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ELLIPTIC METHODS IN SYMPLECTIC GEOMETRY 

DUSA MCDUFF 

The past few years have seen several exciting developments in 
the field of symplectic geometry, and a beginning has been made 
towards solving many important and hitherto inaccessible prob­
lems. The new techniques which have made this possible have 
come both from the calculus of variations and from the theory of 
elliptic partial differential operators. This paper describes some of 
the results that Gromov obtained using elliptic methods, and then 
shows how Floer applied these elliptic techniques to develop a new 
approach to Morse theory, which has important applications in the 
theory of 3- and 4-manifolds as well as in symplectic geometry. 
To give some idea of the context of their results, we begin with a 
section on symplectic geometry, which concentrates on questions 
about symplectic diffeomorphisms. For more general recent sur­
veys of the field, see for example [A2], [E2], [Gl], [G3], [H2], [VI], 
and [V2]. 

The contents of this paper are: 
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(2.4) Compactness 
(2.5) Applications 

§3 Floer homology 
(3.1) The variational setup 
(3.2) Morse theory 
(3.3) Floer's proof of the Arnold conjectures 
(3.4) Some details of the analysis 
(3.5) Other applications of Floer's theory 

The first three sections of §3 are independent of §2 apart from 
some elementary definitions. In particular, (3.2) gives a self-
contained description of Floer's approach to Morse theory. We 
treat this here only in the context of symplectic geometry. How­
ever, because the Chern-Simons functional has analytic properties 
very similar to those of the symplectic action functional, there is 
another important application of these ideas to the study of 3- and 
4-dimensional manifolds. This is beautifully described in Atiyah's 
survey article [At], and the details may be found in [F4]. See also 
[T] and [W2] which give a very general context for the theory de­
scribed here. 

I wish to thank Floer, Gromov, Hofer, Oh, Salamon, and 
Weinstein for many useful comments and discussions, and Floer 
for giving me some of his unpublished lecture notes which form 
the basis for my treatment of the analysis. 

§ 1. SYMPLECTIC GEOMETRY 

(1.1) Basic notions. We will assume throughout that F is a 
smooth compact manifold without boundary and of dimension 
2n . A symplectic form (or symplectic structure) on F is a closed 
2-form w o n F , which is nondegenerate in the sense that its high­
est power wA.. .Aw = w" never vanishes. The simplest example 
is the standard form 

co0 = dx{ A dx2 -f dx3 A dx4 + . . . + dx2n_{ A dx2n 

on euclidean space R n . The first theorem in symplectic geometry 
is: 

Darboux's theorem. Every symplectic form is locally diffeomorphic 
to the standard form co0 on R2n . 

(For a proof see [Al] or [Wnl, §4]). Thus symplectic manifolds 
all have the same local structure. It follows that all symplectic 
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invariants are global in nature, which gives the subject a very dif­
ferent flavor from Riemannian or Kâhlerian geometry. 

(1.2) Symplectic images of balls. A diffeomorphism (p is said 
to be symplectic if <p*{(o) = OJ . Since any such diffeomorphism 
preserves the volume form w" on F , the group Gs (V) of 
symplectic diffeomorphisms is contained in the group GWol(V) 
of volume-preserving diffeomorphisms of V. Volume-preserving 
diffeomorphisms do not seem to have any special geometric proper­
ties (apart from the fact that they preserve volume). For example, 
it follows from Moser's stability theorem for volume forms (see 
[M] and [Kr]) that if D is any subset of R2" which is diffeomor-
phic to the closed unit ball B = B2n ( 1 ) and has the same volume 
as B , then there is a volume-preserving diffeomorphism g from 
B onto D. A similar result easily follows for subsets diffeomor-
phic to the open unit ball: see [GS]. However, it is not hard to see 
that such a set D need not be symplectically diffeomorphic to B, 
since the restrictions of co to the boundaries of D and B need 
not be equivalent. It is not so easy to rule out the possibility that 
there is a symplectic diffeomorphism between the interiors of B 
and D, or that the volume-preserving diffeomorphism g : B —• D 
may be uniformly approximated by symplectic embeddings of B 
into R2n . 

Gromov's celebrated squeezing theorem is the first major result 
in this connection. (A proof will be sketched in §2. See also (3.5).) 

Theorem 1.2.1. If there is a symplectic embedding g of the ball 
B2n(r) c R2n of radius r into the product B2(R) x R2""2 c R2 x 
R2n~2 = R2n,then r<R. 

This theorem has many consequences. First observe that, be­
cause there are volume-preserving embeddings of B2n(r) into 
B2(R) xR2""2 for any values of r and R, it implies that a volume-
preserving embedding g : B —• R2" cannot always be uniformly 
approximated by symplectic embeddings. By using Darboux's the­
orem together with the isotopy extension theorem for volume-
preserving embeddings [Kr], it is not hard to deduce that, for 
any compact symplectic manifold (V, co), the group GSymp(V) of 

symplectic diffeomorphisms is not C°-dense in the group GYol(V) 
of volume-preserving diffeomorphisms. But it is a consequence of 
Gromov's implicit function theorem that, at least if Hl(V; R) = 
0, there are no subgroups of Gyl(V) lying strictly between 
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GSymp(F) a n d Gvoi(F)> *XCCVX Perhaps for G±Symp(V) which 
consists of all volume-preserving diffeomorphisms h such that 
h*(œ) = ±€o. (Note that G±Symp(K) = GSymp(V), unless n is 

even.) When Hl(V;R) ^ 0, the above statement may not be 
quite true because of problems arising from the flux homomor-
phism. However, in any case, one can easily deduce: 

Corollary 1.2.2. ( See [G2, 3.4.4 (H)]. ) GSymp(V) is C°-closed in 
the group of all diffeomorphisms of V. 

A much simpler proof of this corollary was given by Eliashberg 
in [El] and rediscovered in [EH]. They observe that if {gk} is a 
sequence of symplectic embeddings of ( 5 , 0) into (R2n , 0) which 
converges uniformly to a difFerentiable map g0, then Theorem 
1.2.1 implies that the derivative rf;0(0) of g0 at 0 cannot map the 
unit ball B into any set of the form L{B2(R) xR2""2) , where R < 
1 and L e Sp(2n, R) is a linear symplectic map. (This follows 
because dg0(0) is approximated by suitable rescalings tgk(x/t) 
of the gk .) It remains to show that this fact implies that dg0(0) 
itself belongs to Sp(2n, R), which is a question of linear algebra. 

Another consequence of Theorem 1.2.1 is that it provides us 
with ways to measure the symplectic size of subsets U of R n . For 
example, let proj denote the projection of R2" onto the (x{, x2)-
plane and define c(U) by: 

c(U) = inf{area(proj g(U)) : g e GSymp(R
2n)}. 

Clearly, c(U) is a symplectic invariant of U which is monotone 
(i.e. c(Ux < c(U2) if Ux c U2). Further, because there are no 
nontrivial invariants of closed regions of the plane under area-
preserving diffeomorphisms, it is not hard to see that 

c(B2n(l)) = c(B2(l) x R2""2) = area£2(l) = n. 

This, together with the homogeneity property c(W) = À2c(U), 
shows that, in contrast to the volume, c is a 2-dimensional invari­
ant. It is one of the capacity functions considered by Ekeland and 
Hofer in [EH]. As remarked by Weinstein, its existence is closely 
related to the uncertainty principle, since it gives one a way to mea­
sure a quantity c(U) which can reasonably be thought of as the 
"uncertainty" involved in predicting the pair (x{, x2) for points 
(Xj, . . . , x2n) in the subset U of R n . (Here one identifies R " 
with phase space T*(Rn), taking xx as the first spacial coordinate 
and x2 as its conjugate momentum.) 
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There are many possible definitions of these symplectic capac­
ities: for example, Gromov defines a symplectic radius in [Gl, 
0.3.A], and in [EH] Ekeland and Hofer give a definition connected 
with the behavior of the periodic orbits of the Hamiltonian flow on 
the boundary of smooth regions U. However, the definitions all 
seem to agree at least on ellipsoids. The properties of these func­
tions have been fruitfully explored by Viterbo, Hofer, Ekeland, 
and Zehnder. Using variational methods which exploit the special 
structure of (R2" , a;0), these authors developed a powerful theory 
which is described in the survey articles [H2], [VI], and [V2]. As 
shown in [H3], this theory also has important applications in the 
study of symplectic diffeomorphisms of R . We will see in (3.5) 
that one way to extend this theory to general symplectic manifolds 
is by means of Floer's elliptic techniques. 

(1.3) Fixed point theorems. Another important group of ques­
tions concern the number of fixed points of a symplectic diffeo-
morphism. The prototypical result is: 

(1.3.1) Birkhoffs twist theorem. Let (p be an area-preserving dif-
feomorphism of the annulus {(x, y) , e R2 : a < x2 + y2 < b} 
which rotates the inner and outer boundaries in opposite directions. 
Then cp has at least two distinct fixed points. 

Note that this theorem is false without the twist condition since 
a rotation has no fixed points on the annulus. It also clearly fails 
if q> does not preserve area. In dimension 2, the symplectic and 
volume-preserving cases coincide, and so when one tries to general­
ize a result such as this to higher dimensions, one can look either 
in the symplectic or in the volume-preserving categories. How­
ever, just as in (1.2) the volume-preserving condition is too weak 
to provide interesting results. In fact, using Gromov's method 
of convex integration one can construct a nonvanishing volume-
preserving (i.e. divergence free) vector field Ç on any manifold of 
dimension > 3 which has zero Euler class: see [G2, 2.4.3]. One 
can even make £ irrotational (which is the appropriate version of 
the twist condition). Hence, there is no volume-preserving ana­
logue of BirkhofFs twist theorem. On the other hand, there is a 
generalization to symplectic diffeomorphisms which are C1-close 
to the identity. To explain this, we must recall some facts about 
Hamiltonian flows. 
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(1.3.2) Hamiltonian flows and exact diffeomorphisms. Just as in 
the case of an inner product (i.e. nondegenerate symplectic bilin­
ear form), a nondegenerate skew-symmetric bilinear form w ona 
manifold V gives rise to a linear isomorphism from the tangent 
bundle TV to its dual T*V which takes the vector field £ to 
the 1-form P = i(£)co given by contracting co with £. Thus, 
P(Q = œ(Ç9 0. It is not hard to check that the flow cpt associ­
ated with £ preserves co if and only if the corresponding 1-form 
p is closed. (This follows from the fact that the Lie derivative 
-2£(<y) of co along Ç is given by i(Ç)dco + d(i(Ç)co) - dp.) In 
particular, every smooth real-valued function H on V gives rise 
to a closed 1-form /? = dH and hence to an associated symplectic 
flow x¥t. Such a flow xVt : V —• V is called a Hamiltonian flow, 
and the function H, although it is just an ordinary function, is 
called a Hamiltonian function. The basic example is the time flow 
of classical mechanical system, which is generated by the "energy" 
function H:R2n ^ R . 

It follows from the above remarks that every 1-parameter sub­
group {y/t} of GSymp(V) corresponds to a closed 1-form /?. 
Clearly, the fixed points of the diffeomorphisms y/t correspond 
exactly to the zeros of ƒ? when t is sufficiently small. In par­
ticular, if /? is exact, it has at least as many zeros as a smooth 
function on V has critical points; while if p is not exact, it need 
have no zeros. Hence, the largest group of diffeomorphisms which 
one might hope to have "many fixed points" is the closed sub­
group of Gs (V) generated by those diffeomorphisms which be­
long to some Hamiltonian flow. The elements of this subgroup 
are said to be exact. It is not hard to show that the exact diffeo­
morphisms are precisely those which may be joined to the identity 
by a smooth path cpt, 0 < t < 1, which is generated by a time-
dependent Hamiltonian function Ht. In other words, the path cpt 

is tangent to a family Çt of vector fields such that i(Zt)co = dHt 

for each t. Equivalently, the path cpt has zero flux through all 1-
cycles y, in the sense that œ has zero integral over the cylinders 
9t(y) ? 0 < t < 1. Thus, the lift (<p{, {cpJ) of <p{ to the universal 
cover G of Gs (V) is in the kernel of the flux homomorphism 
O from G onto Hl(V, R) : see [MDl]. As an example, observe 
that a symplectic diffeomorphism of the standard torus T2n which 
is isotopic to the identity is exact, if and only if it is covered by a 
symplectic diffeomorphism of R n which moves the fundamental 
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domain A of T2n to a set A' which has the same center of gravity 
as A. (See [CZ, Appendix], where this is proved for n = 1. The 
argument in fact works for all n .) 

