. Let j ∈ {1, . . . , n− 1}
be fixed. From (8), we have B(a; e1 . . . eh; b) =

⋃

b
e
−→c

B(a; e1 . . . eh e; c). Two cases
arise:

1st case: there exists an edge e ∈ P such that xj, xj+1 ∈ B(a; e1 . . . eh e; c), then
e1 . . . eh e is a path from a to c of length h+1, such that xj, xj+1 ∈ B(a; e1 . . . eh e; c).

2nd case: such an edge does not exist. Then there exist two edges ej, ej+1 from b

to cj and cj+1 such that xj ∈ B(a; e1 . . . eh ej; cj) and xj+1 ∈ B(a; e1 . . . eh ej+1; cj+1).
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Let

x′ = f−1
ph
◦ · · · ◦ f−1

p1
(xj) ∈ B(b; ej; cj) and

y′ = f−1
ph
◦ · · · ◦ f−1

p1
(xj+1) ∈ B(b; ej+1; cj+1).

From (14) we know that

B(b; ej; cj)R(1)
b B(b; ej+1; cj+1),

this implies that there exists a chain y1, . . . , ym of length m linking x′ to y′ (y1 = x′

and ym = y′) such that for all 1 ≤ i ≤ m − 1, there exists an edge gi = (qi, b, si)
(g1 = ej and gm−1 = ej+1) from b to di, with yi, yi+1 ∈ B(b; gi; di). This implies
that

fp1 ◦ · · · ◦ fph
(yi)

fp1 ◦ · · · ◦ fph
(yi+1)

}

∈ B(a; e1 . . . eh gi; di).

Between xj and xj+1 we insert the chain
(

fp1 ◦ · · · ◦ fph
(y2)

)

, . . . ,
(

fp1 ◦ · · · ◦

fph
(ym−1)

)

. Thus the property is satisfied for h + 1.

Let now (x, y) ∈ F 2. By (13), there exists a chain z1, . . . , zl (z1 = x and zl = y)
of length l, such that for all 1 ≤ i ≤ l− 1, we have zi, zi+1 ∈ B(ai) = Fai

. Since the
property is verified for any couple (zi, zi+1) ∈ Fai

2, it is satisfied also for any couple
(x, y) ∈ F2, and this ends the proof. �

Example 1 (continuation) We give explicitly the intersection points of the bricks.
We give the automaton paths for the substitution 1 7→ 12, 2 7→ 31, 3 7→ 1, which

allow to verify that the geometric representation domain F is connected.

To show for example that B(1) R(0) B(2), let

c1 = (ε, 1, 2)(ε, 1, ε)(ε, 3, 1)[(1, 2, ε)(3, 1, ε)]∞,

c2 = (1, 2, ε)(ε, 1, 2)(ε, 1, 2)(3, 1, ε)[(1, 2, ε)(3, 1, ε)]∞.

Then

Λ(c1) = β3
(

∑

i≥0

(δ(1) + βδ(3))β2i
)

= β3(1 + β3 − β2 − β)
1

1− β2

= −β − β2

and

Λ(c2) = δ(1) + β3δ(3) + β4
(

∑

i≥0

(δ(1) + βδ(3))β2i
)

= 1 + (β5 − β4 − β3) + β(−β − β2)

= 1− β3

= −β − β2



86 V. Canterini

so Λ(c1) = Λ(c2) ∈ B(1) ∩ B(2). Next

B(1)R(0)B(2) since −β − β2 ∈ B(1) ∩ B(2),

B(1)R(0)B(3) since −β2 ∈ B(1) ∩B(3).

Thus (13) is satisfied. Moreover

B(1; (ε, 1, 2); 1) R
(1)
1 B(1; (ε, 1, ε); 3)

since − β3 ∈ B(1; (ε, 1, 2); 1) ∩B(1; (ε, 1, ε); 3),

B(1; (ε, 1, ε); 3) R
(1)
1 B(1; (3, 1, ε); 2)

since β − 1 ∈ B(1; (ε, 1, ε); 3)∩ B(1; (3, 1, ε); 2).

Relation (14) is verified so F is connected, and moreover F1, F2 and F3 are con-
nected. �

Figure 3: Representation domain of σ : 1 7→ 12, 2 7→ 31, 3 7→ 1

The Theorem 3.2 criterion is sufficient but not necessary. Indeed, we give a
second example of substitution which representation domain is connected, but which
does not verify condition (14).

