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This book is a valuable, and indeed unique, addition to the lit­
erature and will be a standard reference. The introductory chap­
ters are very clearly written. The authors derive many previously 
known results by alternative methods. This gives an independent 
check of these results. I know of no errors in the trees or tables 
and have great confidence in the general accuracy of the material 
presented here. 

This book will be an essential part of every mathematical library. 
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About a year and a half ago at the Thorn Symposium in Paris 
many of the talks traced their genesis to René Thorn's seminar 
in the Bois Ste. Marie at the Institut des Hautes Etudes Scien­
tifiques. What a wonderful seminar I thought, and recalled my 
own stay at the I.H.E.S. in 1969-70 and Thorn's seminar that 
year (which was not one of the ones mentioned). Steve Smale, 
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Charles Pugh, Floris Takens, and I were among the long-term vis­
itors. Thorn and David Ruelle were permanent members of the 
institute. The subject of the seminar was dynamics. Smale was do­
ing mechanics. His 1967 paper, "Differential dynamical systems" 
[1], "a masterpiece of mathematical literature" as Ruelle writes 
(p. 48), structured ordinary differential equations and discrete 
time dynamical systems (iterated diffeomorphisms) with the per­
spective of one of the leading topologists of the time. Poincaré, 
Birkoff, Morse, Hopf, and others were of course concerned with 
the relations of global topology and ordinary differential equa­
tions. The Gorki school in the Soviet Union, Andronov, Pontrya-
gin, Chaikin, Witt, et al., were concerned with structural stability, 
nonlinear oscillations and bifurcations in two dimensions. Lef-
schetz introduced the concept of structural stability in the West 
and Peixoto proved his classification theorem for two dimensions. 
But Smale's work on gradient dynamical systems, the generalized 
Poincaré conjecture and //-cobordism theorem reunited ordinary 
differential equations, dynamical systems and topology with a force 
not seen since Poincaré's time. Then came the horseshoe (in­
finitely many periodic solutions), the new structurally stable at-
tractors (one derived from Anosov and another derived from ex­
panding in the 1967 paper) and the structure of hyperbolic sets 
which unified them all. Anosov proved the structural stability of 
what are now called Anosov diffeomorphisms (the hyperbolic set 
is the whole manifold) and Smale, the dissipative version, the Q-
stability theorem. In addition Anosov and Sinai had initiated the 
study of the ergodic theory of these systems. 

Pugh and I were working on invariant manifold theory, appli­
cations to Anosov flows, and generalizations. Takens was studying 
normal forms at fixed points. I believe that Thorn asked Takens 
to report on Hopf s paper on bifurcation. With the use of cen­
ter manifold theory, the Banach space theory reduces to the two-
dimensional case, the study of which was initiated by Poincaré. 
Shortly thereafter the Ruelle-Takens scenario for turbulence ap­
peared. 

Ruelle writes: "After the papers of Lorenz [2] and Ruelle and 
Takens [3], the interest in what is now called chaos developed first 
slowly then explosively.... It is of course natural—and indeed 
desirable—that there be some gap between rigorous mathematics 
and the methods used by students of natural phenomena. But 
the gap should not be too wide, and there is some danger that a 
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subject that arose from close interplay of mathematics and physics 
would die from their divorce" (pp. 87-88). So he has written a 
book with " . . . more emphasis than usual on infinite dimensional 
systems, non-invertible maps, attractors and bifurcation theory." 
to prepare the serious reader " . . . to enter the treacherous jungle 
of the literature of chaos" (Preface). 