(1.3.3) Arnold's conjectures. Arnold conjectured that the num­
ber of distinct fixed points of an exact symplectic diffeomorphism 
q> of V should be at least the number of critical points of some 
function f((p) on V. (See [Al, Appendix 9].) It is easy to see 
that this statement holds for exact diffeomorphisms which are suf­
ficiently enclose to the identity since, by [Wnl, §6] for example, 
these may be identified via their graphs with exact 1-forms df in 
such a way that their fixed points correspond to the critical points 
of ƒ . But it is not at all clear that it holds globally. The con­
jectures have actually not been proved in quite the form in which 
Arnold stated them, since it is hard to work with estimates of the 
number of critical points of a function. Therefore, we will follow 
Floer in [F5] and make the following definitions. 

Definition 1.3.4. A diffeomorphism (p satisfies the cup-length esti­
mate with respect to a ring R if the number #F(<p) of its fixed 
points is greater than or equal to the cup-length cl(F, R) of V, 
i.e., to the largest integer k such that there is a nonzero cup-
product in H\V\R) of length k - 1. 

Since, by Ljusternik-Schnirelman theory (see [B]), the number 
of critical points of a function on V is at least cl( V ; Z) , any 
exact diffeomorphism of ( V, co) which is sufficiently C -close to 
the identity satisfies the cup-length estimate with respect to any 
ring. 

Definition 1.3.5. If all fixed points of (p are nondegenerate, then 
the fixed point set F(tp) of (p is finite, and we will say that ç sat­
isfies the ungraded Morse inequalities with respect to R if there ex­
ists a homomorphism d : F^ —• F^ of the free i?-module F^ with 
generators F(tp), such that d2 = 0 and Ker<9/Im<9 is isomorphic 
to the direct sum H^(V ; R) of the homology groups Hk(V; R), 
0<k< dim V. 

In particular, if this holds for some field 4 , we have #F(tp)> 
J2jc Pk > where fik is the Betti number dimHk(V, 4). In the clas­
sical case of a Morse function ƒ on a finite-dimensional manifold, 
the generators F{f) correspond to the fixed points of ƒ and their 
index provides a natural grading of F^ which is compatible with 
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that on H^(V \ R). It follows easily that the existence of a bound­
ary operator d of degree - 1 corresponds to the classical (graded) 
Morse inequalities 

^ - ^ - . + ^ - 2 - - - - ± ^ 0 > ^ - ^ - l + ^ - 2 - - - - ± ^ 0 ' 
for 0 < k < dimK, with equality when k = d i m F , where 
Nk = dim Fk . Again, any exact diffeomorphism of ( V, co) with 
nondegenerate fixed points which is sufficiently C1-close to the 
identity satisfies both versions of the Morse inequalities. 

We will say that the Arnold conjectures hold on (V, co) with 
respect to a coefficient ring R if every exact diffeomorphism sat­
isfies the cup-length estimates for R, and (provided it is nonde­
generate) the ungraded Morse inequalities. For example, Arnold's 
conjectures say that every exact diffeomorphism of the standard 

On 

torus T should have at least In + 1 distinct fixed points, and 
at least 2 n if they are all nondegenerate. By way of contrast, be­
cause nx(CPn) = 0, all symplectic diffeomorphisms of the Kàhler 
manifold CPn are exact, and Arnold's conjectures predict that 
they all have at least n + 1 distinct fixed points. In the nondegen­
erate case, this follows from the Lefschetz fixed point formula, but 
in the degenerate case Arnold's conjecture requires n -h 1 distinct 
fixed points while Lefschetz's formula would be satisfied if there 
were just one fixed point of multiplicity n + 1. 

The first major contribution to the solution of this problem was 
by Conley and Zehnder in 1982, who established the validity of 
these conjectures for the standard torus: see [CZ]. To do this, they 
reformulated the problem so that it became a question of find­
ing critical points for some functional on the infinite-dimensional 
space QR2n = C°°(Sl, R2n) of loops on R2n . This approach is 
explained in (3.1.1) below. They then reduced the problem to fi­
nite dimensions by using Fourier analysis, and counted the critical 
points by means of an index theory developed by Conley. 

These variational techniques were very influential in the devel­
opment of the theory of capacities mentioned in (1.2) above. They 
have also been refined by several authors in an attempt to extend 
the above result to other manifolds. In particular, Weinstein [Wn2] 
succeeded in showing that the Arnold conjectures hold for all exact 
diffeomorphisms (on any symplectic manifold) which are isotopic 
to the identity through a C° -small isotopy. However, no one has 
so far found purely variational methods which work for an arbi­
trary exact diffeomorphism on an arbitrary symplectic manifold. 
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Instead, Floer took a different tack and, influenced by ideas of 
Witten, Gromov, and Conley, defined a "Conley index" by ellip­
tic methods. This Morse-theoretic invariant is described in (3.2) 
below. It is easiest to work with when the symplectic form van­
ishes on all elements of n2(V). However, even if this condition 
is not satisfied, one can still manage if (V, co) is monotone, that 
is, if there is a constant k > 0 such that the cohomology class 
[co] - kc{(V) is zero on each 2-sphere in V. (As we shall see in 
§2, the tangent bundle of any symplectic manifold has a complex 
structure which is well defined up to homotopy and so it has Chern 
classes ct(V).) Using this, Floer established the following result. 

Theorem 1.3.6. [F4, Theorem 1] and [F7]. Let (V, co) be a com­
pact symplectic manifold. If both [co] and c{(V) vanish on n2(V), 
then Arnold's conjectures hold for every coefficient ring R. More­
over, if (V, co) is monotone, then the Morse inequalities are satis­
fied with respect to any ring R by any exact diffeomorphism with 
nondegenerate fixed points. 

In §3, we sketch the proof of the latter statement in the case 
R = Z/2Z. The paper [F5] also contains various partial results 
on the degenerate case for certain special monotone manifolds, as 
well as a nice history of the problem. An alternative and simpler 
treatment of the degenerate case (again for Z/2Z coefficients) is 
given by Hofer in [HI]. 

§2 /-HOLOMORPHIC SPHERES 

(2.1) Basic definitions. Because Sp(2n,R) deformation retracts 
onto U(n, R), the tangent bundle of any symplectic manifold has 
a complex structure which is well defined up to homotopy. It is 
usually described by the automorphism J : TV -^ TV which 
corresponds to multiplication by i. This automorphism, which 
must satisfy the equation J = - Id, is called an almost complex 
structure on V. Of course, in general J is not integrable, i.e. one 
cannot (even locally) choose complex coordinates on V which 
induce this map / on TV. However, as we will see below, one 
can always choose / so that it is compatible with co in the sense 
that 

(2.1.1)(i) a>(<J,/£)>0 for all nonzero Ç e TV, 

and 

(2.1.1)(ii) œ(Jt,JC) = œ(Z9C) f o r a l l £ , Ç e r F . 
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Then the bilinear form /Uj defined by setting fij(Ç, Ç) = co(Z9 JÇ) 
is symmetric by (ii) and positive by (i), so that it is a Riemannian 
metric on V. Such a metric is said to be compatible with co. 
An example is a Kàhler manifold V with its integrable complex 
structure / , its Kàhler form co, and its Kàhler metric. 

A map ƒ from a Riemann surface (£, /0) to an almost com­
plex manifold (V, J) is said to be J -holomorphic (or pseudo-
holomorphic) if the derivative df : TH —• TV is complex linear, 
that is, if df o JQ = J o df. The image of ƒ is often called a " / -
holomorphic curve", or, when X = S2 , a /-holomorphic sphere. 
When / is integrable, the space of such curves tells one a great 
deal about the structure of V. This was well known in the case 
of complex surfaces, but has only recently been used to analyze 
3-folds: see [Ko]. 

Gromov realized that a considerable part of the theory goes 
through even when J is not integrable. One reason for this is that 
there are no local obstructions to the existence of /-holomorphic 
curves, because every almost complex structure on a 2-manifold 
is integrable. Further, the ellipticity of the Cauchy-Riemann equa­
tion df + J o df o J0 = 0 implies that, for generic J, its space 
of solutions Jt(J) is an oriented finite-dimensional manifold. 
When ƒ is compatible with co, one can even compactify many 
components of the moduli space ^(J)/G of unparametrized J-
holomorphic curves by adding to them certain well-understood 
families of degenerate curves. (Here G is the reparametrization 
group of holomorphic transformations of X.) As / varies in the 
space of to-compatible / , the manifold J?(J)IG changes at most 
by a cobordism, so that (provided that it can be compactified) any 
invariants of its cobordism class are actually invariants of the sym-
plectic form co. (Recall that compact-oriented manifolds M0 and 
Mx are said to be cobordant if there is a compact-oriented mani­
fold W whose boundary is the disjoint union of M{ with -M0 .) 
In the next sections, we shall outline this theory, using Floer's for­
mulation of the analysis. For the sake of simplicity we will restrict 
ourselves to the case when X is the Riemann sphere S2. 

(2.2) Compatible metrics and conformality. To see that compati­
ble almost complex structures exist, observe that if ju is any Rie­
mannian metric on V there is a unique automorphism A of TV 
such that co(Ç, f) = n{AÇ, Ç), for all £, Ç G TV. Using the skew 
symmetry of co, one easily sees that -A2 is positive definite with 
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respect to ju . Further, one can check that the metric p! defined by 
/ / (£ , O = Mi, (-A2)l/2Q satisfies (2.1.1) with J = (-A2yl/2A 
and so is compatible with co. It follows that the set of all met­
rics deformation retracts onto the set of compatible metrics, so 
that the latter set is contractible and nonempty, as is the set of 
co-compatible J. 

Now suppose that p0 is the standard metric on S2 and let p3 

be any compatible metric on V. Then, because a «7-holomorphic 
map ƒ : S —» V preserves right angles, it is conformai with 
respect to p0 and Pj, i.e. there is a positive function p on S 
such that f*(ju>j) = pju0 . Therefore, if \dfz\ denotes the norm of 
the linear map dfz : TzS —• Tj-,z)V with respect to these metrics, 
\dfz\ = P(z) > an<3 s o the L2-norm \\df\\2 of df is given by 

114/112 = / /?(z)2//o = /"/-area of (Im ƒ) = J f (to). 

Thus, it depends only on the homology class represented by ƒ , 
and is not affected by conformai reparametrizations of ƒ . The 
quantity A(f) = \\df\\2 is called the area of ƒ , or sometimes its 
harmonic energy. It is this boundedness of the area functional 
which underlies the proof of compactness, just as the bounded-
ness of the L -norm of the curvature underlies the analysis of the 
compactness properties of Yang-Mills connections: see [Wo, §2]. 

Note also that any 7-holomorphic map ƒ : S —• (V, /ij) is 
absolutely area minimizing in its homology class. As in the Kàhler 
case described in [L, Theorem 2.2], this follows from Wirtinger's 
inequality, which in this context states that CD{X1 , T2) < 1 for any 
pair of orthonormal vectors TX and T2 , with equality if and only 
if T2 = / T J . In particular, any 7-holomorphic sphere in (V, fij) 
satisfies the minimal surface equation. 

(2.3) The analytic setup. Our analytic setup is an adaptation of 
that in [Fl] and [F5] and is nicely described in [FHV]. For p > 2, 
let Wx p(S

2 ,RN) denote the Sobolev space of all maps ƒ : S2 -* 

R^ whose derivative df is Lp, with the corresponding Sobolev 
norm. By the Sobolev embedding theorems, each such ƒ is contin­
uous. Hence, if we embed the manifold V in R^ , we may define 
WA = Wx p(S

2, V)A to be the set of all such functions with val­
ues in V which represent the homology class A e H2(V ;Z). As 
in [K, Chapter 1.2], one can prove that WA is a smooth Banach 
manifold. Further, the inclusion Wx (S2

 9 V)A -+ C°(52 , V) is 
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compact, so that every bounded sequence in Wx p(S
2, V)A has a 

subsequence which converges uniformly to some continuous maps. 
For each ƒ e WA and p > 2 , let Ap(f) be the space of In­

sertions of the bundle Hom(rS 2 , f {TV)), and let AP(f) be the 
subbundle of all antiholomorphic sections; i.e. 

AP(f) = {y e Ap(f) : y - J oy o JQ = 0} . 

Again, one can show that these Banach spaces fit together to form 
Banach bundles £? and S? over WA. 

