SUBCRITICALITY, POSITIVITY, AND GAUGEABILITY OF THE SCHRÖDINGER OPERATOR

Z. ZHAO

1. Introduction

We investigate properties of the Schrödinger operator $H := -(\Delta/2) + V \ge 0$ in $R^d(d \ge 3)$ in the following three aspects:

- (I) Subcriticality: Intuitively, the idea is that if $H \ge 0$ is subcritical, then it should be possible to perturb H by small perturbations and still keep its nonnegativity. More precisely, we have the following assertions:
 - (a) For any $q \in B_c$ (B_c denotes the class of bounded Borel functions with compact support), there exists an $\varepsilon > 0$ such that $-(\Delta/2) + V + \varepsilon q \ge 0$.
 - (b) There exists a function $q \in B_c$, $q \le 0$ and $q \ne 0$ a.e. such that $-(\Delta/2) + V + q \ge 0$.

There have been two other definitions of subcriticality:

- (c) (B. Simon [7]) There exists $\beta > 0$ such that $-(\Delta/2) + (1+\beta)V > 0$.
- (d) (M. Murata [6]) There exists a positive Green function $G^H(\cdot,\cdot)$ for H.

(II) Strong Positivity:

- (e) There exists a positive solution u > 0 of Hu = 0 with the limit: $\lim_{|x| \to \infty} u(x) > 0$.
- (f) There exists a solution u of Hu = 0 with $c' \ge u \ge c > 0$.
- (g) There exists a solution u of Hu = 0 with $u \ge c > 0$.
- (III) Gaugeability: Let $\{X_t\colon t\geq 0\}$ be the Brownian motion in R^d and let E^x denote the expectation over the Brownian paths starting from $x\in R^d$. Put $u_0(x):=E^x[\exp(-\int_0^\infty V(Xs)\,ds)]$.
 - (h) $u_0(x) \not\equiv \infty$ in \mathbb{R}^d .
 - (i) $u_0(x)$ is bounded in \mathbb{R}^d .

Received by the editors October 25, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 81C20.

514 Z. ZHAO

For any y in R^d , we define the y-conditional Brownian motion of Doob type (see [10]) and use E_y^x to denote the expectation over the y-conditional Brownian paths starting from x. Put

$$u_0(x, y) := E_y^x \left[\exp \left(- \int_0^{\xi} V(Xs) \, ds \right) \right], \quad x, y \in \mathbb{R}^d,$$

where ξ is the lifetime of the process.

- (j) $u_0(x, y) < \infty$ for some (x, y) in $\mathbb{R}^d \times \mathbb{R}^d$, $x \neq y$.
- (k) $u_0(x, y)$ is bounded in $R^d \times R^d$.

Our main result is the equivalence of all the assertions (a) through (k) listed above for a large class of potentials V given below.

2. Restricted Kato class K_d^{∞}

For a function V in K_d^{loc} , $d \geq 3$ (see [8] for definition of the Kato classes K_d^{loc} and K_d), we add a similar Kato condition around the point at ∞ and then form a new class K_d^{∞} called the restricted Kato class:

$$(1) \quad K_d^{\infty} := \left\{ V \in K_d^{\text{loc}} \colon \lim_{A \to \infty} \left[\sup_{|x| \ge A} \int_{|y| \ge A} \frac{|V(y)|}{|y - x|^{d - 2}} \, dy \right] = 0 \right\}.$$

It is easy to see that $K_d \cap L^1(R^d) \subseteq K_d^\infty \subseteq K_d$. It can be verified by Hölder's inequality that K_d^∞ also contains the class of "short range potentials":

(2)
$$\{V \in K_d : V(x) = O(|x|^{-\rho}) \text{ as } |x| \to \infty, \ \rho > 2\}.$$

We note that Murata [5] proved some part of the above-mentioned equivalences for subcriticality for potentials satisfying the condition in (2) with $\rho > 4$.

For $V\in K_d^\infty$, put $|||V|||:=\sup_{x\in R^d}\int_{R^d}(|V(y)|/|x-y|^{d-2})\,dy<\infty$. We add two more assertions to the list in (I):

- (1) There exists an $\varepsilon > 0$ such that for any $q \in K_d^{\infty}$ with $|||q||| < \varepsilon$, $-(\Delta/2) + V + q \ge 0$.
- (m) There exists a function $q \in K_d^{\infty}$, $q \le 0$ and $q \ne 0$ a.e. such that $-(\Delta/2) + V + q \ge 0$.

3. Main theorem and sketch of the proof

Theorem. For any $V \in K_d^{\infty}(d \ge 3)$, the conditions (a) through (m) are equivalent.

Sketch of the proof. Since $V \in K_d^{\infty}$, there exists a r > 0 such that

(3)
$$\sup_{|x| \ge r} \left[C_d \int_{|y| \ge r} \frac{|V(y)|}{|x-y|^{d-2}} \, dy \right] < \frac{1}{2},$$

where $C_d = \Gamma((d/2)-1)/2\pi^{d/2}$. Let $D=\{x\in R^d: |x|>r\}$ and $B=\{x\in R^d: |x|<2r\}$. Put $T:=\tau_B+\tau_D\circ\theta_{\tau_B}$ (the shuttle time), where τ_U is the exit time from a domain U and θ is the shift operator on paths. We define the shuttle operator S_V in the Banach space $C(\partial D)$: for $f\in C(\partial D)$,

$$(4) S_V f(x) := E^x \left[T < \infty; \exp\left(-\int_0^T V(Xs) \, ds \right) f(X(T)) \right],$$