Now I don't mean to suggest that the hyperbolic theory was the 
only successful attack on ordinary differential equations of the pe­
riod. There was after all the Kolmogorov-Arnold-Moser theory 
and much other work going on; Levinson's on the forced Vander 
Pol which stimulated the horseshoe, for example. But this work 
was more local in nature, more part of analysis than topology or 
more directed to Hamiltonian systems than to the general theory. 
Nor do I mean to suggest that Ruelle and Takens invented the 
relation of the Hopf bifurcation to turbulence. Hopf was inter­
ested in infinite-dimensional systems and fluid flow in particular. 
He gives as an example the bifurcations from steady-state flow 
around a solid body to periodic vortex shedding with increasing 
velocity. Landau suggested that turbulence might be explained by 
quasiperiodic flow on a high-dimensional torus created by a suc­
cession of Hopf bifurcations. There was work on the Hopf bifur­
cation for diffeomorphisms by Naimark in the Soviet Union and 
Sacker in the United States. Arnold [4] recounted more indepen­
dent work in the Soviet Union on these questions, for example, 
Sositaisville on normal forms for the «-dimensional Hopf bifur­
cation and Arnold's own unsuccessful attempt in 1964 to find nu­
merically a hyperbolic attracting set in a six-dimensional Galerkin 
approximation to a two-dimensional Navier-Stokes equation [4, p. 
278]. There were visits back and forth, Smale to Moscow in 1961 
[5], Arnold to I.H.E.S. in 1965 [4, p. 282]. By this time Sinai's 
work on billiards had also appeared, his Markov partitions for 
Anosov diffeomorphisms and Bowen's generalization to hyperbolic 
systems. In fact, there was an explosion of work of hyperbolic sys­
tems in the United States and the Soviet Union. But I am straying 
from my intentions; I mean to point out the main features of this 
development in chaos theory. In 1966-67 Smale discovered the 
first structurally stable nonmanifold attractors * which in particu­
lar exhibited one of the salient features of hyperbolic sets sensitive 

Personally I have always been rather pleased that one of the first was moti­
vated by my thesis on expanding maps. 
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dependence on initial conditions. These examples were topolog-
ically motivated. There were no explicit equations in mind. In 
1969 Ruelle and Takens showed that a sequence of Hopf bifurca­
tions could result in an invariant torus with one of Smale's strange 
structurally stable attractors on it, and proposed this as a scenario 
for turbulence. The difference with Landau is the strange attractor 
which is quite a different kettle of fish than quasiperiodic motions. 
A few years later, the experiments of Swinney and Gollub gave cre­
dence to the notion that the onset of chaotic behavior in fluids is 
related to nonquasiperiodic dynamics in low dimensions. 

Part of the charm of the original Ruelle-Takens model is the 
low-dimension (albeit not completely specified) dynamics which 
exhibits chaos, but also this dynamics is part of a theory which 
can explain it and structure it. It is robust in many ways: struc­
turally stable by work of Smale so that the topological behavior 
does not vary with perturbations, but also statistically table. Sinai 
introduced Gibbs states for Anosov systems, and Bowen and Ru­
elle extended the work to general hyperbolic systems. The Sinai-
Bowen-Ruelle measures give robust statistics for hyperbolic attrac­
tors. 

These days it is easy to produce chaotic dynamics or complex 
bifurcation pictures with computer graphics. I wasn't around in 
1961 when Smale announced that he was giving up topology for 
dynamical systems because "no problem in topology was as im­
portant and exciting as the topological conjugacy problem for dif-
feomorphisms, already on the 2-sphere" [5, p. 150], but in the 
early 70s I saw Sullivan begin lectures with a sense of wonder as 
he would point out that while topology studies maps ƒ : X —• Y, 
if X and Y are the same space ƒ : X —• X then you can iter­
ate ƒ and an infinite process is born. Yesterday Matt Grayson 
programmed the workstation to iterate a simple dynamical system 
two million times and to make a motion picture of the dynam­
ics. The enormous value of computers for dynamical systems has 
been mainly as an experimental tool. The digital computer has the 
ability to produce reproducible data and pictures, some of which 
are chaotic, from simple explicit equations. But these pictures are 
scarcely more useful than the ones I produced with my camera last 
month of the Iguaçu falls, or what you can observe on your home 
analog computer by opening the faucet. A complex picture does 
not necessarily elucidate an already complex phenomenon unless 
we can organize the information the picture represents. Partly 
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because the machines and the pictures are finite while dynamics 
is infinite, organizing the information usually at least entails giv­
ing a plausible dynamical interpretation of what one is apparently 
seeing. I know of no useful taxonomy of computer graphical rep­
resentation of dynamical systems at this time which relies on the 
graphics alone. Anything which survives is more or less rigorously 
related to the theory. Some complex phenomena which are discov­
ered stand on the side completely or almost forgotten, waiting for 
adequate description, as was the case of homoclinic orbits from 
Poincaré to Smale. 