Now, let f be the Fréchet space of all C°°-smooth co-
compatible almost complex structures on V. For each J e / 
and f eWA, the operator 

djf = df + Jodfoj0 

defines a smooth section d 3 of & over WA whose zeros are the 
/-holomorphic maps. Let us write this out in local coordinates, 
choosing a local holomorphic coordinate z = x + iy near some 
point peS2, and identifying a neighborhood of f(p) with a 
neighborhood of 0 G R2" in such a way that the induced almost 
complex structure / on R2" equals the standard one JQ at the 
origin. Then the homomorphism ~djf takes the vector field d/dx 
on S to the vector field on R whose ath component is: 

(2.3.1) 
[djf(d/dx)]a = df/dx + [J{f(z))]afidffi/dy 

= df/dx + [J0]apdfP/dy + [A]a/)df"/dy 

where the entries of the matrix A are functions of z = x + iy 
which vanish at p . Hence the first-order terms of the lineariza­
tion of the operator ƒ \-^ ~d jf{d/dx) at p make up the usual 
d -operator for functions £ : C —• Cn = R2n . Thus this lineariza­
tion is elliptic. Note also that the homomorphism d 3f is an­
tiholomorphic and so is determined by its value on d/dx, i.e. 
djf(d/dy) = djf(J0(d/dx)) = -Jdjf(d/dx)_ 

One says that a section a of the bundle n : J ? —• WA is elliptic 
near its zero section if, for every ƒ e WA for which a(f) = 0, 
there is a trivialization T : n~l(U) -> U x A (ƒ) over some 
neighborhood of ƒ such that the composite map U —• A (ƒ) 
given by ^ H T O cr(g) is an elliptic partial differential operator. 
The remarks in the previous paragraph show that d 3 is elliptic. 
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Hence, a generic perturbation a of d 3 is regular, i.e. the deriva­
tive d{x o a)(f) is surjective at all points ƒ such that a(f) = 0. 
This implies that the inverse image t7_1(0) of the zero section of 
2? is a manifold of dimension equal to the (finite) index of d 3 . 

In fact, one can always find regular sections of the form d j pro­
vided that one allows / to vary in a sufficiently large subset of f, 
and provided that one stays away from multiply covered spheres, 
i.e. spheres of the form forj where Y\ is a /0-holomorphic map 
S2 —> S2 of degree > 1. In order to avoid this latter difficulty, 
we will assume from now on that A is not a multiple class, i.e. 
that A±kB for any B e H2(V, Z) . In [MD2, §4] we showed 
that one can always perturb / within a space of Wk -smooth al­
most complex structures to make d 3 regular. However, it is often 
convenient to be able to restrict to C°°-almost complex structures 
/ . This may be done by Floer's argument in [Fl, §5]: given any 
J e jf 9 one can define a Hubert space ƒ' = f\J) of C°°-
perturbations of / which is so large that its closure in f with 
respect to the L -norm contains an open neighborhood of «7 in 
J? . The proof of [MD2, Proposition 4.1] then shows: 

Lemma 2.3.2. Suppose that A is not a multiple class. Then the 
space ^A — {(ƒ, / ) : djf = 0} is a Banach submanifold of WAx 
</', and the projection PA : JtA —• <f' is Fredholm. 

By elliptic regularity theory (see Theorem 2.4.1 below), the ele­
ments ƒ which occur in JtA are C°°-smooth and do not depend 
on the value of p > 2 used to define WA = W{ p(S

2, V)A . 

We will denote the space PA (J) by JtA{J) and will call its 
elements /-holomorphic ^-spheres. The index of PA may be 
calculated by the Atiyah-Singer index theorem in terms of the di­
mension, 2n , of V and the value, c(A), of the first Chern class 
c = cx(J) of (V, J) on A. We find: 

Theorem 2.3.3. There is a dense set J? in f such that for all J e 
<f 9 the space ^A{J) of J-holomorphic A-spheres is an oriented 
manifold of dimension 2(c(A) + n). Further, if Jx and J2 are two 
elements of ^ e g , any path in ^ which joins them may be slightly 
perturbed (relative to its endpoints) in such a way that its inverse 
image PA

l(a) forms a (noncompact) oriented cobordism between 
^A{JX) and^A(J2). 
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Proof. As usual, an element J of Jr' is said to be regular if the 
derivative (or linearization) dPA of PA at (ƒ, J) is surjective for 
all ( ƒ , / ) € PÂl(J) • The implicit function theorem for Banach 
spaces implies that, for regular / e ƒ', the space PA

l(J) is a 
smooth manifold of dimension Int i^ = 2(c(A) + n). Further, by 
Proposition 4.3 of [MD2], the manifold PA (J) has a canonical 
orientation. (In fact, it has a well-defined stable almost complex 
structure.) 

By standard Fredholm theory (see [Sm]), the set of regular points 
in </' is "of second category" in f1 (i.e. it contains a countable 
intersection of open, dense sets). Hence, the set ^ e g of all ele­
ments in ƒ which are regular in <?' (J) for some / e / is dense 
in ƒ . Observe that, although ^ e g may not have second category 
in f, it has all the essential features of a set of second category. 
For example, the intersection of two such sets, one defined for the 
class A and another for the class B, is always nonempty. 

The second statement may be proved in a similar way, by defin­
ing for each path a a suitable subset /'(a) of f which is a 
Banach submanifold and contains a . D 

When the complex structure J is integrable, one can often 
prove that it is a regular value for PA by using the following 
lemma. Recall that Grothendieck proved in [Gr] that any holo­
morphic bundle rj over S2 = CPl is holomorphically equivalent 
to a sum of holomorphic line bundles. Moreover, this splitting is 
unique apart from the order in which the summands are arranged, 
so that Y] = Lj 0 . . . 0 Ln is completely characterized by the set 
of Chern classes c{(L{), . . . , cx(Ln). Since this set is a topologi­
cal invariant, it must be the same for all bundles f*(TV), where 
f : S —• V varies in a connected component of the space of 
/-holomorphic ^-spheres. 

Lemma 2.3.4. Suppose that J is integrable, and that, for all J-
holomorphic A-spheres ƒ , every surnrnand of f*(TV) has c{ > 
-2. Then J is regular for PA . 

Proof. When / is integrable, it follows from [MD2, Proposition 
4.2] that dPA is essentially equal to the usual d -operator on sec­
tions of f*{TV). In particular, dPA is surjective if and only if 
d is surjective, which happens if and only if the Dolbeault co-
homology group H°'\CPl, f (TV)) = H°'l(CPl, Lx) © . . . 0 
H0,l(CPl, L ) vanishes. But, for any holomorphic line bundle 
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L, H°'\CP\L)^Hl(CPl,ffi(L))Ç*H°(CPl
9&(L*®K)) by 

Kodaira-Serre duality (see [GH, Chapter 1, §2]), and so vanishes 
if and only if c{ (L* ® K) < 0. But cx (L* <g> JST) = cx (L) - 2, and 
so we need Cj(L) > - 2 . D 

Example 2.3.5. Let V be S xS x ...xS with symplectic form 
T = AjCTj © A2cr2 0 . . . © Awcrn , where the ak are area forms on the 
different factors of *S2 with total area n, and where the numbers 
Xk are positive. Let A be the class represented by S xptx...xpt. 
Then c(A) = 2 , and JtA(J) has dimension 2n + 4. Further, by 

2 2 2 

Lemma 2.3.4, the usual complex structure J0 on S xS x...xS 
is a regular value for the projection operator PA . Note that the 

2 2 2 2 

set of /0-holomorphic maps from S to S x S x . . . x S is 
the (2n + 4)-parameter family z »-• (y(z), u>2, . . . , w„), where 
y runs through the 6-dimensional reparametrization group G = 
PSL(2,C). 
(2.4) Compactness. Theorem 2.3.3 is useless unless one can es­
tablish some kind of compactness. For, any manifold M is cobor-
dant to the empty manifold via the noncompact cobordism M x 
[0, 1). Now, the manifold J?A{J) itself cannot be compact (un­
less it is empty) since the noncompact group G = PSL(2, C) 
of holomorphic self-maps of S acts on it by reparametrization. 
However, in many cases the space ^£A(J)/G of unparametrized 
spheres is compact. 

The key to proving this is the fact, established in (2.2), that 
the area functional (i.e. L -norm of df) is uniformly bounded 
on ^A{J). This is the "borderline" case of the Sobolev theory. 
Indeed, as remarked in (2.3), any sequence {fa} in JtA(J) c 
Wx p(S

2, V)A which is bounded in the Z^-norm, for some p > 2, 
has a subsequence which converges uniformly, and by the usual 
bootstrapping procedure, one can show that it must converge in the 
L^-norm, for any k > 1. On the other hand, if the derivatives dfa 

are bounded in L2 but not in Lp , a simple geometric argument 
allows one to construct a /-holomorphic map g : C —• V with 
finite area, which, by "removal of singularities", may be completed 
to a map with domain S2 = C U {oo}. This is the phenomenon 
of "bubbling off of spheres". Sometimes, by choosing the class A 
carefully, one can show that this cannot happen. In this case, the 
spaces JtA(J)/G are compact. In other cases, bubbling off can 
occur, and one must proceed with more care. 
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The following paragraphs contain more details of this argument, 
again following the approach of Floer. Wolfson in [Wo] has a 
slightly different viewpoint which emphasizes the affinities between 
this and other geometric problems concerning harmonic maps of 
surfaces, Yang-Mills connections, and so on. Gromov's approach 
was very different: he argued geometrically, using isoperimetric 
inequalities and the Schwartz lemma for conformai maps. Details 
of his proofs have been written up by Pansu [P], but unfortunately 
have not yet been published. The flavor of his arguments may be 
sampled in the proof of Theorem 2.4.7 (removal of singularities) 
which is sketched below. 

Elliptic regularity. Choose p > 2, and k > 1, and let 
Wkp(S

2, V) be the Sobolev space of all maps ƒ : S2 —• V whose 
/cth derivatives lie in Lp . We denote the corresponding Sobolev 
norm by || • 1̂  . By the Sobolev embedding theorems, the inclu­
sion of Wk+ltP(S2, V) into WktP(S2, V) is compact for all k. 
Further, if k - 2/p > m + a where 0 < a < 1, Wk p(S

2, V) em­
beds compactly into the Holder space Cm+a(S2, V). (Note that 
the "2" in the conditions p > 2 and k - 2/p > n denotes the 
dimension of the domain S .) Because of this, the main elliptic 
regularity theorem includes a statement on compactness. 

Theorem 2.4.1. Let k > 1 and p > 2. If ƒ e Wkp{S2, V) 

and djf = 0, then ƒ e C°°(S2, V). Further, every subset of 

dj (0) which is bounded in Wkp(S , V) has compact closure in 

Cm(S , V), for all positive integers m. 

Proof. By the above remarks, it clearly suffices to show that if S 
is a subset of Wkp(S

2, V) such that both | | / | | ^ p and \\djf\\kp 

are bounded by the constant M as ƒ ranges over S, then, for all 

feS, 
(*) / ^ ^ + i , ^ 2

5 n a n d | | / | | , + l î P < C , 

where the constant C depends only on k > 1, M and / . 
We first show how to reduce this to a local problem. Because 

W{ p(S
2, V) embeds compactly into Ca(S2, V), the elements of 

S have a uniform modulus of continuity. Therefore, given an atlas 
on V, the elements of S will take any sufficiently small ball in 
S2 into one of the coordinate charts of this atlas. Hence, using 
partitions of unity on S2 and V, we can reduce to the case when 
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S is a set of maps from the disc Dg of radius e in C to Cn, 
such that both \\f\\k and | |9 y / | | ^ ^ are bounded for ƒ G 5 \ and 
where / is an almost complex structure on Cn which is standard 
at {0}. 

The statement about the smoothness of ƒ now follows by the 
standard trick. Given ƒ e Wk (De, Cn) such that ~djf=0, one 
considers the linear elliptic operator 

L(u) = du + Jf(z) oduoi for ueWx p(De, Cn). 

This has coefficients in Wkp(De,C
n) c Cm+a(D£, Cn), where 

A: — 2/p > m + a as above. Hence, by standard linear theory, all its 
solutions lie in Cm+l+a(De, C"). Hence it follows that ƒ e Cm + 1 + a 

(D£, C"). Repeating this, we find that ƒ e Cm+x+a{De, C") for 
all m, as claimed. 

Thus we may suppose that the set S consists of all ƒ E 
C°°(De, C") with || ƒ 11̂  :e<M, where || • \\k . £ denotes the norm 
on Ŵ  (Dfi, C"). (For simplicity, we suppress p from now on.) 
Clearly, the a priori estimate (*) will follow if we show that for 
each M there is an e > 0 and a constant C = C(e, / , M) such 
that 

(**) \\nM:<,2<C(\\dJf\\k:g + II ƒ II* : . ) , 
for all f e S. In fact, since |/(0)| is uniformly bounded for ƒ G 
5 , we need only establish (**) for feS0 = {feS: /(O) = 0} . 

The existence of such a constant C is well known for the stan­
dard d -operator since this is linear. Indeed, one can prove this 
explicitly by expressing ƒ as Sf+Tdf, where S is the Cauchy 
kernel 

and T is the integral operator 

e 

Basic properties of T 9 plus the Holder estimates corresponding 
to (**), are worked out in [NW]. For example, they show that 
both sup|rw(z)| and sup\dTu(z)\ for z e De are bounded by 
sup |w(z)|. On the other hand, it is easy to see that one can only 
estimate Sf(z) and dSf(z) in terms of f\dD£ for z in some 
compact subset of IntD e . This is why the norm || f\\k. e/2 appears 
on the left of (**). 
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Following [Fl] Lemma 2.3, we now show how to extend this 
result to 9 y . We will use the fact that, because S f = 0 when 
ƒ has compact support, (**) implies that there is a constant Cx 

such that 

(#) NUi^c.pwii^ 
for all C°° functions u with compact support in Int Dx and any 
e < 1. Let P : IntDj —• [0,1] be a smooth bump function 
of compact support, which equals 1 on Dl,2, and set fie{x) = 
fi(x/e). Then fief has compact support in IntZ)g and clearly 
there is a constant C2 = C2(e) such that 

W \\f\\m:„2<M.f\\m:.<C2\\f\\m:. f<*m = k,k+l. 