Example 3 Let σ be the substitution 1 7→ 12312, 2 7→ 132, 3 7→ 2. The set F (see
Figure 4) admits the following decomposition

B(1) = B(1; (ε, 1, 2312); 1)∪ B(1; (123, 1, 2); 1)∪ B(1; (ε, 1, 32); 2)

B(2) = B(2; (1, 2, 312); 1) ∪B(2; (1231, 2, ε); 1)∪ B(2; (13, 2, ε); 2)

∪ B(2; (ε, 2, ε); 3) ∪B(2; (ε, 2, ε); 3)

B(3) = B(3; (12, 3, 12); 1) ∪B(3; (1, 3, 2); 2).
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This system verifies (12) but not (14). Indeed B(3; (12, 3, 12); 1) and
B(3; (1, 3, 2); 2) possess no intersection point, and since these are the two only bricks

in B(3), clearly B(3; (12, 3, 12); 1)
/

R
(1)
3 B(3; (1, 3, 2); 2). However we show in the fol-

lowing that F is connected. �

We give a second criterion of connectedness.

Theorem 3.3. Let σ be a substitution on an alphabet A = {1, . . . , d}. If there
exists an alphabet A = {11, . . . , 1n1 , . . . , d1, . . . , dnd

}, a substitution σ defined on A
and a letter-to-letter projection π from A onto A such that for all i in A and all
1 ≤ k ≤ ni:

π(ik) = i,

π(σ(ik)) = σ(i),

and that it is possible to express the self-similar system (4) of F with

Fi =
⋃

1≤k≤ni

Fik ,

in such a way that
Fik =

∐

ik
(p,ik,s)
−→ jh

fp(Fjh
), (15)

and that the new system (15) verifies conditions (13) and (14), then F is connected
and moreover Fi is the union of at most ni connected components.

If moreover A is of minimal size, then Fi is the union of exactly ni connected
components.

Proof. Suppose the existence of A, σ and π such that

Fi =
⋃

1≤k≤ni

Fik .

To be coherent, we have to extend the definition of δ to the new alphabet A, so we
pose δ(ik) = δ(i). Then

Fik =
∐

ik
(p,ik,s)
−→ jh

fp(Fjh
).

By hypothesis, this system verifies the conditions (13) and (14), hence by Theorem
3.2 the set

F =
⋃

1≤i≤d

Fi =
⋃

1≤i≤d

⋃

1≤k≤ni

Fik

is connected. The subsets Fik are also connected, which implies that for any letter
i in A, Fi =

⋃

1≤k≤ni
Fik is the union of at most ni connected components.

Moreover if we minimize the size of A, that is to say that for all couple (ik, ih)

in A
2

we have Fik ∩ Fih = ∅, then the following union is disjoint Fi =
∐

1≤k≤ni
Fik

and Fi is the union of exactly ni connected components. �
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Example 3 (continuation) The bricks B(3; (12, 3, 12); 1) and B(3; (1, 3, 2); 2) are

in two different equivalence classes for R
(1)
3 . One has to ”double” the letter 3. It

suffices to take the alphabet A = {1, 2, 3a, 3b}. This can be seen as studying a new
substitution σ given by

1 7→ 123a12

2 7→ 13b2

3a 7→ 2

3b 7→ 2

And to describe the system associated to this substitution. The substitution σ is
degenerate in the way that sp(Mσ) = sp(Mσ) ∪ {0}, hence σ is not of Pisot type.
Nevertheless the system (15) can be described by

B(1) = B(1; (ε, 1, 23a12); 1) ∪ B(1; (123a, 1, 2); 1)

∪ B(1; (ε, 1, 3b2); 2)

B(2) = B(2; (1, 2, 3a12); 1) ∪B(2; (123a1, 2, ε); 1)

∪ B(2; (13b, 2, ε); 2) ∪B(2; (ε, 2, ε); 3a) ∪ B(2; (ε, 2, ε); 3b)

B(3a) = B(3a; (12, 3a, 12); 1)

B(3b) = B(3b; (1, 3b, 2); 2).

The new system verifies conditions (13) and (14), then the Theorem 3.2 proves
that F , F1 and F2 are connected, but F3 is the union of two connected components,
F3 = F3a

∪ F3b
. �

Figure 4: Representation of σ : 1 7→ 12312, 2 7→ 132, 3 7→ 2

Remark 3.1. We give in the proof of the preceding theorem a new alphabet A and a
new substitution σ verifying π(σ(ik)) = σ(i). We naturally pose δ(ik) = δ(i)). This
gives a way to geometrically represent some non Pisot type substitutions, mainly non
one-to-one substitutions, like σ given in the preceding example.
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4 Conclusion

The Theorem 3.2 can be used to give a new proof the well-known result that the
geometric representation of a primitive Sturmian substitution is a two intervals ex-
change, and the new result that the geometric representation of a primitive Arnoux-
Rauzy substitution is connected (see [Can]), which are in some way generalized
Sturmian substitutions.

Acknowledgements The author thanks Pascal Hubert for stimulating discus-
sions on the subject and the referee for useful suggestions.
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