In 1963, Lorenz already found and plotted a chaotic attrac-
tor which exhibited sensitive dependence on initial conditions. It 
arose from a simple looking quadratic equation in three variables 
which was a truncation of convection flow. The physical origins 
and simple nature of these differential equations make them espe­
cially important for study, but I do not believe Lorenz's attractor 
was very well received before Guckenheimer and Williams did a 
geometric analysis of the equations very much in the spirit of hy­
perbolic chaotic attractors. Lorenz's attractor is not hyperbolic by 
the way, and provides an example that dynamicists were looking 
for of persistence of a singular point in the closure of the periodic 
orbits! 

The other well-known graphics which came much later, the Ju­
lia sets, the Mandelbrot set and the period doubling cascade, are 
well related to the theory of one-dimensional complex and real 
dynamics. The scaling in the period doubling cascade which was 
observed numerically by Feigenbaum and Coullet-Tresser might 
have survived as a sort of physical law on its own because of its 
universality and ultimate experimental observation by Libchaber. 
But here the mathematical physicists led the way. Feigenbaum-
Cvitanovic and Coullet-Tresser proposed explanations via renor-
malization which had been very successful in physics. Lanford 
and then other mathematical physicists have given formal proofs. 
Finally mathematicians, Sullivan in particular, studied this impor­
tant dynamical phenomenon. 

It is interesting to note that at the 1986 International Congress 
of Mathematicians, Eckman, Lanford, and Sullivan spoke about 
the proofs of the renormalization program. Feigenbaum, Cvi-
tanovic, Coullet, and Tresser were not asked to speak. Are math­
ematicians too parochial? Ralph Abraham [6, p. 3] wrote " . . . 
Some of the mathematicians who were the most innovative and 
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radical in the 1960's have become the most conservative today. 
Perhaps it is time for the mathematical community to take a soul 
searching look at itself, in connection with two small minded knee 
jerk reflexes: one against applications of mathematics, the other 
against publicity. Both of these unconscious reflexes kicked vi­
ciously (and fatally) at catastrophe theory in the 1970's. Both are 
unleashed today against chaos theory and fractal geometry. Will 
the New Math of space-time patterns fall victim to this uncon­
scious hostility? Or is it the Old Math which will lose its place in 
the history of consciousness?" 

Ralph Abraham would surely include me among the conserva­
tives. A great many physical systems have been shown to con­
tain homoclinic points in the equations for their dynamics and are 
called chaotic. Others similarly exhibit period doubling accord­
ing to the scaling law. But frequently catastrophe theory or chaos 
theory posits an unspecified dynamical system whose properties 
are analogous to an observed phenomenon. The experiments of 
Gollub-Swinney and Libchaber can be seen in this context, but we 
accept them. Others, such as the claim that sensitive dependence 
on initial conditions for a nonlinear dynamical system might ex­
plain the stock market crash of October 1987, are so far out as to 
be ludicrous. In the Preface, Ruelle laments the "low quality of 
much of the recent physics literature on 'chaos'." But what makes 
some of the literature "low" quality and some high? What is one 
to make of the phenomenological observations of René Thorn and 
their models in catastrophe theory, or Mandelbrot and fractional 
dimension, or the woman I met late one night in the subway read­
ing Gleick's book Chaos [7] who told me that "It is just like real 
life." We could use serious discussions of these matters! Gleick's 
book is an excellent starting point because it puts mathematics in 
a broader scientific context which we sometimes forget. On the 
negative side I found it overdramatic and insufficiently apprecia­
tive of nonlinear dynamics as a rigorous mathematical discipline 
which structures and gives legitimacy to his subject. Also I thought 
he did not sort out the good from the bad. 