Thus, there are constants Cx and C3 , which are independent of 
e < 1, and a constant C£ which depends on e, such that 

ll^/IU+1:£<_C,ll^/ll.:£ by(#), 
< C^C^djfW, : , + \\Pt(Jpef(z) - J0)dfoi\\k . t + Ce\\f\\k . J 

C3\\Jflef(z) - J0\\k., • | | /?£/ | | , : , + Ce\\f\\k. J , 

where || • || . c is the sup norm on De. Because the elements of 
S0 have a uniform modulus of continuity and because /(O) = 0 
and 0 < Pe < 1, there is a constant K — K(M, / ) such that 
||/)8fi/(z) - ^ollsup.£ < e ^ . Thus, if we choose e so small that 
C{eK < 1/2 we may take the term involving ||^g/||^+1 .g to the 
left of the above inequality, thereby estimating \\fief\\k+l. e. In­
equality (**) now follows easily from (##). D 

Bubbles. We now prove the simplest version of Gromov's com­
pactness theorem, which gives a criterion for the moduli space 
JtA(J)/G to be compact. If this criterion is not satisfied, it is 
often possible to compactify ^A(J)/G by adding suitable "cusp-
curves", but we will not discuss this here. Throughout, we assume 
that A is not a multiple class. 

Theorem 2.4.2. If J?A(J)/G is not compact, there is a continuous 
map g : S —• V which represents a homology class B such that 
0 < co(B) < o)(A). 

Proof. Suppose that {fa} is a sequence in ^A{J) whose image 
in J£A{J)jG has no convergent subsequence. By (2.2) the se­
quence {fa} is bounded in the Wx 2-norm. Further, because each 
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2 

fa is a smooth function on the compact manifold S , there is a 
point za at which \df(za)\ attains its maximum. If the sequence 
{\dfa(za)\} is bounded, then {fa} is bounded in the WJ -norm 
for p > 2 and so converges in J?A(J) by Theorem 2.4.1. So let 
us suppose that \dfa(za)\ = ra-> oo. We now rescale the fa con-
formally, defining maps ga from the disc 5(0 , ra) of radius ra 

about 0 G C to F by setting 

(2.4.3) ga(z) = fa{va(z)), 

where y/a is a conformai map of 5(0 , ra) into S2 which takes 0 
to za and is such that \di//a(0)\ = sup \d y/a(z)\ = l/ra . Then the 
ga are J-holomorphic, and 

(2.4.4)(i) \\dgJ2
2<co(A) by (2.2); 

(2.4.4)(ii) | ^ a ( 0 ) | = s u p | ^ a ( z ) | = l . 

Hence, for each i?, the restrictions of the ga to 5(0 , 2i?) are 
uniformly bounded in the Wx -norm, and so, by Theorem 2.4.1, 

have a subsequence which converges in the C1-topology to a holo-
morphic map gR : B(0, R) —> V. Repeating this for all positive 
integers R and choosing subsequences so that gR+l extends gR , 
we obtain a J-holomorphic map g : C -> V such that 

(2.4.5)(i) H^l l ' < œ(A) 

and 

(2.4.5)(ii) l ^ ( 0 ) | = l . 

By Theorem 2.4.7 below, this map g extends to a continuous 
map of S =Cu{oo} to V, which cannot be constant because of 
(2.4.5)(ii). 

By (2.2), \\dg\\l = co(B), where B is the class represented 
by g. Hence if \\dg\\2 < (o(A), the proof is complete. On 
the other hand, if \\dg\\l = co(A), we claim that the fa may be 
reparametrized so that they converge to g. To see this, let y a GG 
be the reparametrization of f which corresponds to the rescaling 
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in (2.4.3), and let w e 5 be the point corresponding to {oo}. 
Then ƒ 'a = fa o ya converges to g in ^ ^ l o c ( 5 2 - {w}, V). 
If the norms \\df a\\p. B^w^ are bounded, then the fa converge 

in Wx (S , V) by Theorem 2.4.1, and the limit has to be g. 
But if these norms are unbounded, we may repeat the argument 
at the beginning of this proof and find a subsequence which, after 
appropriate rescaling near w , converges to a nonconstant contin-
uous map h : S —• V. Because g and h are limits of "disjoint 
pieces" of the ƒ a , we have ||d?£||2 + \\dh\\2 < co(A). Therefore 
our hypothesis \\dg\\2 = Û>(-4) implies that \\dh\\2 = 0 which is 
impossible if h is nonconstant. D 

Note 2.4.6. For the sake of simplicity, Theorem 2.4.2 was stated 
for a fixed / . However, the same methods show that if {fa} is a 
sequence of /^-holomorphic ^-spheres where the Ja tend to J0 

in the C°°-topology, then either the fa may be reparametrized 
so that they converge to a J0-holomorphic ^4-sphere, or there is a 
continuous map g : S —• V which represents a homology class 
B such that 0 < co(B) < co(A). 

Theorem 2.4.7 (Removal of singularities). If g is a J-holomorphic 
map with finite area of the punctured disc D - {0} cC to V, then 
g extends to a continuous map D —• V. 

Proof. As pointed out by Pansu in [P, #37], one can prove this 
by using the monotonicity theorem for minimal surfaces. This 
states that there are constants c > 0 and e0 > 0 (which de­
pend on V and the metric /Uj) such that for every minimal 
surface S in (V, fij) which goes through the point x, //y-area 
(SnBe(x)) > ce2 for all e < eQ. See [L, 3.15]. To apply this, 
recall from (2.2) that Img is minimal and suppose that g(z) 
has two limit points p and q as z —• 0. If ô is chosen to be 
less than d(p, q)/3, the monotonicity theorem implies that each 
connected component of g~l(Bô(p)) which meets g~l(Bô,2(p)) 

has area > cô2/4. Therefore, because Img is minimal and has 
finite area A(g) by (2.2), there can only be a finite number of 
such components. Similar remarks apply to q . Hence there exists 
an r0 > 0 such that, for any r < r0, the image yr of the circle 
{z : \z\ = r} under g meets both Bô,2{p) and Bs,2{q), and so 
must have length /(y) > a. But then, the conformality of g 



ELLIPTIC METHODS IN SYMPLECTIC GEOMETRY 331 

implies that \dg\ = {l/r)\dg/dO\, and we find that 

A{g)=f (\Mpi]rdrAde 

"loi \j^dgld0^^dr 
2 

2nf 

J (0,1] 2 n r J(0,r0]
2nr 

which is impossible because A(g) is finite. D 

Note 2.4.8. In fact, one can always extend g smoothly over the 
singular point. However, it is more difficult to prove this. By the 
elliptic regularity theorem (Theorem 2.4.1), it suffices to show that 
dg is bounded in the Lp-norm for some p > 2, which may be 
done by identifying D - {0} with the cylinder (-00, 0] x Sl, and 
establishing some exponential decay estimates as in [FU, Appendix 
D]. (Compare [Fl, Lemma 4.3.]). For another approach see [02]. 

Example 2.4.9. Let us return to Example 2.3.5. If the weights 
Xk are all positive integers with Xx = 1, then co(A) — n is the 
smallest positive value taken by [co] on n2(V) and so ^A(J)/G 
is compact by Theorem 2.4.2. If the weights are arbitrary, then 
JtA(J)/G is not always compact. For example, if n = 2 and 
Xx > A2, then the antidiagonal {(z, i(z)) : z G S } (where i is 
the antipodal map) may be realized as a /j-holomorphic sphere for 
some Jx which is compatible with œ. (In fact, one can take J{ to 
be Hirzebruch's complex structure on S2 x S which is obtained 
by identifying S x S with the projectivization of the rank 2 
complex vector bundle over S = CP which has first Chern class 
equal to 2: see [MD2, §3].) Since the antidiagonal represents the 
class A - B, where B = [pt x S2], we may write A as a sum of 
two classes A - B and B, both of which may be represented by 
/j-holomorphic spheres. Therefore, according to Theorem 2.4.2, 
it is possible that the moduli space JtA(Jx)/G is not compact, 
and indeed one can check that it is not. However, when n = 2, 
^A{J)/G is always compact for generic / : see [MD3, §4]. 

(2.5) Applications. Gromov thought of many interesting ways to 
use holomorphic spheres in symplectic geometry. For example, 
he showed that there is an exotic symplectic structure p on R2" 
which does not embed symplectically in R2n with its standard 
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structure. A simple and explicit formula for such p may be found 
in [BP]. Gromov also proved that the group of compactly sup­
ported symplectic diffeomorphisms of R is contractible, and that 
(up to a multiple) there is only one symplectic form on the complex 
projective plane CP2 which admits a symplectically embedded 2-
sphere in the class of CP{. All these results are surveyed in [G3] 
and [Be]. More recently, Eliashberg developed these ideas fur­
ther, using families of holomorphic discs (rather than 2-spheres) 
to prove, for example, that if W is a symplectic 4-manifold whose 
boundary dW is a 3-sphere of contact type, then the contact 
structure on d W must be the standard one: see [E3]. 

Here, we will content ourselves with proving Gromov's squeez­
ing theorem (Theorem 1.2.1). We must show that it is impossible 
to embed the closed ball B2n{r) symplectically inside the prod­
uct B2(R) x R2"~ unless r < R. To this end, suppose that 
g : B2n(r) -• B2(R) x R2n~2 is a symplectic embedding, and 
choose any e > 0 and integer K > 0 such that 

Im g c Int B2(R + e) x B2{K{R + c)) x . . . x B2(K{R + e)). 

Then, by compactifying this product of 2-balls, we obtain a sym­
plectic embedding g of B2n(r) into (S x . . . x S , r) where r 
is the symplectic form (R + e)2[a{ 0 K2a2 0 . . . 0 K2on]. 

Lemma 2.5.1. The evaluation map 

eA(J) : JtA(J) x GS2->S2x...xS2:(f,z)^ f(z) 

is surjective for every x-compactible J. 

Proof. By Lemma 2.3.4, the usual complex structure J0 on S x 
... x S is regular. Therefore, by Theorem 2.3.3 and the remarks 
in Example 2.4.9, the evaluation map eA(J0) is compactly bordant 
to eA(J) for every regular / . It follows from Example 2.3.5 that 

2 2 2 

the manifolds ^A{J) xG S and S x . . . x S have the same 
dimension and that the map eA(J0) has degree 1. Since degree is 
a cobordism invariant, the map eA(J) has degree 1 whenever / 
is regular. Thus eA(J) is surjective for all / in a dense subset of 
f . Hence, by Note 2.4.6, it is surjective for all / . D 
(2.5.2) Proof of the Squeezing Theorem. Let JQ be the usual com-

2M 

plex structure on R . Because the set f of r-compatible / 
2 2 

forms a fiber bundle over V = S x ... x S with contractible 
fibers, it is possible to extend #*(./0) to an element J e ^ . By 
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Lemma 2.5.1, there is a /-holomorphic ^-sphere through g(0). 
Let S be the pull-back by g of the intersection of Im g with this 
sphere. Then S is a surface in B2n(r) which goes through the ori­
gin and has boundary on dB2n(r). Moreover, it is minimal with 
respect to the euclidean metric /u0 because it is 70-holomorphic. 
Therefore, the monotonicity theorem mentioned in the proof of 
Theorem 2.4.7 implies that its //0-area is at least nr2. (When 
(V, fij) is euclidean space, the constant c may be taken to be 1: 
see [L] or [VI, Appendix].) But by (2.2), 

areaS = / a>0 - / T < x(A) - n(R + e) , 
Js Jg(S) 

and so r < R as claimed. D 

§3 FLOER HOMOLOGY 

In this section, we first describe the variational setup used in the 
proof of Arnold's conjectures and then outline Floer's way of doing 
Morse theory on infinite-dimensional spaces. In (3.3) we construct 
the Floer complex and sketch the proof of the nondegenerate case 
of Arnold's conjectures. (3.4) contains some details of the analysis, 
and (3.5) outlines some other applications of Floer homology. The 
article [S] provides another introduction to these ideas with more 
emphasis on the details of the Morse theory, and contains many 
useful references and technical details. 