$$x \in \partial D.$$

By Khasmin'skii's lemma together with (3) and the arguments similar to those in [10], we can prove S_V is an integral operator with continuous kernel:

$$S_V f(x) = \int_{\partial D} \Phi(x, y) f(y) \sigma(dy)$$
 (σ is the area measure),

where

(5)

$$\Phi(x, y) = 9(d-2)^{2} C_{d}^{2} r^{2}$$

$$\times \int_{\partial D} \frac{E_{z}^{x} \left[\exp\left(-\int_{0}^{\tau_{B}} V(Xs) \, ds\right) \right] E_{y}^{z} \left[\exp\left(-\int_{0}^{\tau_{D}} V(Xs) \, ds\right) \right]}{|x-z|^{d} |y-z|^{d}} \sigma(dz),$$

$$(x, y) \in \partial D \times \partial D.$$

Put
$$\lambda(V) := \lim_{n \to \infty} \sqrt[n]{\|(S_V)^n\|}$$
.

Introducing the shuttle operator S_V and its spectral radius $\lambda(V)$ is the key idea in connecting the seemingly different assertions in the list (a) through (m). In fact, we add a new equivalent assertion as a linkage among the assertions (a) through (m):

(n)
$$\lambda(V) < 1$$
.

516 Z. ZHAO

 $\lambda(V)$, as a function of V, has the following properties:

Lemma. (L1) If
$$|||V_n - V||| \to 0$$
, then $\lambda(V_n) \to \lambda(V)$.
(L2) If $V_1 \le V_2$ and $V_1 \not\equiv V_2$ a.e., then $\lambda(V_1) > \lambda(V_2)$.

Both properties are based on the integral kernel representation (5) in terms of path integrals. We also need a characterization of nonnegativity of H, which can be regarded as a higher dimensional version of a result by Chung and Varadhan [2].

Proposition A. For $V \in K_d^{\infty}$, $-(\Delta/2) + V \ge 0$ if and only if $\lambda(V) \le 1$.

We now sketch the proof of some nontrivial implications in connection with (n). $(n) \Leftrightarrow (h)$: This equivalence is mainly given by the equality:

(6)
$$E^{x}\left[\exp\left(-\int_{0}^{\infty}V(Xs)\,ds\right)\right] = \sum_{n=0}^{\infty}(S_{V})^{n}g(x), \qquad x \in \partial D$$

where $g(x) := E^x[T = \infty; \exp(-\int_0^T V(Xs) ds)]$. The idea behind the equality (6) is that almost every Brownian path in $R^d(d \ge 3)$ will shuttle finitely many times between ∂B and ∂D before it goes off to ∞ .

- (n) \Rightarrow (1): Suppose $\lambda(V) < 1$. By (L1), if |||q||| is small enough, then $\lambda(V+q) < 1$. Therefore $-(\Delta/2) + V + q \ge 0$ by Proposition A.
- (m) \Rightarrow (n): By (L2) and Proposition A, we have $\lambda(V) < \lambda(V+q) \leq 1$.
- (c) \Rightarrow (n): For each $0 \le t \le 1 + \beta$, put $f(t) := \ln[\lambda(tV)] = \lim_{n \to \infty} (1/n) \ln \|(S_{tV})^n\|$.

Since for each n, $\ln \|(S_{tV})^n\|$ is a convex function of t by using the stopped path integral and the Cauchy-Schwarz inequality, so is the limit f(t). Since $f(t) \le 0$ in $[0, 1+\beta]$ by Proposition A and f(0) < 0 by the transient property of the Brownian motion in $R^d(d \ge 3)$, we obtain f(1) < 0, i.e. $\lambda(V) < 1$.

Another key idea is the connection between the Green function $G^H(x, y)$ and the conditional Feynman-Kac gauge (see Zhao [10]):

$$G^H(x, y) = G^{\Delta/2}(x, y)E_y^X \left[\exp\left(-\int_0^\xi V(Xs)\,ds\right)\right].$$

The proof of equivalences in the list (III) involves gauge and conditional gauge arguments similar to those in [1], [3] and [9].

ACKNOWLEDGMENTS

The original idea about these equivalences for subcritical Schrödinger operators comes from joint work with F. Gesztesy [4] in the corresponding one-dimensional case. His inspiration and the numerous discussions with him are gratefully acknowledged.

REFERENCES

- 1. K. L. Chung and M. Rao, Feynman-Kac functional and the Schrödinger equation, Seminar on Stochastic Processes, Birkhäuser, Boston, 1981.
- 2. K. L. Chung and S. R. S. Varadhan, Kac functional and Schrödinger equation, Studia Math., T. LXVIII (1980), 249-260.
- 3. M. Cranston, E. Fabes, and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), 171-194.
- 4. F. Gesztesy and Z. Zhao, On critical and subcritical Sturm-Liouville operators, J. Funct. Anal (to appear).
- 5. M. Murata, Positive solutions and large time behavior of Schrödinger semi-groups, Simon's problem, J. Funct. Anal. **56** (1984), 300–310.
- 6. ____, Structure of positive solutions to $(-\Delta + V)u = 0$ in \mathbb{R}^n , Duke Math J. 53 (1986), 869-943.
- B. Simon, Large time behavior of the L^p norm of Schrödinger semigroups, J. Funct. Anal. 40 (1981), 66-83.
- 8. _____, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447–526.
- 9. Z. Zhao, Conditional gauge and unbounded potential, Z. Wahrsch. Verw. Gebiete 65 (1983), 13-18.
- 10. ____, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl. 116 (1986), 309-334.

Department of Mathematics, University of Missouri, Columbia, Missouri 65211