One can read some discussion of these issues in The Mathemat­
ical Intelligencer [8] and hopefully we will read more, even in the 
Bulletin, But I will not play Zuckerman in The Facts [9] to David 
Ruelle's Philip Roth. First of all I am not a fictional character, 
secondly I wasn't asked to. Ruelle does not distinguish the high-
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from the low-quality chaos literature, which was for me the only 
(slightly) disappointing aspect of this enjoyable book. Ruelle has 
written an excellent introduction to dynamical systems and bifur­
cation theory. Proofs are sketched where possible. The facts are 
clearly and well presented. Ruelle comes through very clearly in 
his selection of material, presentation, and comments. Elementary 
bifurcation theory and the hyperbolic theory are stressed, but the 
theory is extended to semiflows and endomorphisms. What are 
the main features of the theory? 

The hyperbolic (or Axiom A) theory deals with dynamics which 
are products of expansions and contractions. Famous examples 
are: Smale's horseshoe (Figure 1). The rectangle is contracted 
horizontally, stretched vertically, and laid back down in the plane 
so that the quadratic or parabolic lies outside the rectangle. The set 
of points which are always in the rectangle for positive and negative 
iterates form a Cantor set, which is in one-to-one correspondence 
with infinite sequence of 0's and l's, the k th entry is determined 
by the subrectangle the point is in for the k th iterate. 

The doubling map (Figure 2, see p. 206) X -> 2X(mod 1) (or 
z —• z2 for \z\ - 1, z € C). The map is purely expanding. 
Lebesgue measure is invariant, ergodic, and Bernouilli. 

Hyperbolic pieces are assembled in a filtered or gradient fashion 
(Figure 3, see p. 206), where points represent hyperbolic sets (per­
haps even the whole manifold) and arrows, directions of move­
ment. With more conditions, hyperbolic diffeomorphisms are 

0 1 

FIGURE 1 
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FIGURE 2 

FIGURE 3 

stable. That is, perturbations are conjugate, there is a homeo-
morphism h such that fh = hg for perturbations g of ƒ . If h 
is defined in the whole manifold, this is structural stability. For h 
defined only on the nonwandering set, which is a dynamically inter­
esting subset of M, this is Q-stability. Hyperbohcity conditions 
guaranteeing structural stability were proved by Peixoto, Anosov, 
Palis, Smale, and Robbin. Conditions for Q-stability were proved 
by Smale. Recently, Mané and Palis proved C1 converses. 

2 3 

Approximating z —• z by an imbedding in R and contracting 
in the normal direction (Figure 4) maps the solid torus into itself. 
The intersection of the images, a solenoid, is a stable attractor. 

The hyperbolic theory has been extended in several directions. 
Instead of uniform expansion and contraction, these are allowed 
to vary measurably. This general situation is analyzed by Pesin 
and others. 
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FIGURE 4 

Parabolic behavior without any hyperbolicity, for example on 
the way to producing a horseshoe (Figure 5, see p. 208), produces 
period doubling. The mix of parabolic behavior and hyperbol­
icity (Figure 6, see p. 208) produces wild hyperbolic sets with 
infinitely many sinks (Newhouse) absolutely continuous measures 
in one dimension (Yakobson) and strange attractors in the plane 
(Benedicks-Carleson). For the quadratic family of maps Z2 + C 
in one dimension, Sullivan's distortion lemma treats iterates that 
involve the singularity essentially. 

Bifurcation theory studies dynamical systems depending on a 
parameter. Bifurcation points are points where the behavior is 
not constant in a neighborhood. The simplest bifurcations hardly 
involve dynamics at all. They are the bifurcation of the zeros of 
vector fields (a zero is fixed by the flow). Since a vector field is 
locally a map V : Rn —> Rn , dependence on a parameter P gives 
a map V : PxRn —• Rn , we see that the bifurcation of the zeros 
or equilibria is a part of singularity theory, contact equivalence. If 
K(p,_) is the gradient of a real valued function f(p,_ ) , then 
the local structure of ƒ gives more information and the generic 
bifurcations for dimP < 4 are the elementary catastrophes [10], 
but even then the bifurcation theory of the functions does not 
give a complete picture for the dynamics. Among gradient flows 
the structurally stable * are open and dense, as are the stable one-
and two-parameter families; for eight-parameter families this is no 
longer the case (Smale, Palis, Takens, Dias Carneiro). 