(3.1) The variational setup. Let (p be an exact diffeomorphism of 
the compact symplectic manifold (V, co). By (1.3.3) this means 
that there is a time-dependent Hamiltonian Ht which generates 
a family cpt of diffeomorphisms with <p0 = id and <p{ = (p. By 
reparametrizing Ht with respect to time, we may suppose that 
Ht depends smoothly on t e S{ = R/Z. If we look at the set 
of paths {(pt(x), 0 < t < 1 : x e V}, then the fixed points of cp 
correspond bijectively to the subset of these paths which close up to 
loops. However, there is no good way of distinguishing this subset 
from the full path space. Therefore, Conley and Zehnder in [CZ] 
looked instead at the space Q F of all smooth and contractible 
loops on V and then analyzed the subset consisting of all loops 
which have the form <pt(x), 0 < t < 1. We show below that 
these loops are precisely the critical points of the action functional 
aH, which means that we can count them using Morse theory. 
Note that because we restrict to the component of contractible 



334 D. MCDUFF 

loops on V, we are ignoring all fixed points which correspond to 
noncontractible loops. 

A loop z : Sl —• V has the form z(t) = <pt(x) if and only if 

(3.1.1) z(0 = £,(z(0), 0 < t < l , 

where £t is the Hamiltonian vector field of Ht and z is the time 
derivative dzjdt. Suppose for the moment that œ vanishes on 
n2(V) and, for z e Q F , define 

(3.1.2) aH{z) = - /* z » - ƒ tf,(z(0)rf* 
J/)2 JSl 

where z : D2 -+ V restricts to z on 9 i ) 2 . Because co vanishes 
on n2(V), this is independent of the choice of z. 

Recall that the tangent space to Q.V at z consists of sections 
C(0 of the bundle z*(TV). (We will be more careful later with 
questions of smoothness.) It is not hard to check that the value 
of the derivative daH(z) in the direction of Ç is given by the 
formula: 

(3.1.3) daH{z)(C)= [{co(z(t),at))-dHt(z(t))at)}dt. 

Because co(z, •) = i(z)co and dHt = i{£t)œ by (1.3.3), this van­
ishes for all C if and only if z{t) satisfies the equation (3.1.1). 
Thus the solutions of (3.1.1) are exactly the critical points of the 
function aH . (Note that our signs differ from Floer's in [F5] since 
his metric g satisfies the identity #(•, •) = a)(J-, •) rather than 
(2.1.1).) 

If co does not vanish on n2(V), then we must pass to an ap­
propriate covering of Q V in order to define aH. However, its 
derivative daH is defined for z e£lV as before. 

Let us now consider the gradient p3 H of aH with respect to 
the inner product 

Jsl 

on Q F , where / / y ( / - , •) = co(-, •) as in (2.1). If VHt denotes 
the //^-gradient of the function Ht on V, then (3.1.3) implies 
that pj H{z) is given by the formula: 

(3.1.4) Sj9„(z)(t) = J(z(t))z(t) - VHt(z), 

where J{z{t)) is the automorphism of T2,t,V induced by / . 
Hence if zT G QV is a trajectory of the flow dzjdx = —pj H{zx), 



ELLIPTIC METHODS IN SYMPLECTIC GEOMETRY 335 

the associated map u :Rx S —• V given by W(T, t) = zx(t) sat­
isfies the equation: 

(3.1.5) du/dr + J(u)du/dt - VHt{u) = 0. 

Observe that the first-order terms in this equation make up the 
Cauchy-Riemann operator dj of (2.3.1). 

(3.2) Morse theory. The usual way to study the critical points 
of a function *¥ on a finite-dimensional manifold X is to look 
at the change in topology of the sets Xx = x¥~{((-oo, X\) as X 
passes through a critical value of *F: see [B]. Recall that if the 
critical point w is isolated and nondegenerate, then there is a well-
defined nondegenerate quadratic form Hess(*F) on Tw X which is 
called the Hessian. In local coordinates, it is given by the matrix 
of second derivatives (d ^f/dxfiXj). Further, if one defines the 
index Int(tu) of w to be the dimension of the largest subspace 
on which the Hessian is negative, then one can show that Xa+e is 
obtained from Xa_e by adding a handle whose dimension equals 
the index of the relevant critical point. 

This method can still be used when X is infinite dimensional 
provided that *F has a well-behaved gradient flow with respect to a 
suitable metric on X, and all the critical points of *F (or of —*¥) 
have finite index. This is the case for some important functional, 
for example, the Yang-Mills functional on the quotient space of 
connections by the gauge group (see [AB]), but, by the results of 
[CZ], does not hold for aH on the loop space Q.V. 

However, there is an alternative approach to Morse theory on 
finite-dimensional manifolds which was recently emphasized by 
Witten in [Wl] and which does generalize to our situation. This 
arises by considering the trajectories of the negative - V1? of the 
gradient vector field of *F with respect to a generic metric ju on 
X. For, if IJL is generic, one can assume that for every pair of 
critical points x, y, the unstable manifold of x (i.e. set of trajec­
tories going away from x) intersects the stable manifold of y (i.e. 
set of trajectories going towards y) transversally. It follows that if 
Int(x) - Int(y) = k, the manifold of trajectories of *F going from 
x to y has dimension k (if it is nonempty). Since a trajectory 
I / : T H M(T) has a 1-dimensional family of reparametrizations 
^ : T H U(X + a), this means that there is a (k - l)-dimensional 
manifold of unparametrized trajectories between x and y. In 
particular, if Int(x) - Int(y) = 1, there is a finite set of un-
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FIGURE l 

parametrized trajectories from x to y. We will call these isolated 
trajectories. 

Now consider the space of unparametrized trajectories between 
critical points x and z with Int(x) - Int(z) = 2. Since // is 
generic, this space consists of a finite number of 1-dimensional 
components. If a component is noncompact, each of its two ends 
must converge (in an obvious sense) to a pair (u,v) of trajecto­
ries, where u is an isolated trajectory from x to a critical point 
y, and v is an isolated trajectory from y to z. (See Figure 
1.) Conversely, given such a pair of isolated trajectories, one can 
"glue them together" at y and construct a 1-parameter family of 
trajectories from x to z which abuts on (u,v). 

Using this information, one defines a complex (F^(X)9 d) as 
follows. For 0 < k < d imX, let Fk(X) be the free Z/2Z-
module with one generator for each critical point x of index 
/c, and define the boundary operator d : Fk(X) —• Fk_{(X) by 
d(x) = 1L,(X 9 y)y > where (x, y) is the number (counted mod2) 
of unparametrized trajectories from x to y. Using the above 
remarks about the 1-dimensional families of trajectories between 
points x and z with Int(x) - Int(z) = 2, one easily checks that 
d2 = 0. (See Lemma 3.3.4 below.) 

The chain groups Fk(X) are just those of the usual cell complex 
(over Z/2Z) which one builds from the Morse function *F. It is 
not hard to see that the boundary maps are also the same. Hence, 
standard Morse theory implies that the homology of the complex 
(F^(X), d) is isomorphic to H^(X\ TJ/ITL) . Observe, also, that 
it is possible to define (F (X), d) over the integers: one just has 
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to find a consistent way of assigning an orientation (i.e. + or -
sign) to each isolated trajectory from x to y. For more details, 
see [Wl], [F6], and [S]. 

The complex (F^(X), d) involves only those trajectories of the 
gradient flow which go from one critical point to another. Floer 
realized that there is therefore no need to have a globally defined 
gradient flow: all one needs is to have well-behaved spaces of such 
trajectories. (He points out in [F5] that this is an extension of Con-
ley's idea of an "isolating block".) In particular, in order to build a 
Morse theory for aH on QV, one can use the L -gradient p3 H 

whose trajectories satisfy the elliptic equation (3.1.5). Floer calls 
the homology of the complex (JF#, d) so constructed the Conley 
index I(J, H), but it is also known as the Floer homology. To 
compute it, one must establish some kind of homotopy invariance, 
and then make a calculation for a special choice of / and H. 

Note. There is no way of completing QV so that #j H integrates 
to a globally defined flow: for example, if H is real analytic, all 
solutions of (3.1.5) are also real analytic so that there is a trajectory 
through z only if z is real analytic as well. However, when V — 
R2n, one can complete QV to the Sobolev space Hl/2(Sl, R2n) 
which consists of all functions whose "derivative of order 1/2" is 
L2 . (This is best understood in terms of the Fourier transform.) 
Again, this is a borderline case for Sobolev theory: the functions in 
H ' (S , R n) are not continuous, and one cannot substitute an 
arbitrary manifold V for R2" . On the other hand, one can check 
that the gradient of aH with respect to the Hubert inner product 
on Hx' (Sl, R n) integrates to give a flow which is everywhere 
defined. This is the flow considered in [CZ], [VI], [V2], [EH], etc. 
It has the advantage of being globally defined, but its trajectories 
no longer satisfy an elliptic equation such as (3.1.5). 

(3.3) Floer's proof of the Arnold conjectures. In this section we 
describe Floer's complex ( i^ , d), and outline his proof of the 
following result. 

Theorem 3.3.1. Exact nondegenerate diffeomorphisms on compact 
monotone manifolds (V, œ) satisfy the Morse inequalities over 
Z/2Z. 

We will assume throughout that ( F , co) is monotone, i.e. that 
there is a constant k > 0 such that the cohomology class [co] -
k.c{(V) is zero on all 2-spheres. This hypothesis is crucial to the 
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proof of compactness: see Proposition 3.4.11. 
Given critical points x and y for the action aH on Q.V, and 

an co-compatible J, we define the space Jt(x, y) of trajectories 
from x and y to be the space of all solutions u:RxS{ -+ V of 
the equation 

(3.3.2) dj H(u) = du/dz + J(u)du/dt - VHt{u) = 0 

such that HmT__> ^ u(r, t) = x(t) and limT_>00 W(T, t) = y(f) . By 
the remarks in (3.1) these are precisely the trajectories of the gra­
dient flow dzT/dz = —#j H(zx)9 which go from x to y. (For 
our notation to be consistent with that of §2, we should really men­
tion J and H in the name Jt(x9y). However, following Floer, 
we will not do this.) The main results needed about the J[{x9y) 
are contained in the following proposition which is a slightly sim­
plified version of [F5, Proposition lb]. Its proof is discussed in 
(3.4). As before, we write J? for the Fréchet space of all C°° 
co-compatible almost complex structures on V, and %? for the 
Fréchet space C°°(V x S{, R) of Hamiltonians. 

Theorem 3.3.3. (i) There is a dense set L ^ x ^ V in / x ^ such 
reg 

that for every element (J 9 H) G (^ x ^ ) r e g the action functional 
aH has a finite set Z of critical points, and the trajectory spaces 
Jt(x9y), x, y G Z , are smooth manifolds. Further, if F denotes 
the subgroup of Z generated by the values taken by the first Chern 
class of (V9 J) on the elements of n2(V), there is a mod 2T 
index function Int : Z —• Z/2T such that dim«^f (.x, y) = lnt(x) -
Int(y) (modlT) . 

(ii) Let Jt(x, y) = <^(x, y)/R denote the quotient by the trans-
lational symmetry. Then, for any triple x{, x2, x3 G Z , there is 
a local diffeomorphism (t from an open subset & of Jt(x{, x2) x 
l ( x 2 , x 3 ) x R /«/o ^#(Xj, x3) such that: 

(Tl) ybr #2c/j compact set K in J?(xx, x2) x ^ ( x 2 , x3), f/^re 
w a number p(K) > 0 swc/z that K x [p(A^), oo) c & ; 

(T2) for i = 1, 2 f/zere w a /(/?/wg :̂ : ^ —• ^#(x t , x3) such that 
for each (ux, w2) G J?(xx, JC2) x ^#(x2 , x3), the family 
of maps lt{ux, w2, p) converges to ut in the local C°°-
topology as p —• oo ; 

(T3) the 0- and l-dimensional part of ^ - \JXtyeZ^(x> y) 
is compact up to the image of fl. 
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T -2p 2p 

FIGURE 2 

Intuitively speaking, the map ft glues a trajectory ux from ^ 
to x2 to a trajectory w2 from x2 to x3 to make one trajectory u 
from xx to JC3 , with a gluing parameter p which measures how 
far apart one places ux and u2. More precisely, consider the fol­
lowing diagram, in which we illustrate an approximate trajectory 
which we will call ux\u$p . Here 

UX$U2$P(T, t) = UX(T + 2p, t) for T < - p , 

= u2(z -2p, t) for T > p, 

and is very small elsewhere (Figure 2). Using a technique devel­
oped by Taubes, oer proves that, when p is sufficiently large, there 
is a deformation retraction D from approximate trajectories such 
as u^u2tp into the space of actual trajectories. Hence the maps 
JJ. of (T2) are given by: 

$x(ux, u2, p)(r, t) = D(ul$u2ip)(r + 2p9 t), 

and 
l2(ux, u2, p)(z, t) = D(ultu2$p)(T-2p, t). 

(Remember that a sequence converges in the local C°°-topology if 
its restriction to each truncated cylinder [-R, R] x S converges 
in the C°°-topology.) 

It is clear from this construction that, if {pN} is any sequence of 
real numbers, the only possible limits of subsequences of 
{D(ux$u2$N)(-+pN)} arereparametrizationsof ux and w2 ,orare 
T-constant trajectories at xx, x2, and x3. Under these circum­
stances, we say that the sequence {D(ux$u2$N)} converges weakly 
to the pair ux, u2. See [F5, 3a]. 

Next observe that, because U is a local diffeomorphism, the im­
age of j) lies in a component of Jt(xx, x3) which has dimension 
1 + dim^#(x2 , x2) + d i m ^ ( x 2 , JC3) . In particular, if ux and u2 

are isolated, they glue together to form part of a 1-dimensional 
component of J£. By (T2), this part must in fact be a neighbor­
hood of one of the ends of this component. (T3) states that this 
is the only noncompactness found in the 0- and 1-dimensional 
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components of J!. Thus there are only finitely many isolated tra­
jectories and 1-dimensional components of ^ # . Moreover, any 
1-dimensional component of Jf(x9 y) either is a circle or is an 
open interval, each end of which lies in the image of ft and so con­
verges weakly to a pair of isolated trajectories. Note, finally, that 
because there is a mod 2T index, there are isolated trajectories 
between x and y only if Intx + Inty = 1 (mod 21"), and there 
are 1-parameter components in Jf(x9 y) only if Int x + Int y = 0 
(mod 2 r ) . 

Now consider the Floer complex (F^, d) built from these data. 
Its vertices are the elements x of Z and we define the boundary 
d by d(x) = ^2(x, y)y, where (x, y) is the number of isolated 
trajectories from x to y, counted mod 2. 

Lemma 3.3.4. d2 = 0. 

Proof. If d x ^ 0, there is, for some z e Z , an odd number of 
pairs of isolated trajectories u, v where w goes from x to some 
y and i; goes from y to z . But, by (Tl), for each pair we may 
construct an arc a(u,v) which lies in a 1-dimensional component 
of ^ and has one end which converges weakly to the pair u, v . 
By the remarks above, the other end of the component containing 
a(u, v) must converge to another pair of trajectories between x 
and z . Therefore, the number of such pairs is even. D 

This completes the construction of the Floer complex (i^ , d). 

Invariance of (F^, d) under "continuations" We now investigate 
the dependence of (F^, d) on the choice of (J 9 H). Because 
(F^, d) is finite, one can easily show that it changes by an isomor­
phism if (J, H) is slightly perturbed. In Floer's first version of his 
theory in [F3] (which applied to the Lagrangian intersection prob­
lem), he dealt with large perturbations by considering 1-parameter 
families of ( / , ƒ / ) , and investigating in detail what happens when 
one passes through a generic codimension 1 singularity. However, 
he realized that this argument was unnecessarily complicated and 
in [F5] used the elegant argument which we now present. 

The appropriate notion of homotopy is called by Floer a "con­
tinuation". In our context (which is slightly simpler than Floer's), 
this is just a smooth family {Jx, ^ A } A € R of pairs, where Jk is an 
almost complex structure which is compatible with œ and Ht x 

is a time-dependent Hamiltonian. We assume further that these 
are independent of À when X is outside some interval [-R, R]. 
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Consider the equation 

(3.3.5) dj H x{u) = du/dx + Jx(u)du/dt - VHtz(u) = 0. 

This is almost identical to equation (3.3.2) except that the coef­
ficients / and H depend on r . It is not hard to check that 
the analysis goes through as before, except that the solution set 
J?x is no longer translationally invariant. In particular, if we write 
x9y9Jf, etc. for objects related to the pair (J, H) = {J_R, H_R) 
and x , y , J!1 for objects related to the pair (ƒ' , H') -
(JR, HR), it follows from Lemma 3.4.2 that every solution u of 
(3.3.5) on which the action aH is finite converges to some el­
ement x e Z as T —• -oo and to some element x e Z' as 
T —• +oo. Further, if (u{, u2) belongs to Jtk(x, x) x Jt'(x', y) 
or to J£(x 9y)x^x(y9y')9 one can construct approximate trajec­
tories ux%u$p as above. Using this, it follows as before that, if 
the continuation {Jx, Hx} is regular (i.e. generic), there are glu­
ing maps from open subsets in <s€k{x, x) x J? {x , y) x R and 

Jf(x9 y) x Jtx(y9 y') x R to dfk(x9 y). Moreover, the proof 
of Proposition 3.4.11 shows that any noncompact end of a 1-
dimensional component in ^ converges weakly to either the 
composite of an isolated trajectory in J% with one in ^ or 

— j 

the composite of an isolated trajectory in Jtx with one in Jt . 
Hence these gluing maps account for all the noncompactness in 
the 0- and 1-dimensional part of Jtk. In particular, there are 
only finitely many isolated trajectories and arcs in Jfx . 

Thus, a regular continuation {Jx, Hx} defines a map h : F^ —• 
F'* by 

(*) h(x) = 5 ] ( I ) I V ) 

where (x, x) is the number of isolated trajectories in Jtk from 
x to x', counted mod 2. 

Proposition 3.3.6. (i) h is a chain map, i.e. hd = d'h. 
(ii) h induces an isomorphism on homology. 

Proof, (i) is proved by the arguments of Lemma 3.3.4 and the 
above remarks. To prove (ii), note first that one can compose 
continuations. For if {Jx, Hx} is a continuation from (J 9 H) 
to (f, ƒ/ ' ) , and if {fx , Hx} is a continuation from ( / ' , Hl) to 
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( / " , H"), we may define {/ƒ, H%} for large p by setting 

JX=JMP f o r A < 0 , 

=f forA = 0, and 
= JX-2p' ft>rA>0, 

and similarly for Hp
x . (Here we assume that p is so large that 

both {/A? Hx) and {j[, H[} are constant for \k\ > p.) A slight 
perturbation of {/ƒ, H%} will be regular, and will define a chain 
map from (Fm9d) to (F", d"). (As remarked above, (F# , 9) 
does not change under small perturbations of ( / , H), and so it 
does not matter if we move the ends of {ƒƒ,/ƒƒ} a little bit.) 
That this map (for large p) is the composite of h with h' fol­
lows from the fact that the {/ƒ, //^}-trajectories are in 1 -to-1 
correspondence with pairs u, u of trajectories for {Jx, Hx} and 
{j[, H'x) . (This may be proved by the same methods which estab­
lish statements (Tl) and (T2) of Theorem 3.3.3.) 

We next claim that the chain homotopy class of h depends 
only on the homotopy class of {/A, HÀ} relative to its ends. To 
see this, suppose that {/A(i/), Hk{y)}, 0 < v < 1, is a family of 
continuations with fixed ends, and consider the set 

J#(X, x) = {(v, u) : v G [0, 1], u satisfies 

equation (3.3.5) for {Jx(v), Hx(u)}}. 

The extra parameter v can be easily incorporated into the an­
alytic setup of (3.4), and one can show that ^f (JC, x) is the 
zero set of a Fredholm section of a Banach bundle over the space 
[0, 1] x P{ (x, x), and that it is a manifold for generic families 

Define a map S : F^ —> F[ by the formula (*), this time using 
the isolated trajectories in Jt(x, x). We can think of this map as 
having degree - 1 (mod T), because the extra parameter v makes 
the relative index /u(u, v) of a pair of critical points x e Z and 
x G Zf with respect to the family {Jx(v), Hx(p)}, 0 < v < 1, 
one more than their relative index ju(u) (see (3.4)) with respect to 
any individual continuation {Jx(v), Hx(i/)} in this family. Note 
also that if (u9v) is an isolated element of ^(x, x), the con­
tinuation {Jx(v), Hk(v)} cannot be regular, since if it were, it 
would admit no trajectories uoî index /u(u) = - 1 . In particular, 
v cannot equal 0 or 1. 
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We claim that S is a chain homotopy between h0 and hx, i.e. 
hx - h0 - So - SS. This follows because of the structure of the 
1-dimensional components of J?(x9 x'). A typical component 
will lie over a path a in [0, 1] with endpoints a(0), a ( l ) . If 
either a(0) or a(l) equals 0 or 1, the component must end at 
a {Jk{y)9 //A(^)}-trajectory from x Xo x , where v = 0 or 1, 
as appropriate. Otherwise, the component abuts in a pair of tra­
jectories which are either of the form (S, S) e ^x((a(i), x, z) x 
jf*{z , x) or of the form (S, S) e ^(x, y) x ^x(a(i) 9y,y'). 
It follows that there are only finitely many 1-dimensional compo­
nents, and that they are one of the three kinds shown in Figure 3. 

By using the fact that any pair (S, 3) or (S, S) may be glued 
together to form one end of a 1-dimensional component in 
Jf(x9 x')9 it is now not hard to see that s is indeed a chain 
homotopy. 

Since the composition of {JÀ, Hx} with its "inverse" {J_x, H_x} 
is homotopic to the constant map { / , / / } , the chain map h must 
induce an isomorphism on homology. D 

By the remarks in Definition 1.3.5, Theorem 3.3.1 will follow if 
we prove: 

Proposition 3.3.7. The homology of the complex (F^, d) is isomor­
phic to H^(V;Z/2Z). 

Proof. By Proposition 3.3.6 it suffices to calculate (F^.d) for any 
generic ( / , H). Because (V9 co) is monotone, we may apply 
Proposition 3.4.10 below and hence assume that H is time inde­
pendent and so small that the only critical points of aH on ÇIV 
are the constant loops. Then equation (3.3.2) has a whole class 

FIGURE 3 
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of solutions which are also independent of time, and so consist of 
trajectories of the jUj-gradient flow of H on V. Since this flow 
is generic in the sense of (3.2), the remarks in (3.2) imply that 
the Floer complex made out of these trajectories has homology 
equal to H^(V ; Z/2Z). The desired result now follows because, 
by Proposition 3.4.10, no other elements of Jf(x, y) contribute 
to (F^d). D 

(3.4) Some details of the analysis. The proof of Theorem 3.3.3 
is enormously complicated, and it is impossible to deal with all its 
complexities here. At its basis lies the analysis of elliptic operators 
on the cylinder R x Sl, and a gluing procedure first developed by 
Taubes. I have chosen to say rather little about these topics, since 
Floer's discussion of them is quite adequate, and instead have tried 
to spell out some of the more superficial details involved in putting 
everything together. 

The trajectory spaces Jf(x9y). We begin with a useful result 
concerning solutions of the equation 

(3.3.2) dj H(u) = du/dx + Jdu/dt - VHt(u) = 0. 

For the time being, we will work in the space W{ loc(R x Sx, V), 
where p > 2 as in (2.3), and where "loc" means that a neighbor­
hood basis is given by the Wx -norms of the restrictions of the 

maps u to the compact subsets [-p, p] x Sl of R x Sl. The 
length f(u) of u e Wx , (R x Sl, V) is defined to be: 

(3.4.1) / 2 ( ^ ) = / ldU 

JR 

1, p, loc ' 

2 

dx Adt. 

Further, given critical points x and y for the action aH on Q.V, 
we define the trajectory space J?(x,y) to be the subspace of 
Wx jP l0C(R x Sl, V) consisting of all solutions to (3.3.2) such that 
limT_^ ^ u(x, t) = x(t) and limT_>oc u(x, t) = y(t). Note that so­
lutions of (3.3.2) are C°°-smooth by elliptic regularity theory. 

Lemma 3.4.2(c.f. [Fl, Theorem 2]). Let u e W{ploc(R x Sl, V) 
be a solution of d3 Hu = 0. Then u belongs to a trajectory space 
/ ( x , y ) if and only if it has finite length. 
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Proof. If dj Hu = 0 , then du/dr = ~^} H{U(T)) by (3.1) and 

da„{u(j)) (du\ 

= - ( ^ / , / / ( W ( T ) ) ' ^ 7 ) / / ( M ( T ) ) > 

Jsl I dr I 
Hence, 

2 f d 

Thus, if u e Jf(x, y), /2(w) is the change in aH(u(r)), as r 
goes from — oo to +00 and so is finite. 

Conversely, let u e Wx loc be a solution of d3 Hu = 0 of 

finite length, and write uR for its restriction to [-R, R] x S{ . 
Then, by (3.1.3), 

/ 2 ( ^ ) = A(uR) + ƒ [//(w(i?, 0) - H(u{-R, 0)] dt, 
.As1 

where the area A(uR) is defined in (2.2). Since /(u) is finite 
and H is bounded, it follows easily that A(u) is finite. Let va 

be the restriction of u(- + pa) to [-2, 2] x 5 1 , where /?a is any 
increasing sequence in R which tends to 00 . Then, the sequence 
{va} converges to 0 in the Wx 2-norm, since A(u) is finite. If 
it is not uniformly bounded in the Wx -norm for some p > 0, 
we will see below that a sphere bubbles off. Since this sphere 
must have positive area, this contradicts the fact that A(va) —• 0. 
Hence {va} is uniformly bounded in the Wx p-norm and so, as in 

Theorem 2.4.1, has a subsequence whose restriction to [ - 1 , l]xSl 

converges in the Wx ^-norm. Clearly, the limit v has zero length, 
and so must be independent of t . Since dJHv = 0, this means 
that V(T, t) = x(t) where x is a critical point of aH. Further, 
because this holds for every reparametrization sequence pa , it is 
easy to see that the elements W(T) of QK must converge to x in 
the C°-topology on ( ÎF as Î - ^ - O O . A similar argument shows 
that W(T) converges as r —• +00. Hence u e Jt(x, y). 