* For flows the homeomorphisms are to take unparameterized orbits of one 
system to those of the other. 
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In the plane On the interval 

FIGURE 5 

In the plane On the interval 

FIGURE 6 
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FIGURE 7 

FIGURE 8 

The local picture for the generic one-parameter families of vec­
tor fields at a zero is fairly clear. A pair of equilibria is made 
(Figure 7). 

A single eigenvalue of the linearized equation changes sign 
(Figure 8) or a complex conjugate pair changes sign (Figure 9), 
creating a Hopf bifurcation. The center manifold theorem reduces 
the general situation to one- or two-dimension product with hyper­
bolic behaviors in the complementary dimensions. 

For diffeomorphisms the local situation at a fixed point is 
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FIGURE 9 
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FIGURE 10 

much the same, with the addition of a flip with eigenvalue - 1 
(Figure 10). 

More technical conditions are required for the Hopf bifurcation, 
and now the induced map on the invariant circle is a diffeomor-
phism so even the local picture involves the bifurcation analysis 
of circle diffeomorphisms (Herman, Yoccoz). 

The general bifurcation picture for surface diffeomorphisms is 
more complicated and involves the entire collection of phenomena 
discussed above. 

I believe that every picture I've drawn is drawn, discussed, and 
explained in Ruelle's excellent introduction. 

The only proper submanifolds of two manifolds are 0 and one-
dimensional. So for two-dimensional diffeomorphisms, the only 
generic lack of transversality we see is the same as the generic sin-
gularity of maps from the line to the line, i.e., the X singularity. 
This explains the importance of quadratic or parabolic behavior 
in these dimensions. In higher dimensions we have hardly begun. 

Two of my favorite examples are to study diffeomorphism per­
turbations of the time one map of the geodesic flow on a compact 
surface of negative curvature, and to study perturbations of the 
automorphism of the four torus A : T -* T where A is given 
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by the 4 x 4 matrix [11 ] 

/o 
1 
0 

Vo 
even the family 

X -» 

0 0 - 1 \ 
0 0 8 
1 0 - 6 > 

0 1 8 / 

AX + 

/ a sin 2IL*:, \ 

0 
0 

i n / 

where 

X = 

\*4J 
and a e R. It is possible that for both examples all small pertur­
bations remain transitive, and the ergodic theory should be inter­
esting. 

The fine structure of dynamical systems may be too difficult 
to describe in general. We may have to content ourselves with 
certain gross features, but we don't have many. One of the best is 
the topological entropy of Adler, Konheim, and McAndrew. The 
entropy measures the "chaos" of the system. For the quadratic 
family X -+ 1 - XX1, 0 < X < 2, on the interval [ - 1 , +1], it 
is monotone increasing (Douady, Hubbard, Thurston). In general 
for C°° maps we have the proof of the C°° entropy conjecture 
by Yomdin, that gives a lower bound for the topological entropy, 
/*(ƒ), f:M-+M 

A(/)>ln|A| , 
where A is any eigenvalue the induced map on real homology, 
f.:Hm{M,R)-+Hm(M,R). 

It is a pleasure for me to acknowledge conversations on these 
matters with Marty Golubitsky, Jacob Palis, and especially Charles 
Tresser. 
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Whereas the algebraic characterization of «-knot groups (fun­
damental group of the complement Sn+2\Kn of an n-knot Kn)is 
easy for n ^ 3 , and apparently hopeless for n = 1, the problem of 
characterizing algebraically the 2-knot groups is very challenging: 
It is certainly a difficult one, but with some optimism, may per­
haps be viewed as not totally hopeless. This book gives, in rather 
condensed form, an essentially complete survey of the subject and 
a very good account of the status of the problem. 

After an introductory Chapter 1 and a slick exposition of the 
classic background (i.e., of the results, which are more than ten 
years old) in Chapter 2, the book starts for good on page 36 with 
five chapters on the recent rather prolific developments of the al­
gebraic study of 2-knot groups in the last ten years. Many of these 
results are in fact due to the author. 

Thus, the book is intended for the working research topologist 
who wants to acquire a comprehensive idea of the status of the 