We will prove the statement about the sphere bubbling off by 
an argument due to Hofer. Observe first that if we had sequences 
za e [ -2, 2] x S1 and ea e (0, 1] such that 

(3.4.3)(i) ra = ea.\dva(za)\^oo, 
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and 

(3.4.3)(ii) \dva(z)\ < 2\dva(za)\ for all z G B(za, ea), 

then the argument of Theorem 2.4.2 would go through. For, if ga 

were the rescaling of va defined as in (2.4.3), but with a map y/a 

of B(0,ra) onto 5 ( / , e J such that \dy/a(z)\ < l/\dva{zQ)\, 
then sup\dga(z)\ < 2\dga(0)\ = 2 by (3.4.3)(ii). Therefore, just 
as before, a subsequence of the ga would converge to a map 
g : C —• V. Note that the limit g would be /-holomorphic, 
since, in the rescaling, the contribution from H in the equation 
d j Hu = 0 becomes vanishingly small. Hence g would extend to 

a continuous map S —• V as claimed. 
To find suitable za and ea , we start from any sequences which 

satisfy (3.4.3)(i). Suppose, inductively, that (3.4.3)(ii) holds for 
a < k and consider the /cth term. We will find a point z'k e 
B(zk, 2ek) and e'k > 0 such that (3.4.3)(ii) holds and ek.\dvk(z'k)\ 
> ek.\dvk(zk)\. Start with (wx, Sx) = (zk, ek). If this does not 
satisfy (3.4.3)(ii), choose w2 e B(wl9Sl) so that \dvk(w2)\ > 
2\dvk(w{)\ and put ô2 = öl/2. Then (w2,S2) clearly satisfies 
(3.4.3)(i). If it does not satisfy (3.4.3)(ii), then repeat the above 
construction using (w2, S2) instead of (wx, Sx) to get a new point 
(w3, S3) with ô3 = ô2/2, and so on. Either this process stops 
after N steps and one can take (z'k, e'k) = (wN9 SN)9 or one 
obtains a sequence w{, w2, ... which converges to some point 
w in B(zk,2ek). But then vk cannot be differentiable at w, 
which contradicts the regularity theorem (Theorem 2.4.1). Hence 
the process must stop, which completes the proof of the claim. D 

Note. Another way to prove that the va are uniformly bounded 
in the Wx p-norm is to prove directly that if u is any solution of 
~dj Hu = 0 with finite length then \du(z)\ is bounded over RxS 1 . 
This follows from an a priori estimate for the derivative \df(0)\ of 
a solution ƒ : B(0, 1) —• V of dj Hf = 0 in terms of the area of 
its image, which holds provided that this area is sufficiently small. 
(Here we identify the disc 2?(0, 1) with the corresponding subset 
in R x Sl = C/Z.) Gromov (see [P, # 8, # 12]) and Wolfson 
[Wo, Theorem 4.1] prove such an estimate when H = 0. For the 
general case, see Salamon [S, Lemma 5.1]. (In fact, the general 
case can be reduced to the case H = 0 by Gromov's trick in [Gl, 
1.4.C'].) 
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Fredholm theory. For each pair x j of critical points of aH, 
Floer defines a subspace Px {x, y) of Wx ^(Rx^S1 , V) which 
consists of functions which decay exponentially to x and y at the 
ends of the cylinder R x Sx . He then shows that, provided that x 
and y are nondegenerate (i.e. that the Hessians of aH at x and y 
have no kernel), one can set up a Fredholm theory for the operator 
dj H on Px (x, y) much as in (2.3). Thus, he defines a Banach 
bundle S' over P{ (x, y) and a Fredholm section d j H of S* 
whose zeros are solutions of the equation (3.3.2). (The details, 
which are rather complicated, may be found in [F5, 2a, b]. The 
Hessians mentioned here are defined in (3.4.4) below, where they 
are called Ax and A .) Further, the argument of [Fl, Theorem 
4a] shows that each element of Jt(x, y) does have exponential 
decay at its ends, and so belongs to Px (x, y). Hence J[{x, y) 
is precisely the zero set of d j H . 

The index fi(u). In the finite-dimensional case, all the compo­
nents of J£{x, y) have the same dimension Int(x) - Int(y). In 
our case, the critical points x of ^ on Q F do not have a 
naturally defined integer-valued index. However, the difference 
ju(u) = Int(jc) - Int(y) can be measured along each trajectory 
u G ^f(jc, y). For, according to (3.2), fi(u) should be a mea­
sure of the difference in dimension between the maximal negative 
subspaces of the Hessians of aH at x and y. Suppose that, 
for each u, we can define a family of self-adjoint operators Az, 
where T G [0 ,1 ] , o n a smoothly varying family Lx of Hubert 
spaces, such that A0 is the Hessian at x and Ax is the Hessian 
at y . Suppose further that all the eigenvalues of AT have multi­
plicity 1. Then there are smooth families a(r) of eigenvalues of 
Ax, and we can measure ju(u) by the spectral flow of the AT, that 
is by counting the number of eigenvalues of the A% which cross 0 
as T goes from 0 to 1. More precisely, 

JU(U) = #{a : fl(0) < 0 < a(l)} - #{a : a(0) > 0 > a( l )} . 

To define these operators, let Lz be the tangent space L (z TV) 
to Q F at z , and define Az on a dense subspace of Lz by set­
ting it equal to the covariant derivative of the gradient vector field 
^j H. If the domain of Az is extended to the Sobolev space 
Wx 2(z*TV), it is not hard to check that Az is self-adjoint. Fur­
ther, if z is a critical point of aH , A is the Hessian of aH at 
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z , and one can check that it is given by the formula: 
(3.4.4) 
Az(t) = Dç(Jz) - D;{VHt(z)) = J{Dfi) + (D^J)z - D^(VHt(z)), 

where D denotes the covariant derivative with respect to the Levi-
Civita connection of jUj . (In [F2] (2.10) Floer uses V instead of 
D, and denotes Dt($) by Vz(£).) Floer shows in [F2] Prop. 2.1 
that, provided that the critical points x and y are nondegenerate, 
we may take the family Ax to be a slight perturbation of the family 
Au^ (suitably reparametrized). Moreover, the spectral flow of AT 

is independent of the perturbation chosen. Since Az is defined 
for all z G QV, it follows that ju(u) is defined for every path u 
between x and y, and depends only on the homotopy class of this 
path relative to its endpoints. He also shows that ju(u) is the index 
of the relevant Fredholm operator, so that it is the dimension of 
the component of J[{x, y) which contains u. 

Notice that because Q.V consists of contractible loops, two 
paths u and v in Q.V from x to y differ homotopically by 
a 2-sphere, i.e. v is homotopic (relx, y) to the connected sum 
of u with the image of a 2-sphere in V. If the free homotopy 
class of this 2-sphere is A , we will write v = u#A . 

Lemma 3.4.5. pt(u#A) = ju(u) + 2cx (A). 

Proof. See Theorem 4 in [F2]. This result can also be proved using 
the Maslov index of [SZ]. D 

This lemma shows that one can define a mod2T index Int(x) 
for the critical points x of aH . We now come to a very important 
application of the monotonicity hypothesis. 

Lemma 3.4.6. When ( V, co) is monotone, there is for each K a 
number LK such that f(u) < LK whenever ju(u) < K. 

Proof. As we saw in Lemma 3.4.2, 

/2(u) = A(u)+ [ [H(x(t))-H(y{t))]dt. 
Jsl 

Hence /2(u#A) = /2(u)+co(A) = /2(u)+kc{(A), since, by mono­
tonicity, (o(A) = kcx{A). The result now follows from Lemma 
3.4.5 and the fact that aH has only finitely many critical points. D 

The set {f x ^ ) r e g . The remaining step in the proof of part 
(i) of Theorem 3.3.3 is to show that / x / contains a dense 
set of regular elements {f x ^ ) r e e . It is not hard to check that 
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the critical points of aH are nondegenerate for generic (J, H). 
(This point is discussed further in Lemma 3.4.9 below.) Hence the 
Fredholm theory may be set up for generic ( / , H) and as in (2.3), 
it suffices to show that one can obtain a generic perturbation of 
dj H by varying the pair (J, H) within a Banach manifold </' x 
%f', where f1 is as in (2.3) and &1 is a similarly defined Banach 
subspace of %f. This is easy to do, since we have such freedom 
in the choice of H : see [F5, §2c]. Thus, just as in Theorem 2.3.3, 
we can show: 

Proposition 3.4.7. There is a dense set C ^ x ^ ) r e g in / x / such 
that for every element ( J , i / ) e / x / the action functional aH 

has a finite set Z of nondegenerate critical points, and the trajectory 
spaces Jt(x ,y), x, y e Z, are smooth manifolds. Further, the 
dimension of the component of ^#(x, y) containing the trajectory 
u equals ju(u). 

This "transversality" result is sufficient for many purposes. 
However, when we calculated the Floer complex (F^, d) in Propo­
sition 3.3.7, it was convenient to use a time-independent H. Since 
the property of being time independent is not generic in %f, 
we must justify this by further arguments. Observe that when 
H is time independent, there may be multiply covered trajecto­
ries, i.e. trajectories v such that v(r, t) = u{mx, mt) for some 
( / , ///m)-trajectory u and some m > 1. These do not occur for 
generic elements of %? since the corresponding critical points of 
aH are not multiply covered. However, because the Hamiltonian 
flows of time-independent functions have fixed points, they do oc­
cur for generic time-independent H. We will say that a trajectory 
u is simple if it is not multiply covered. Similarly, the pair (u, / ) 
is simple if u is. 

Lemma 3.4.8. If H is any element of %?, and x, y are distinct 
nondegenerate critical points of aH, then the subset of Px (x, y) x 
Jr' formed by all simple pairs (u, J) such that dJHu = 0 is a 
Banach manifold. 

Sketch of proof. We will indicate the changes in [MD2, Propo­
sition 4.1] needed to deal with the extra term in the equation, 
suppressing various details which are caused by the complications 
of analysis on R x 5 ! . (For these, see [Fl, §5].) To be consistent 
with the notation of [MD2], we will write ƒ instead of u. 
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2 

The setup is just the same as before, except that S should 
be replaced everywhere by R x S 1 and the operator O has the 
formula 

$(ƒ, / ) = ¥ ( ƒ , J)[df+Jodfoi + h]. 
Here h is the section of A°/l(Ef) given by h(d/dz) = —VHt = 
JdHt, and h(d/dt) = JVHt = -dHt. Let a be the section of 
Hom(r (RxS ' 1 ) ,£ / ) given by a(d/dr) = dHt, and a(d/dt) = 0. 
Then h — Ja-aoi^ and it is easy to check that the linearization 
LO of O at (ƒ, / ) satisfies 

LO(0 ,v) = ¥ ( ƒ , ƒ)[v o */ƒ o ƒ + v o a ] . 

Further vodfoi + voa is anti-J-holomorphic, i.e. belongs to 
A}» ' (£ƒ) , because 0 ( / , / ) = 0. 

The calculation of L®(w, 0) is much as before, except that 
there are some new terms of zero order coming from h . Because 
the endpoints x and y are nondegenerate, this operator is Fred-
holm, and so has closed image with finite-dimensional cokernel. 
Hence, it suffices to show that the image of LO is dense. 

Observe that equation (b) in [MD2] now reads (£, v o df o i + 
v o a) 2 = 0. There is an open set on which dfoi + a^O, because 
the value of this homomorphism on d/dt is df/dx, and this must 
be nonzero on an open set since x ^ y and ƒ is smooth. Further, 
one can show as in [MD2, Lemma 4.4(i)] that the hypothesis that 
ƒ is simple implies that df o i + a ^ 0 on some open subset of 
R x 5 ! on which ƒ is injective. (This statement is the analogue 
of [Fl, Lemma 5.3]. Note that the local properties of solutions 
of the equation djf = g{f) are just like those of solutions of 
djf = 0: indeed, by [Gl, 1.4.C7], the graphs of solutions of the 
former equation are J^-holomorphic for suitable Jg .) Hence the 
argument that LO has dense image goes through without essential 
change. D 

Now consider the case when H is time independent. Let x G 
QV be the constant loop at a critical point xQ of H on V and 
let Sj : T —• T denote its Hessian with respect to the metric jUj , 
where T is the tangent space to V at the point xQ. It is easy 
to check that /ij(Sj(X), Y) = XY(H) = -co(JSj(X), Y), for all 
vector fields I , F on V. Hence the operator JSj is independent 
of the choice of / , which implies that the condition on H in the 
lemma below is also independent of the choice of / . 
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Lemma 3.4.9. Let H be time independent. Then x is a nondegen-
erate critical point of aH if and only if there is no integer k such 
that 2nik is in the spectrum of JSj . In particular, x0 must be a 
nondegenerate critical point of H. 

Proof. Since x = 0, the formula (3.4.4) for the Hessian Ax of aH 

at x simplifies to Ax(Ç(t)) = J(D£(t)) -Sj(Ç(t)), where i(t) € 
Wx 2(S

l, T). Therefore, x is nondegenerate if and only if the 
equation Ax(i) = 0 has no nonzero solutions Ç(t) with {(0) = 
{(1). Since its solutions have the form Ç(t) = exp(-tJSj)Ç(0), 
this is equivalent to requiring that the spectrum of JSj contains 
no element 2nik, k e Z . D 

Proposition 3.4.10. Let H be a generic time-independent function 
on V. When ( V, co) is monotone, and X is sufficiently small, 
there is an element (J, ÀH) e ( / x ^ ) r e g such that the only com­
ponents of the ( / , XH)-trajectory spaces Jf(x, y) which contribute 
to (F^, d) consist of time-independent trajectories. 

Proof. Let H be a generic function on V and choose X > 0 small 
enough so that: 

(i) sup(ÀH) - inf(XH) < k (where [co] = kc{ by monotonic-
ity), and 

(ii) XH has no nonconstant periodic orbits of period < 1. 

Condition (ii) may be achieved because, for each K > 0, the 
Hamiltonian flow on ( V, co) of a generic function H has finitely 
many periodic orbits of period < K. It follows that the only crit­
ical points of am are constant loops at the critical points of H. 
Hence, because H is generic, we can assume that the nondegen-
eracy condition of Lemma 3.4.9 is satisfied. Further, the image 
\mu of each trajectory is a 2-sphere in V, so that its area A(u) 
is just the value co([u]) of œ on this sphere. By Lemma 3.4.2, 
/ (u) — co([u]) + XH(x) - XH(y) and is positive. Hence (i) im­
plies that co([u]) > —k . But this means that co([u]) > 0 since, by 
the integrality of c{, all negative values of [co] = kc{ are < —k. 
Therefore, cx([u]) > 0, and so, by Lemma 3.4.5, the index ju(um) 
of the multiple trajectory um = u(m-, m-) is > /u(u). 

By Lemma 3.4.8, we may choose / G ƒ so that, for all m > 1, 
the pair ( / , XH/m) is regular for all simple trajectories, i.e. each 
simple ( / , XHjm)-trajectory u has a neighborhood in «/#(;*;, y) 
which is diffeomorphic to R^(M). Then, although the ( / , XH)-
trajectory space JP(x,y) could conceivably have singularities 
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near its multiple trajectories, each such trajectory has the form 
um where u is a regular simple (7 , A///m)-trajectory. 

The crucial point now is that any solution u of d3 XH,mu = 0 
which is not constant with respect to t has an extra rotational 
symmetry. Hence it has a 2-parameter family of reparametriza-
tions, and so, provided that it is regular so that its index equals the 
local dimension of J[{x, y), it has index ju(u) > 2. Hence its 
multiple coverings um also have index > 2. It follows that every 
(J, A//)-trajectory which depends on time lies in a component of 
^{x, y) of dimension > 2. Since the boundary operator d is 
defined by the components of dimension 1, such trajectories do 
not contribute to (F#, d). D 

Compactness. The situation here is very similar to that in (2.4), ex­
cept that now there is another source of noncompactness: besides 
the possibility of /-holomorphic spheres bubbling off, a family of 
trajectories from x to y can split up into a k-trajectory from x 
to y, which is a sequence of k-trajectories (with k > 1) going 
from x to z{, from zx to z2 , and so on until it reaches zk = y . 
The following proposition proves part (T3) of Theorem 3.3.3. 

Proposition 3.4.11. When V is monotone and ( / , H) is regular, 
the components of ^(x, y) of dimension 0 are compact (and 
hence finite) and those of dimension 1 are compact except for se­
quences of trajectories which split up into two. 

Proof. Consider a sequence {ua} in ^(x, y) with fi{ua) = m. 
By Lemma 3.4.6 the lengths of the ua are bounded, which means 
that the ua are uniformly bounded in W{ 2 ( R x S 1 ) . Let us sup­
pose first that the ua are also uniformly bounded in Wx loc(R x 

S ) for some p > 2, i.e. that for each p > 0, the restrictions of 
the ua to [-/?, p] x Sl are Wx ^-bounded. Then the argument 
of Theorem 2.4.1 shows that there is a subsequence (also called 
ua) which converges in the local Cn topology. (The extra term in 
d j H involving H makes no essential difference to the analysis.) 
We claim that this implies that {ua} splits up into a /c-trajectory. 
To see this, observe that any sequence ua o aa = ua(- + aa) which 
is obtained from ua by reparametrization also has a subsequence 
which converges in the local Cn -topology. Its limit will be a solu­
tion v of the equation dj Hv = 0 in Cn(RxSl) with bounded 
length. By Lemma 3.4.2, v belongs to some trajectory space 
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jtf(x , y), and is constant with respect to x if and only if it 
has zero length. 

It is now easy to see that as {aa} ranges over all possible 
reparametrizations, there are only a finite number of possible lim­
its v , and that they may be arranged in a sequence vx, . . . , vk 

where v{ goes from x = zQ to zx, v2 goes from zx to z2, and 
so on. Clearly, the index of the ua is the sum of the indices of 
the v.. But because ( / , H) is regular there are no components of 
J£{x,y) with dimension < 1. (Because there is a 1-dimensional 
reparametrization group, no component of Jf{x, y) can have di­
mension 0.) Hence this splitting cannot occur if u has index 1 
and, if the ua have index 2, they can only split into a pair of 
isolated trajectories. 

Now, consider the case when the ua are not uniformly bounded 
in Wx loc(R x Sl) for any p > 2. Then, as in Theorem 2.4.2 
and Lemma 3.4.2, one can find a subsequence from which a / -
holomorphic sphere bubbles off. In fact, there may be a finite 
number of spheres bubbling off, and the trajectories ua may also 
converge to a k-trajectory. But, in any case, there must be a sub­
sequence which converges to the union of a /c-trajectory v with 
a finite number of /-holomorphic spheres of classes Ax, . . . , A . 
By Lemma 3.4.5 we must have JLL(V) + 2cx(Ax) + . . . + 2cx(Ap) = 
fi(ua) = m , where ju(v) > 1 if v is not constant because ( / , / / ) 
is regular. Further, co(A.) > 0 for each i since A. has a J-
holomorphic representative. Hence cl(Ai) > 0 by monotonicity, 
and so this cannot occur when m = /i(ua) < 2. It is also possible 
that x = y, v is constant, p = 1 and c(Ax) = 1. But in this case, 
the loop x must be a single point lying on the bubble. This cannot 
happen for generic / because, by (2.3.3), when c(A) = 1 the set 
of points which lie on an ^4-sphere has codimension > 2 . D 

The remaining parts of Theorem 3.3.3 involve the technique of 
gluing. Floer's discussion of this in [F5, 2d] is very clear, and there 
is nothing I can usefully add to it. 

(3.5) Other applications of Floer's theory. 
(3.5.1) Lagrangian intersection theory. Because the graph of a 
symplectic diffeomorphism is Lagrangian, one can generalize 
Arnold's conjectures to questions about the intersection of La­
grangian submanifolds. Instead of counting fixed points of ex­
act diffeomorphisms, one counts the points of intersection of a 
Lagrangian submanifold L with its image Lx under an exact de-
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formation. Floer's construction applies to this case, and many of 
his papers on the Arnold conjectures are in this language. His re­
sults are proved for Lagrangian submanifolds L of ( V, co) such 
that co vanishes on all elements of n2(V, L). Recently Oh [Ol] 
generalized this to the case of symmetric Lagrangian submanifolds 
in monotone ( F , co), i.e. to Lagrangian submanifolds L which 
form the fixed point set of some antisymplectic involution. Given-
tal in [Gi] has a completely different and rather more geometric 
approach to the problem which works for the symmetric subman-
ifold L = RPn in CPn , and it would be interesting to know how 
far these methods can be combined and/or generalized. 

(3.5.2) Capacities. Roughly speaking, Ekeland and Hofer de­
fine the capacity c(H) of a function H on R2" to be the ac­
tion aH(z) of some particular periodic orbit z of its Hamilto-
nian flow. The capacity of a set S is then defined to be the infi-
mum of c(H) taken over all H which vanish on S and satisfy 
some growth condition at infinity. The main difficulty here is to 
find a natural way to describe the special periodic orbit used to 
define c(H). The variational methods used for this purpose by 
Hofer and Viterbo are rather indirect. Moreover, as one sees from 
[HV2], even to transfer them from R n to the class of cotangent 
bundles requires a huge amount of work. In contrast, Floer's el­
liptic techniques work in any symplectic manifold, provided that 
the /-holomorphic spheres in that manifold can be understood. 
Further, as we shall see in (3.5.3) below, they do allow one to get 
a handle on the periodic orbits since these appear as the vertices 
of the Floer complex. Therefore, one may be able to extend sig­
nificantly the range and power of capacity theory by using Floer's 
elliptic techniques. 

Floer and Hofer have made a beginning in this definition, by 
working out a definition of Ekeland and Hofer's sequence of ca­
pacities for subsets of R2n which uses these techniques instead 
of critical point theory. (This work has not been written up yet.) 
However, their definition still applies only to R2" . Together with 
Viterbo, they have also tried to extend the theory of capacities 
to more general symplectic manifolds. Their first attempt may 
be found in [FHV], where they consider manifolds of the form 
V x R2n where co vanishes on n2(V). The argument there, al­
though interesting, is still somewhat clumsy. However, it is re­
fined by Hofer and Viterbo in [HV1] (see also [VI]), where, among 
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other things, one can find a simple and elegant proof of Gromov's 
squeezing theorem. To illustrate the kind of ideas involved, we 
will end this article by summarizing their argument. 

(3.5.3) A Floer-type proof of Gromov 's squeezing theorem. First of 
all, Hofer and Viterbo reformulate the problem so that it becomes a 
question about the existence of periodic orbits for a certain Hamil­
tonian flow. They observe, as before, that it suffices to consider a 
symplectic embedding g of B2n(r) into (S2 x V, T) where V is 
a product of 2-spheres and r is the form (R + e)2[al 0 K2a2@ 
... ® K2an]. Pick points x in Img and y outside Img, and 
let H be any smooth function S2 x V —• [0, 1] which is 0 near 
x and 1 near y and has no critical values other than 0 and 1. 
(For example, H could be constant except in a small collar neigh­
borhood of the (In - l)-sphere g(dB2n(r)).) Then they prove 
that the Hamiltonian flow of such a function H has a noncon-
stant periodic solution of period T < n(R + e)2 . By considering 
the corresponding functions H o g on B2n(r), one deduces that 
the Hamiltonian flow of a function (f>(\x\ ) has periodic orbits 
of period < n(R + e) , whenever 0 is a nondecreasing function 
from [0, oo) onto [0,1] such that (j)(s) = 1 for s2 > r2 . But an 
easy calculation shows that the period of these orbits is n/(j)(s). 
Hence, choosing suitable 0 , one sees that r < R, as required. 

In terms of Floer's theory, we are just asserting the existence 
of a nontrivial critical point of am for some X < n(R + e)2, 
since these critical points correspond to l-periodic solutions of 
the Hamiltonian flow of XH, and hence to /l-periodic solutions of 
the Hamiltonian flow of H. Consider the family of action func­
tional am for X > 0, and let x, y be as above. By composing g 
with a symplectic diffeomorphism of S x V , we may suppose that 
x, y both lie on the 2-sphere S x {p} , for some p eV . Let / 

2 

be the standard complex structure on S x V . When X = 0, the el­
ements of stf0(x, y) are /-holomorphic spheres (reparametrized 
as maps with domain R x Sl), and so these are completely under­
stood. In particular, there is a compact 1-dimensional component 
of ^Q(x, y) corresponding to the holomorphic sphere S x {p} . 
However, when X > n(R + e)2 = r(S2 x {p}), there is no trajectory 
u in JPk(x9y) in this homology class, because by the formula in 
Lemma 3.4.2, f2{u) would have to be < 0. Therefore, this com­
ponent must disappear as X increases from 0 to n(R + e)2. Since 
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the minimum value of co on the 7-holomorphic spheres occurs 
for the sphere S x {p} , bubbling off of spheres can be ruled out, 
and hence the only way that this component can disappear is for 
a trajectory in ^0(x, y) to split up into a pair of trajectories, one 
from x to z and the other from z to y. The critical point z is 
the desired periodic orbit. 
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